DDOS-GUARD

Чем он отличается от других систем заземления?

Давайте выясним по порядку.

Система заземления TT ​​в основном используется там, где условия электробезопасности в системах TN-C, TN-CS и TN-S не гарантируются полностью, например, рекомендуется использовать систему TT в случае неудовлетворительного состояние воздушной линии электропередачи (ВЛ). Могу с уверенностью заявить, что большая часть воздушных линий (ВЛ) находится в неудовлетворительном состоянии, выполнена неизолированными проводами и большинство из них не заземлены на опоры.

Обо всех недостатках оголенных кабелей вы можете узнать в статье SIP-кабель.

Кроме того, система заземления ТТ применяется для защиты людей от поражения электрическим током через проводящие (металлические) поверхности временных конструкций или построек.

  • строительно-монтажные кабины (прицепы)
  • металлические контейнеры, торговые павильоны и киоски
  • помещения с диэлектрической поверхностью стен, при наличии в них постоянной влажности и влажности

Принцип исполнения системы ТТ

Принцип системы заземления TT ​​основан на том, что защитный провод PE заземляется независимо от нейтрального проводника N и любое соединение между ними запрещено.

Даже если рабочий провод N контур заземления находится поблизости, защитный провод PE должен быть заземлен через контур заземления, и эти две цепи НЕ ДОЛЖНЫ связываться друг с другом.

Поэтому мы полностью изолируем токопроводящие (металлические) поверхности временных конструкций и зданий от электрических сетей.

Делается это просто: по всему периметру временного здания (сооружения) протягивается защитный PE-проводник в виде пластины или стержня, который подключается к собственному отдельному контуру заземления.

запрещается соединять заземленные части строительных конструкций (сооружения) и корпус электрооборудования с рабочим нулевым проводом Н.

Основные требования и особенности системы ТТ

Ниже я перечислю основные требования и особенности установки системы заземления ТТ.

УЗО с уставкой не более 30 (мА) должно быть установлено на всех проводных линиях в группе. Это необходимо для защиты от случайного прямого или косвенного контакта с токоведущими частями электрооборудования или в случае неисправностей в домашней электропроводке (появление токов утечки).

Также не стоит пренебрегать установкой на входе УЗО с уставкой 100-300 (мА), что обеспечит двухступенчатую селективную защиту вашего дома.

Перейдите по ссылке, чтобы узнать обо всех разновидностях и типах УЗО.

Нулевой рабочий проводник N

Нейтральный рабочий провод N нельзя подключать к местной цепи заземления и к шине PE.

Для защиты электрических устройств от атмосферных скачков необходимо установить ограничители перенапряжения (SPD) или ограничители перенапряжения (OPS или SPD). Подробнее об этих устройствах мы поговорим в следующих статьях.

Сопротивление контура заземления

Сопротивление контура заземления Rc должно удовлетворять условию PUE (Глава 1. , Параграф 1. 59) Rc * Iuzo (ток отключения УЗО)

Например, с УЗО с уставкой 30 (мА) сопротивление контура заземления (заземляющего электрода) не должно превышать 1666 (Ом). Или, если УЗО имеет настройку 100 (мА), сопротивление не должно превышать 500 (Ом). Это минимальные требования к сопротивлению контура заземления для системы заземления ТТ.

Как измерить сопротивление цепи — читайте в статье Измерение сопротивления заземления.

Для выполнения вышеуказанного условия достаточно будет использовать вертикальный заземляющий электрод в виде уголка или стержня длиной около 2-2,5 метров. Но советую более аккуратно замкнуть схему, забив несколько заземляющих электродов. Хуже не будет.

Недостаток системы заземления ТТ

Пожалуй, единственным недостатком системы ТТ является факт одновременного выхода из строя устройства защитного отключения (УЗО) и обрыва фазы на заземленном корпусе электрического устройства.

Петров Василий АлександровичЭлектромонтер 6 разряда, ООО «Петроэнергоспецмонтаж», 18 лет стажаВ этом случае защитные проводники PE и открытые проводящие поверхности будут находиться под потенциалом (напряжением) сети из-за того, что выключатель поврежденной линии может не сработать, когда фаза замкнута на PE, потому что ток короткого замыкания этого будет недостаточно. Поэтому единственной защитой в такой ситуации является система выравнивания потенциалов и установка двухступенчатой ​​дифференциальной защиты, о которой я упоминал выше. PS В конце статьи рекомендую посмотреть мое видео по устройству и сборке трёхфазной измерительной платы 380 (В) для частного дома с системой заземления ТТ.

TN-S, TN-C, TNC-S, TT, IT. Обзор.

Заземление является одним из основных факторов обеспечивающих защиту от поражения электрическим током. В соответствии с главой 1. 7 ПУЭ все системы заземления электроустановок можно разделить на две группы : — системы с глухозаземленной нейтралью, к ним относятся система заземления TN (N-C, TN-C-S, TN-S) и система заземления TT; — системы с изолированной нейтралью к ним относится система заземления IT;

Первая буква аббревиатуры указывает на характер заземления источника питания, а вторая — на характер заземления открытых проводящих частей электроприемника:

  • T (от франц. terre — земля) — заземлено;
  • N (от франц. neutre — нейтраль) — соединение с нейтралью источника питания (зануление);
  • I (от франц. isolé — изолированный) — изолировано от заземления.

Так же в статье встречаются следующие аббревиатуры:

  • N — функциональный (рабочий) ноль — нулевой проводник используемый для подключения электроприемника.
  • PE — защитный ноль — защитный проводник предназначенный для заземления корпусов электрооборудования.
  • PEN — проводник совмещающий функции нулевого защитного и нулевого рабочего проводников.

Теперь подробно разберем перечисленные типы систем заземления.

Система заземления TN

Система TN — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника питания посредством нулевых защитных проводников (п. ПУЭ).

Как уже было написано выше система TN подразделяется на следующие системы (подсистемы): TN-C, TN-C-S, TN-S.

Система заземления TN-C

Система TN-C — это система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении. То есть при данной системе применяется общий PEN-проводник который используется как для подключения электроприемников так и для зануления их открытых проводящих частей (корпусов).

Система заземления TN-C схема:

Как видно на схеме при данной системе выполняется зануление токопроводящих корпусов электрооборудования, это необходимо для того, что бы при замыкании фазного провода на корпус электроприемника, вследствие его обрыва или повреждения изоляции, произошло короткое замыкание которое, в свою очередь, привело бы к срабатыванию защитной аппаратуры (автоматического выключателя) и отключению напряжения.

Главным недостатком системы TN-C является утеря ее защитных функций в случае отгорания (обрыва) PEN-проводника, при этом на зануленном корпусе электрооборудования может возникнуть опасный для жизни электрический потенциал.

Из-за недостаточной степени защиты в настоящее время данная система не применяется, однако она все еще встречается в зданиях старой постройки. При реконструкции старых зданий система заземления TN-C заменяется на систему TN-C-S или TN-S.

Система заземления TN-C-S

Система TN-C-S — это система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. Другими словами при данной системе имеется PEN-проводник который, в определенной части этой системы, разделяется на нулевой рабочий (N-проводник) и нулевой защитный (PE-проводник).

Согласно пункту 1. 135 ПУЭ В месте разделения PEN-проводника на нулевой защитный (PE) и нулевой рабочий (N) проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.

Таким образом схема системы заземления TN-C-S будет иметь следующий вид:

Примечание: перемычка между шинами должна иметь сечение не менее сечения PEN-проводника.

Данная система более надежна и обеспечивает более высоки уровень электробезопасности чем система TN-C, кроме того система TN-C-S обеспечивает защиту от обрыва нуля, а ее устройство обходится немногим дороже системы системы TN-C.

Однако эта система так же имеет существенный недостаток — при повреждении PEN проводника на участке сети между источником питания и зданием на всех корпусах электрооборудования соединенных с PE проводником появится опасный для жизни электрический потенциал.

Для предотвращения такого развития событий при системе TN-C-S выполняется повторное заземление PEN проводника, как показано на схеме.

Благодаря невысокой стоимости устройства системы TN-C-S и ее хорошими защитными характеристиками в настоящее время эта система получила наиболее широкое применение.

Система заземления TN-S

Система TN-S — это система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении.

Система заземления TN-S схема:

Данная система обеспечивает высокий уровень безопасности, т. при ней исключена возможность возникновения опасного электрического потенциала на корпусах электрооборудования при повреждении питающей линии.

Однако система TN-S не получила широкого распространения ввиду своего главного недостатка — высокой стоимости, которая обусловлена необходимостью выполнения подключения электроустановок потребителей к источнику питания пятью проводами при трехфазном подключении либо тремя проводами при однофазном подключении, при этом отечественная энергетика ориентирована на четырехпроводные схемы трехфазного электроснабжения, это значит, что при решении выполнить подключение по системе TN-S присоединение к существующим сетям электроснабжения будет невозможно, для такого подключения необходимо будет вести отдельную пятипроводную линию от источника питания (трансформаторной подстанции).

Система заземления TT

Система ТТ — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Система заземления TT схема:

В соответствии с пунктом 1. ПУЭ питание электроустановок по системе ТТ, допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Кроме того в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:

где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.

Система заземления IT

Система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.

Система заземления IT схема:

Система IT применяется, как правило, в электроустановках специального назначения, к которым предъявляются повышенные требования безопасности, например лаборатории, угольные шахты, также может применяться в больницах для аварийного электроснабжения и освещения и т

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1. 7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1. 7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571. 2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток.

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом.

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Июль 1, 2021

Принцип действия

Стандарт используется в электросетях с глухозаземленными нейтралями. Система TT функционирует по достаточно простому принципу. Токоведущие элементы соединяют на стороне потребителя. Защитный проводник PE заземляется независимо от нуля (N). Контакт между данными проводниками не допускается. Даже при наличии в непосредственной близости контура заземления нуля защитный проводник заземляется через собственный контур. Не разрешается контактирование контуров друг с другом.

На рисунке внизу показана схема, по которой работает система TT.

Сфера применения

Заземление типа TT нельзя отнести к стандартному способу решения проблемы защиты. Правила устройства электроустановок содержит нормы, указывающие, что в электросетях с глухозаземленной нейтралью следует использовать заземление стандарта TN. Данная система включает несколько подсистем, в том числе TN-S, TN-C, TN-C-S.

Разные варианты имеют свои особенности, но в то же время схожи конструкцией: заземлительные цепи нейтрали трансформатора и электрических установок объединены. Подобный способ защиты наиболее доступен с точки зрения потребителя, подключающегося к сети. Система TN обходится без создания заземлителя на стороне потребителя.

Стандарт TТ применяется, когда необходимы особые меры по обеспечению электробезопасности. Это не всегда достижимо с помощью TN. Правила устройства электроустановок прямо указывают на то, что TT применяется только при невозможности обеспечения стандартом TN требуемого уровня безопасности.

Чаще всего о необходимости установки TT говорят, когда питающая воздушная линия электропередачи находится в плохом техническом состоянии (особенно если построена по временной схеме). Ненадежность электросети влечет высокий риск повреждения заземляющего проводника (потеря электросвязи между заземлителем на подстанции и заземляющей системой потребителя). В результате такого положения любой пробой изоляции приведет к тому, что напряжение на корпусах электрооборудования будет равно рабочему напряжению сети. Таким образом, система TT особенно актуальна как временное решение проблемы защиты какого-либо объекта (например, строительной площадки, вагончиков для рабочих и т.

Стандарт TT применим и в частных домах. Следует заметить, что организация заземления по этой схеме достаточно сложна для домовладельца. Без помощи опытных специалистов скорее всего не обойтись.

Обратите внимание! По Правилам устройства электроустановок заземление по схеме TT не допускается без использования устройства защитного отключения (УЗО).

Устройство защитного отключения — защитная система, предназначенная для аварийного отключения сети. Необходимость в нем возникает при утечке тока, что происходит при повреждении изоляционного слоя. УЗО отзывается на разницу токов, идущих по фазному и нулевому проводникам. В случае нарушения изоляции электрической установки возникает шунтирующая цепь через корпус электроустановки на землю и появляется ток утечки на заземление.

Требования к устройству заземления

Наиболее важный параметр заземляющего устройства — уровень сопротивления. Технические требования к заземлению, построенному по схеме TT, выражаются в следующей формуле:

Если используются несколько УЗО, во внимание принимается дифференциальный ток срабатывания того оборудования, где его значение самое большое. Помимо условия, указанного в формуле, необходимо выполнить основную систему уравнения потенциалов.

Заземление выполняется путем соединения друг с другом следующих конструкционных элементов:

  • заземление объекта;
  • металлические трубы отопительной, канализационной системы, газопроводы, водопроводы (как холодного водоснабжения, так и горячего);
  • металлоконструкции каркаса сооружения;
  • металлические части систем вентиляции и охлаждения воздуха;
  • элементы молниезащиты здания.

Достоинства и недостатки

Главное достоинство стандарта ТТ — независимость от качества линий электропитания, от их потенциального повреждения. Поскольку заземляющее устройство расположено рядом с защищаемым объектом, вероятность обрыва электросвязи резко уменьшается.

Однако создание полноценной защиты по данной технологии сопряжено с большим объемом земляных работ. Не обойтись без УЗО, что делает схему более сложной и дорогостоящей.

Чтобы не отвлекаться на бесполезные дела и не откладывать важные, нужно верно расставлять приоритеты. В этом помогает Матрица Эйзенхауэра — метод тайм-менеджмента самого продуктивного президента США

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий