Главная страница — Altsolar

Содержание

Май 2018

Установка солнечных батарей на раме

 

 Солнечная генерация может обеспечить резервное энергоснабжение, полную автономность объекта или снизить общее энергопотребление. Но только при условии правильной установки солнечных панелей.

По конструктиву солнечная батарея представляет собой прямоугольный модуль, собранный из отдельных ячеек. По способу работы — это огромный транзистор или фотоэлектронный преобразователь, который превращает условные фотоны в условные электроны с поправкой на КПД.

Коэффициент полезного действия батареи определяется материалом ячеек: батареи из монокристаллического кремния имеют КПД около 20%, поликристаллический эффективен чуть менее, аморфный преобразовывает в электроэнергию 10% солнечного света.

Куда же деваются оставшиеся 80−90% энергии солнца? Преобразуются в тепло и нагревают солнечный модуль до довольно высоких температур. Если батарея установлена неправильно, то пожарить яичницу получится только на ней самой, поскольку мощности на включение электроприборов не хватит. Поэтому нужно соблюдать определенные правила установки.

Общие правила установки солнечных панелей

При монтаже солнечных панелей необходимо обязательно учитывать 5 факторов, сочетанием которых, в конечном итоге определяется место и способ установки:

  1. Отвод тепла
  2. Тень
  3. Ориентация
  4. Наклон
  5. Доступность для обслуживания

Как было сказано выше, отвод тепла играет важную роль в поддержании работоспособности батарей. Между панелью и плоскостью установки обязательно нужно оставлять вентиляционный зазор, и чем он больше — тем лучше. Обычно при монтаже рамы или каркаса для крепления модулей между панелью и плоскостью оставляют 5−10 сантиметров. Максимальная вентиляция обеспечивается при установке на отдельной раме или штанге.

Любая тень, падающая на батарею от деревьев или строений, «отключает» затененную ячейку, что ускоряет деградацию дорогих монокристаллических модулей и полностью прекращает выработку энергии в поликристаллических. Производители предлагают различные способы минимизации риска возникновения «горячей точки» из-за прерывания электроцепи, что нужно учитывать при покупке. Но лучше устанавливать батарею таким образом, чтобы «жесткая» тень не могла попасть на нее никоим образом. «Мягкая» тень из-за тумана, облаков или смога не наносит вреда батарее, просто снижает выработку энергии.

Ориентировать батарею нужно на юг — так инсоляция будет максимальной. Все прочие способы установки являются компромиссными, и лучше их не рассматривать. Потратить десятки тысяч рублей на покупку модулей, но сориентировать батарею не по солнцу было бы неразумно. Карты инсоляции для различных регионов РФ опубликованы в интернете и общедоступны. Средняя полоса России преимущественно находится во 2-й зоне инсоляции, где с 1 кв. метра правильно установленного идеального солнечного модуля можно получать до 3 кВтч/сутки.

Наклон солнечной батареи принимают равным широте нахождения объекта или параллели. Например, для Москвы это будет 55 градусов к горизонтали, для Санкт-Петербурга — 60 градусов, а для Сочи — 43 градуса. При этом весной угол наклона батареи лучше уменьшать на 12−15 градусов от оптимального, а зимой — на столько же увеличивать для захвата максимального потока солнечного света.

Установка солнечных батарей на крыше

Доступность батареи для быстрой очистки поверхности позволяет выполнять эту несложную операцию без привлечения специалистов. Зимой поверхность нужно освобождать от снега, летом — от пыли и грязи, нанесенных ветром и дождем. Если поблизости находится строящийся объект, то очищать поверхность модулей придется ежедневно. Проще всего это делать струей воды из шланга или любой щеткой для мойки окон.

Варианты установки солнечных модулей

Наилучшим местом для установки считается крыша здания, поскольку она максимально возвышается над объектами и деревьями, бывает меньше всего затенена и избавляет от необходимости оборудовать на участке отдельную площадку для монтажа.

Даже если угол наклона кровли и ее ориентация не совпадают с оптимальными, закрепить и правильно ориентировать модули можно при помощи рамных конструкций. Поскольку у батарей большая парусность, жесткость каркаса должна быть рассчитана с учетом ветровой нагрузки.

Оптимальным материалом для сборки каркаса считаются металлические уголки или специальные профили для монтажа солнечных панелей. Конструкция из деревянного бруса быстро потеряет прочность и форму под воздействием ветра и осадков.

Если установка на кровлю невозможна, то модули устанавливают на земле, где нет тени и есть возможность жестко закрепить основание каркаса или несущей штанги. Такой способ монтажа хорош тем, что обеспечивает панелям максимальное воздушное охлаждение.

Для установки небольших по площади массивов солнечных батарей можно использовать южную стену дома или надворной постройки. При этом поверхность, прилегающую к обратной стороне модуля, лучше покрасить в белый цвет, чтобы обеспечить минимальный нагрев и максимальный рассев света. У полупрозрачной безрамочной солнечной батареи активными являются и наружная, и обратная стороны, поэтому отраженный свет тоже будет преобразован в энергию. Если зимой установить солнечный модуль в заснеженном поле, то мощность выработки электроэнергии может увеличиться в 1,5 раза за счет высокой отражающей способности белого снежного покрова.

Как правильно выбрать местоположение

 

Установка солнечных батарей на вертикальной поверхности

Исходя из всего сказанного выше, место для установки солнечных батарей должно отвечать следующим критериям:

  • отсутствие тени;
  • легкая доступность;
  • удаленность от источников пыли, например, автомобильной дороги;
  • ориентация на юг;
  • хорошая обдуваемость ветром, но с учетом высокой парусности модулей.

Если вам кажется, что на вашем объекте отсутствуют площадки, отвечающие этим требованиям, — не отчаивайтесь и не спешите отказываться от бесконечного источника бесплатной солнечной энергии.

Специалисты компании «Энергетический центр» имеют огромный опыт комплектования и установки солнечных электростанций любой мощности. На сайте «Со светом» можно получить бесплатную консультацию в любом объеме — позвоните, закажите обратный звонок или используйте онлайн-чат.

За последние 10 лет цены на оборудование для солнечной генерации снизились многократно, сделав этот способ получения энергии общедоступным и выгодным. Обращайтесь к специалистам и будьте со светом!

« назад

Часть 1 Солнечная электростанция в квартире (без аккумуляторов)

Видеоверсия 1 части:

Немного теории:

Итак, вот из чего состоит среднестатистическая солнечная электростанция:

  • Солнечная панель (панели);

  • Контроллер заряда аккумуляторной батареи;

  • Аккумуляторная батарея (батареи);

  • Низковольтная нагрузка постоянного тока;

  • Высоковольтная нагрузка переменного тока.

Если отказаться от высоковольтной нагрузки и инвертора, то можно существенно сэкономить, но придется что-то думать с лампами освещения, они в таком случае должны быть низковольтными. Т.е. нужно иметь 2 комплекта осветительных приборов (штатные на 220 вольт и низковольтные на 12 вольт).

Еще можно отказаться от аккумуляторной батареи и контроллера заряда. В сухом остатке получится солнечная панель, лампы и провода. Меньше никак. В этом случае лампы будут гореть только тогда, когда солнечная панель вырабатывает электричество, т.е. днем. И второй минус это яркость свечения ламп, которая будет зависеть от количества солнечной энергии, падающей на солнечную панель (угол падения лучей, наличие облачности).Вот именно об этом варианте я и хочу рассказать.

От теории к практике:Если мы говорим про солнечную электростанцию, то естественно сначала нужно подумать о месте установки солнечной панели, она должна быть установлена на южной стороне здания (южном склоне крыши). Желательно подальше от соседних строений, деревьев. Т.о. в городе не так просто найти подходящее место, но я когда производил поиск квартиры и об этом думал в том числе. Выбор пал на квартиру на 14 этаже с южной стеной и с шикарным видом на город и Черное море:

Квартиру покупал на этапе строительства в состоянии «голые стены», и те частично пришлось перенести, в итоге получилось следующее:

Слева — «как было», а справа — «как стало». Южная стена нижняя. В итоге получилась большая светлая кухня-гостиная (1), спальня (2), прихожая (3) и санузел (4). Помещения 2, 3 и 4 оказались без окон. Т.о. именно для них актуально освещение всегда, даже днем.

Сразу добавлю, что окна нужны не только для попадания дневного света, а также для свежего воздуха, поэтому пришлось еще заморачиваться и с вентиляцией, благо есть такие устройства как «бризеры», но это отдельная тема, которая никак не связана с солнечной электростанцией, поэтому опустим.

Итак, с помещениями определились, теперь пора прокладывать провода. Кабель от предполагаемого места установки солнечной панели до центральной распредкоробки моей солнечной электростанции был проложен параллельно трассе кондиционера:

Вот что получилось после завершения ремонта:

Солнечная панель:

Солнечная панель на 20Вт 12В у меня уже была, ранее я делал на нее подробный обзор на другом ресурсе со снятием различных характеристик в зависимости и от освещенности и от нагрузки. Повторять все тут не вижу смысла, единственное приведу один график зависимости выходной мощности и напряжения от потребляемого тока при идеальных условиях — летний солнечный день:

Что можно почерпнуть из этой таблицы и графика? Во первых мощность, это реально 20Вт солнечная панель. Но самое главное прошу обратить внимание на максимальную величину генерируемого напряжения, которое составляет более 19 вольт. Это нужно учитывать при выборе ламп.

Солнечная панель была установлена на внешний блок кондиционера варварским способом — с помощью алюминиевых уголков и саморезов:

Выходной кабель был подключен к внешнему концу проложенного ранее в стене.

Лампы освещения:Ввиду того, что выходное напряжение солнечной панели может достигать 19 вольт, необходимо ответственно подойти к выбору ламп. Я решил использовать более-менее качественные лампы, насколько мне они показались таковыми, продающимися под торговой маркой магазина ИКЕА:

Потолочные светильники у меня одинаковые, для всех ламп, выбранные лампы имеют похожие габариты, но разные цоколя, в связи с чем мне пришлось слегка видоизменить конструкцию светильников заменив ответные части.Почему же выбор пал именно на эти лампы? Я предварительно проделал небольшую «домашнюю» работу и оказалось, что 12 вольтовая лампа из ИКЕА имеет в своем составе достаточно качественный стабилизатор. Лампа начинает светиться от 5 вольт, а от 8 и выше уже выходит на максимальный яркостный режим и яркость не меняется при повышении напряжения вплоть до 20 вольт:

Напряжение можно увидеть на вольтметре блока питания.

Результат:Результат покажу на примере санузла, т.к. это самое темное помещение. Первое фото сделано при одном точечном светильнике питающемся от солнечной панели, второе фото при включенных дополнительных штатных светильниках:

Резюмируя могу сказать, что днем в санузле вполне светло и необходимости включать дополнительное освещение нет. Но повторю, это только днем и при ясной погоде. Как только солнце заходит за тучки, становится не так весело.

Выводы:

Очевидные минусы:

— бесплатный свет есть только днем при ясной погоде;

— яркость бесплатного света зависит от многих факторов (облачность, время года, время суток).

Очевидные плюсы:+ бесплатное освещение в помещениях без окон (таких у меня 3);+ стоимость (1000 рублей солнечная панель + по 200 рублей лампы + кабель);+ радость (есть независимый источник электричества);+ гордость (сделал сам, поделился с другом);+ долговечность (работает уже более 2 лет без какого-либо технического обслуживания)

Часть 2 Солнечная электростанция в квартире (с аккумулятором и датчиками движения)

Видеоверсия 2 части:

В этой части я расскажу, как поборол минусы, указанные в первой части, а именно: свет нужен всегда, не только днем и яркость ламп не должна зависеть от солнечной активности. Тут очевидное решение — оборудование системы аккумуляторной батареей, а раз так, то нужно подумать сначала о контроллере заряда.

Про контроллер заряда :

Основные функции контроллера заряда это контроль напряжения на аккумуляторной батарее с целью не допустить как перезаряда, так и переразряда аккумуляторной батареи.

При перезаряде аккумулятора происходит кипение электролита с выплескиванием его наружу. Электролит состоит из серной кислоты, которая может повредить как сам аккумулятор, так и находящиеся поблизости предметы.

Глубокий разряд не менее опасен, следствия следующие:

  • Осыпание материала с активных пластин внутри АКБ. Это неизбежно сокращает ёмкость аккумулятора. А значит, он меньше по времени держит заряд и пусковые токи уменьшаются. Это происходит и при повседневной эксплуатации, но гораздо медленнее.

  • Короткое замыкание между пластинами. Причина этого — прогрессирующее осыпание шлама и элементов пластин АКБ. Эти материалы являются хорошими проводниками и собравшись на дне АКБ, они просто замыкают между собой активные пластины. Такая АКБ повреждена необратимо.

  • Сульфатация. Этот эффект возникает при полной и глубокой разрядке АКБ. Чем сильнее разряжен аккумулятор и чем дольше он стоит недозаряженым, тем быстрее активные пластины АКБ покрываются материалами, которые препятствуют дальнейшему химическому процессу. Проще говоря — вы никогда не сможете эту батарею зарядить.

Специализированный контроллер на Али стоит от 600 рублей:

Самодельный контроллер заряда с использованием готовых модулей:

Из сказанного выше следует, что контроллер заряда достаточно важная вещь солнечной электростанции, однако его можно сделать самостоятельно из 2 недорогих модулей XH-M601. Первый модуль будет контролировать процесс зарядки, а второй процесс разрядки аккумулятора. Однако необходимо отметить, что эти модули бывают 2 видов.

Распространенный вид с 2 клемами от реле (слева), который нам не подходит. И с 3 (справа), который как раз и нужен.Отличаются они тем, что 2-х контактный модуль имеет только нормальноразомкнутые контакты реле, а трехконтактный и нормальнозамкнутые и нормальноразомкнутые. Самое неприятное состоит в в том, что модуль с 2-х контактным клеммником невозможно использовать даже с помощью «колхозинга», т.к. нормальнозамкнутый контакт реле откушен перед запайкой реле в плату и с помощью дополнительных перемычек невозможно использовать такой модуль, т.к. на печатной плате нет даже отверстия для этого контакта реле (место отмечено красной окружностью).

Принцип работы модуля XH-M601

Модуль собран с использованием знаменитой «таймерной» микросхемы 555:

Срабатывание происходит при достижении пороговых значений напряжения на клеммах аккумулятора. Пороговые напряжения устанавливаются подстроечными резисторами. Напряжение нижнего порога устанавливается резистором R2 (на плате это RP1), а верхнего – R4 (на плате это RP2). Вращение по часовой стрелке увеличивает напряжение, против часовой – уменьшает. Момент включения/выключения модуля можно определить по индикаторному светодиоду и характерному щелчку реле.

Для настройки модуля понадобится регулируемый источник питания. Желательно использовать маломощный источник питания или с ограничением выходного тока, которое нужно установить в пределах 50-100 миллиампер. Это обусловлено тем, что в крайнем положении подстроечных резисторов, на входы таймера NE555 будет подано полное напряжение источника питания, что приведет к протеканию большого тока через микросхему и сожжет её.

Резистор R2 (RP1 на плате) отвечает за низкий уровень (включение), он приоритетный. Если с помощью резистора RP1 неправильно установлен порог срабатывания, то реле будет всегда включено, независимо от положения R4 (RP2 на плате). Поэтому, при настройке модуля следует придерживаться следующей последовательности:

  1. Выкручиваем против часовой стрелки потенциометры R2 и R4 (RP1 и RP2 на плате), но не до упора, иначе подадим на вход NE555 напряжение питания и сожжём микросхему при использовании мощного блока питания и при отсутствии ограничения по току. После того, как будет достигнуто крайнее положение (слышен характерный щелчок при вращении), нужно сделать несколько оборотов в обратную сторону (по часовой стрелке).

  2. Выставляем на БП напряжение равное нижнему порогу включения и подаем его на разъемы Р2 (Bat ± или VCC± на плате). Реле не должно включиться! Иначе, нужно отключить источник питания, выкрутить резистор R4 (RP2 на плате) ещё немного влево, после чего повторить подключение к БП. Теперь, вращаем по часовой стрелке резистор R2 (RP1 на плате) пока не сработает реле (включение светодиода на модуле). Порог включения установлен!

  3. Увеличиваем на БП напряжение до порога отключения (максимальное напряжение, при котором модуль должен отключить реле). Отключаем схему и выкручиваем R4 (RP2 на плате) вправо (почасовой стрелке). Подключаем модуль к БП. Реле должно быть включено (светодиод на модуле должен гореть). Вращаем R4 (RP2 на плате) влево, против часовой, пока реле не выключится (светодиод не горит). Таким образом настраивается верхний порог (выключение).

  4. Настройка завершена. Плавно изменяя напряжение на БП можно проверить пороги вкл/выкл и скорректировать их, если необходимо.

Использование модулей в качестве контроллера заряда:Схема подключения двух модулей к аккумуляторной батарее следующая:

Оба модуля подключаем к аккумулятору через клеммы Р2 (Bat ± или VCC± на плате), но первый модуль подключаем к солнечной панели, а второй к нагрузке. У первого модуля устанавливаем напряжение включения равное 13.5В, напряжение отключения 13.8В. Такие настройки будут поддерживать напряжение аккумулятора при заряде не выше 13.8 вольта, что для свинцово-кислотного аккумулятора является оптимальным напряжением, при котором аккумулятор может находиться сколь угодно долгое время и быть заряженным на 100%. Использовать необходимо нормальноразомкнутые контакты.

У второго модуля устанавливаем напряжение включения 11 вольт, а напряжение отключения вольт 13, но использовать необходимо нормальнозамкнутые контакты, поэтому при напряжении на аккумуляторной батарее ниже 11 вольт нагрузка будет отключаться и включаться только при увеличении напряжения выше 13 вольт, т.е. в светлое время суток, когда идет заряд аккумулятора от солнечной панели. 11 вольт выбрано потому, что ниже этого напряжения разряжать аккумуляторную батарею опасно, т.к. может начаться сульфатация пластин.

Важные замечания:Первое важное замечание я уже сделал выше, оно о выборе типа модуля: нужен с 3 клемами от реле.Второе важное замечание: у модулей отсутствует диод гасящий ЭДС самоиндукции, который обычно включается параллельно обмотке реле в обратном смещении. На схеме это диод D1. Ставить его обязательно!!! Оптимальное место — припаять прям на ножки реле с обратной стороны платы. Диод можно использовать самый распространенный 1N4007.

Видеоверсия самодельного контроллера заряда:

С помощью недорогих модулей XH-M601 можно сэкономить на стоимости контроллера заряда при создании солнечной электростанции. Более того, дешевые контроллеры заряда не позволяют выбрать тип аккумуляторных батарей (пороговые напряжения включения/отключения), а значит контроллер заряда на данных модулях более универсальное решение, которое позволяет использовать не только свинцово-кислотные АКБ, но также и Li-Ion батареи, например.

Как обойтись вообще без контроллера заряда:

В своей электростанции я пошел еще дальше: обошелся без контроллера заряда применив готовую Li-Ion батарею со встроенной платой защиты, которая и играет роль контроллера заряда, хотя многие скажут, что это неправильно.

Стоимость такой батареи на Али составляет в районе 700 рублей. Такая батарея у меня в связке с 20Вт солнечной панелью уже работает более 2 лет:

Лампы освещения + датчики движения/освещенности

В первой части я рекомендовал использовать хорошие 12 вольтовые лампы освещения с встроенным стабилизатором, ввиду того, что напряжение на выходе панели достигает 18 вольт. В данной реализации с использованием аккумулятора, напряжение на лампах не превысит напряжения на аккумуляторе, поэтому и лампы можно использовать попроще. Но повторюсь, я использовал дорогие ИКЕЕвские, в ИКЕЕвских же потолочных светильниках, слегка переделав последние (заменив патрон).

В качестве датчиков движения использовал готовые с Али:

Рекомендую эти датчики. Из плюсов: малый размер (диаметр всего 3 см), малый вес (лепятся на 2-х стороннем скотче), встроенный датчик освещенности (не включается при наличии внешней засветки):

Итоги

Общая схема обозреваемой солнечной электростанции:

Как говорил уже ранее, данная солнечная электростанция работает автономно уже более 2 лет. Не менял и не ремонтировал за это время ни одного компонента. Всего один раз за всё время аккумуляторная батарея села, думал что-то сломалось, но на следующий день батарея зарядилась и всё работает. Свет у меня теперь сам включается в санузле и в коридоре. Это очень удобно.

Да, был еще один курьёзный случай. Ночью выключилось электроснабжение и начал верещать из коридора UPS, питающий NAS. Я спросонья подошел к нему и не пойму, почему он орет, если свет есть. Только потом, окончательно проснувшись понял, что свет был от солнечной электростанции 🙂

Еще хочу заметить, что не нужно тут искать выгоду, ее нет. При текущих ценах в России на электричество, выгоды от домашних солнечных электростанций не найдёте. Но мы же стремимся в «цивилизацию», значит не за горами то время, когда цены на энергоносители у нас будут «европейские», вот тогда и посмотрим (надеюсь это наступит не скоро).

Что немцу хорошо, то русскому смерть?

Пару слов об окупаемости домашней солнечной электростанции в России и Европе.

Отдельная благодарность господину parakhod за предоставленную «платежку» и пояснения. Итак, стоимость его установки (солнечные панели и система накопления) составляет 27 тысяч евро. При этом половину компенсирует государство, поэтому ему обойдётся в 13500 евро. Стоимость киловатта у него варьируется, зависит от многих факторов, но при его среднемесячном потреблении около 1000 кВт, составляет около 35 евроцентов.

Исходя из указанного выше, стоимость его установки (с учетом 50% компенсации от государства) отобъется через 38000 киловатт, т.е. за 38 месяцев, т.е. чуть более 3 лет (это при условии, что ничего не сломается за это время и не потребуются дополнительные вливания). В России при текущей стоимости киловатта в 3.67 рубля (около 4 евроцентов), даже компенсированная государством сумма при аналогичном потреблении окупаться будет 28 лет, а при моём расходе ПОЛТОРА ВЕКА!!!

Также, чтоб не быть голословным, прилагаю выдержку из моей «платежки»:

Желаю всем добра! Да прибудет с нами Сила Солнечной Энергии!

Loading…

Как устроена схема электроснабжения с солнечными панелями

Сама солнечная батарея представляет собой конструкцию из какого-то количества модулей (полупроводниковых фотоэлементов), которые генерируют энергию. В зависимости от потребности в количестве энергии «на выходе», чтобы повысить мощность отдачи, солнечные панели объединяют между собой в солнечные электростанции. Сюда входит целый комплект оборудования, который нужен для преобразования солнечной энергии в электрический ток.

Схема работы панелей
Схема работы

Для подключения солнечных панелей вам потребуются следующие комплектующие.

  • Непосредственно солнечные батареи. Их тип, количество и размер вы выбираете в зависимости от ваших задач, потребностей и бюджета.
  • Аккумуляторные батареи (АКБ). Химический источник тока. Именно здесь будет накапливаться генерируемая солнечными панелями энергия. Поэтому при выборе аккумулятора нужно ориентироваться на его емкость – чем больше емкость, тем больше запас энергии для нужд потребления. Автомобильные аккумуляторы использовать в таких схемах не рекомендуется, т.к. они неспособны выдержать частые перезарядки. Лучше приобретать AGM (срок службы 4–5 лет) или гелиевые аккумуляторы (срок службы 9–11 лет).
  • Контроллер заряда – важное устройство, которое выполняет несколько функций одновременно и позволяет продлить срок службы аккумулятора. Во-первых, он автоматически контролирует заряд АКБ: регулирует подачу энергии от солнечных панелей, чем предохраняет сам аккумулятор от полной разрядки, а при полном заряде отключает АКБ от системы. Во-вторых, контроллер защищает сами солнечные панели: отключает их при полной зарядке и включает на зарядку в момент, когда энергия начинает расходоваться. Контроллер также препятствует перетеканию обратных токов в пасмурную погоду и ночью. А еще помогает выбрать оптимальный режим зарядки, благодаря чему возрастает количество накапливаемой энергии и увеличивается срок службы аккумулятора. Современные контроллеры оборудованы специальной панелью с дисплеем, где видно напряжение батарей. А «продвинутые» контроллеры поддерживают эффективную зарядку при помощи специальных алгоритмов и программ.
  • Инвертор. С помощью этого прибора постоянное напряжение от аккумулятора преобразуется в переменное 220 В, которое используется конечным потребителем. Инверторы могут иметь разные технические характеристики – мощность, качество получаемого напряжения. Поэтому при подключении солнечных батарей в доме нужно обратить внимание и выбрать инвертор подходящей мощности – в зависимости от электроприборов, которые будет обслуживать гелиоустановка. Инверторы также могут выполнять функцию дополнительной защиты электросети.
  • Крепежные элементы и провода для коммуникации и соединения комплектующих солнечной установки. Могут также понадобиться предохранители (реле), которые ставятся между всеми элементами системы и защищают ее от короткого замыкания.

Это самая простая схема сборки и установки солнечных батарей для дома, с минимумом компонентов. За счет того, что в ней практически нет движущихся деталей (если не считать возможной замены АКБ), такая система может простоять десятки лет.

Подключить солнечные батареи по данной схеме в квартире или доме можно даже самостоятельно, и они будут обслуживать бытовые приборы (холодильник, телевизор, систему освещения, погружной насос). А вот если нужно обеспечить работу техники, которая требует больших затрат энергии, например, электрокотла , то понадобится более мощное и дорогостоящее оборудование и, скорее всего, консультация специалистов.

Как правильно установить солнечную батарею

Начать надо с того, что выбрать место для установки и подключения солнечной батареи. Во-первых, определитесь с площадью – батареи могут быть громоздки и нужно, чтобы хватило места. Во-вторых, важна степень освещенности места установки, чем больше, тем лучше – в таком случае гелиосистема будет максимально эффективна. Хорошим выбором может быть крыша, стены, фасад частного дома, прилегающая к нему территория, балкон многоквартирного дома.

Закрепленные на крыше солнечные модули

При установке солнечных батарей нужно соблюдать правильный угол наклона относительно горизонта и ориентацию солнечной конструкции – светопоглощающая лицевая (или фасадная) поверхность панелей должна быть направлена на юг. Максимум отдачи солнечная панель дает, когда лучи света падают под углом 90º. Поэтому продумайте в зависимости от вашего региона и климатических условий такое   расположение солнечных панелей, чтобы угол падения света был оптимальным максимальное время в течение светового дня. Возможно, для более эффективной работы солнечной батареи угол наклона придется периодически менять, в зависимости от сезона или погоды. Если вы ставите солнечную батарею на крыше дома, предпочтительно, чтобы угол наклона был около 45º. При меньших углах солнечные батареи устанавливают на дополнительные спецконструкции, которые помогают обеспечить нужный угол наклона, жесткость системы и ее устойчивость.

Для установки и монтажа солнечной батареи  используют специальный крепеж, в том числе рейлинги, к которым крепится сама панель. Солнечная батарея при установке должна быть зафиксирована, как минимум, в четырех точках при помощи прижимных фиксаторов или болтов по наружной длинной стороне алюминиевой рамы. Предпочтительно использовать специальные отверстия/посадочные места для крепления, предусмотренные в конструкции.

Если солнечные батареи подключены между собой цепочкой, следите, чтобы они располагались в одной плоскости и под одним углом – так их работа будет эффективнее. Если вы устанавливаете солнечные батареи на прилегающем к дому участке, выбирайте открытое и максимально незатененное место, без деревьев, кустов или каких-то сооружений, которые могут отбрасывать тень. Также не забудьте про циркуляцию воздуха между поверхностью установки и грунтом –  нужно приподнять панели минимум на полметра от земли.

При правильной установке производительность солнечных батарей будет одинаковой  как зимой, так и летом, но только при ясной и солнечной погоде (зимой иногда даже эффективней из-за отсутствия перегрева). Конструкция солнечных батарей продумана так, чтобы все оборудование могло работать в разных климатических условиях и выдерживать температуру от +80ºС до –35ºС.

Установка и подключение солнечных панелей

Инструменты и материалы

Для изготовления солнечной батареи понадобятся:

  • фотоэлементы (для создания гелиопанели);
  • набор специальных проводников (для соединения фотоэлементов);
  • алюминиевые уголки (для корпуса);
  • диоды Шотке;
  • крепёжные метизы;
  • винты для крепежа;
  • лист поликарбоната (прозрачный);
  • силиконовый герметик;
  • паяльник.

Выбор фотоэлементов

Сегодня производители предлагают потребителям выбор из двух типов устройств. Фотоэлементы из монокристаллического кремния имеют КПД до 13%. Они отличаются низкой эффективностью при пасмурной погоде. Фотоэлементы из поликристаллического кремния имеют КПД до 9%, однако они способны работать не только в солнечные, но и в облачные дни.

Чтобы обеспечить дачу или небольшой частный дом электроэнергией, достаточно воспользоваться поликристаллами.

При выборе фотоэлементов необходимо обратить внимание на следующее:

  • чем больше ячейка, тем большее количество энергии она производит;
  • элементы одного типа создают одинаковое напряжение (от размера данный показатель не зависит).

Чтобы определить мощность солнечной батареи, достаточно генерируемый ток умножить на напряжение.

Отличить поликристаллические фотоэлементы от монокристаллических достаточно просто. Первый тип выделяется ярко-синим цветом и квадратной формой. Монокристаллические фотоэлементы темнее, они срезаны по краям.

Солнечные батареи. Монокристалл или поликристалл? | SolarEnergo

Поли- и монокристаллические панели легко отличить даже на первый взгляд

Не стоит отдавать предпочтение продукции со сниженной ценой, поскольку она может отказаться отбраковкой — это детали, которые не прошли тест на заводе. Лучше воспользоваться услугами проверенных поставщиков, которые хоть и предлагают товар по высокой цене, зато отвечают за его качество. Если нет опыта в сборке солнечных элементов, рекомендуется приобрести несколько тестовых образцов, чтобы потренироваться, а только потом купить продукцию для изготовления самой батареи.

Некоторые производители запаивают фотоэлементы в воск, чтобы предотвратить порчу во время перевозки. Однако избавиться от него довольно сложно из-за высокого риска повреждения пластин, поэтому рекомендуется покупать фотоэлементы без воска.

Расчет и проектирование

Для расчетов солнечной батареи, собранной дома, обязательно потребуется перечень всех электроприборов и оборудования, имеющихся в доме. Сразу же нужно выяснить потребляемую мощность каждого из них.

Данные о мощности указываются в маркировке или в техническом паспорте устройства. Их значения довольно приблизительные, поэтому для панели, работающей с инвертором нужно ввести поправку, то есть среднее энергопотребление умножается на поправочный коэффициент. Полученная таким образом общая мощность дополнительно умножается на 1,2, учитывая потери при работе инвертора. Мощные приборы при запуске потребляют ток, в несколько раз превышающий номинальный. В связи с этим, инвертор также должен в течение короткого времени выдерживать двойную или тройную мощность.

Если мощных потребителей довольно много, но одновременно они практически не включаются, то применяемый в системе инвертор с большим выходным током получится слишком дорогим. При отсутствии значительных нагрузок рекомендуется использовать менее мощные недорогие приборы.

Солнечная батарея в домашних условиях рассчитывается по времени работы каждого электроприбора в течение суток. Вычисленное опытным путем, значение умножается на мощность, и в результате получается суточное энергопотребление, измеряемое в киловатт-часах.

Обязательно понадобятся сведения с местной метеостанции о количестве солнечной энергии, которую можно реально получить в этой местности. Расчет данного показателя выполняется на основе показаний среднегодовой солнечной радиации и ее среднемесячных значений при самой плохой погоде. Последняя цифра позволяет определить минимальное количество электроэнергии, достаточное для решения текущих задач.

Получив исходные данные можно приступать к определению мощности одного фотоэлемента. Вначале показатель солнечной радиации нужно разделить на 1000, в результате, получаются так называемые пикочасы. В это время интенсивность солнечного свечения составляет 1000 Вт/м2.

Формула для расчета

Количество энергии W, вырабатываемое одним модулем, определяется по следующей формуле: W = k*Pw*E/1000, в которой Е – величина солнечной инсоляции за определенный период времени, k – коэффициент, составляющий летом – 0,5, зимой – 0,7, Pw – мощность одного модуля. Поправочный коэффициент учитывает потери мощности фотоэлементов при нагревании солнечными лучами, а также изменение наклона лучей относительно поверхности в течение дня. Зимой элементы нагреваются меньше, поэтому и значение коэффициента будет выше.

Учитывая суммарную мощность энергопотребления и данные, полученные с помощью формулы, рассчитывается общая мощность фотоэлементов. Полученный результат делится на мощность 1 элемента и в итоге будет требуемое количество модулей.

Существуют различные модели с целым рядов мощностей элементов – от 50 до 150 Вт и выше. Выбирая компоненты с необходимыми показателями, можно собрать солнечную панель с заданной мощностью. Например, если потребность в электроэнергии составляет 90 Вт, то необходимы два модуля по 50 Вт каждый. По такой схеме можно создать любую комбинацию из имеющихся фотоэлементов. В любом случае расчеты следует производить с некоторым запасом.

Количество фотоэлементов оказывает влияние на выбор емкости аккумуляторной батареи, поскольку именно они создают зарядный ток. Если мощность панели 100 Вт, то минимальная емкость АКБ должна быть 60 А*ч. С возрастанием мощности панелей потребуются и более мощные аккумуляторы.

Этапы работы

Корпус

Прежде чем начать делать солнечную панель своими руками, необходимо соорудить для нее каркас. Он защищает батарею от повреждений, влаги и пыли.

Корпус собирается из влагостойкого материала: фанеры, покрытой влагоотталкивающим средством, или алюминиевых уголков, к которым силиконовым герметиком приклеивается оргстекло или поликарбонат.

При этом нужно соблюдать отступы между элементами (3-4 мм), так как необходимо учитывать расширение материала при повышении температуры.

solnechnaya-batareya-svoimi-rukami-14.jpg

Пайка элементов

Фотоэлементы выкладываются на лицевую сторону прозрачной поверхности, так, чтобы расстояние между ними со всех сторон было 5 мм: таким образом учитывается возможное расширение фотоячеек при повышении температуры.

Фиксируются преобразователи, имеющие два полюса: положительный и отрицательный. Если вы хотите увеличить напряжение, соединяйте элементы последовательно, если ток — параллельно.

Во избежание разрядки аккумулятора ночью, в единую цепь, состоящую из всех необходимых деталей, включают диод Шоттки, подсоединяя его к плюсовому проводнику. Затем все элементы спаивают между собой.

solnechnaya-batareya-svoimi-rukami-9.jpg

Сборка

В готовый каркас размещаются спаянные преобразователи, на фотоячейки наносится силикон — все это накрывается слоем из ДВП, закрывается крышкой, а места соединений деталей обрабатываются герметиком.

Выбор места установки

solnechnaya-batareya-svoimi-rukami-3.jpg

Панель на ограждении лоджии

Производительность солнечных панелей во многом зависит от места их установки. Поэтому, перед тем как сделать солнечную батарею своими руками, нужно заранее определиться, где она будет расположена.

Одновременно, следует учитывать следующие факторы:

  • Степень затененности. Если вокруг панели находятся здания, заросли деревьев и прочие габаритные предметы, создающие тень, она не сможет нормально функционировать и вырабатывать достаточное количество электроэнергии. Кроме того, панель может очень быстро прийти в негодность, не оправдав расходы на ее изготовление.
  • Ориентирование панелей относительно солнца. Световой поток, создаваемый солнечными лучами, должен максимально захватывать поверхность фотоэлементов. Жители северного полушария направляют панель главной стороной на юг, а в южном полушарии ориентация выполняется строго на север.
  • Угол наклона. Также выбирается в зависимости от положения и местных координат и устанавливается в соответствии с широтой. Для расчетов угла установки панели в интернете существуют онлайн-калькуляторы, выдающие наиболее подходящий градус.
  • Наличие свободного доступа для чистки, ремонта и обслуживания. В процессе эксплуатации лицевая поверхность панели постепенно покрывается пылью, грязью, а зимой – снегом. В результате, ее эффективность заметно снижается. В некоторых случаях требуется полная замена солнечных батарей. Поскольку очистка будет выполняться самостоятельно, батарею желательно устанавливать в удобном и доступном для себя месте.

Другие идеи из подручных материалов

Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.

Солнечная батарея из фольги

Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.

Чтобы сделать солнечную батарею из фольги, понадобятся:

  • 2 «крокодильчика»;
  • медная фольга;
  • мультиметр;
  • соль;
  • пустая пластиковая бутылка без горлышка;
  • электрическая печь;
  • дрель.

Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.

solnechnaya-batareya-svoimi-rukami-4.jpg

Солнечная батарея из фольги

Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.

Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.

Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.

Солнечная батарея из пивных банок

Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.

Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки. Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом.

solnechnaya-batareya-svoimi-rukami-11.jpg

Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.

Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.

Используемые источники:

electric-220.ru, solar-energ.ru, 1-teplodom.ru

Июнь 2018

Установка солнечных батарей

Как добиться максимальной отдачи от средств, вложенных в солнечную электростанцию? Количество вырабатываемой энергии в значительной мере зависит от места установки и соблюдения технологии монтажа. Эта статья о том, как повысить производительность солнечных батарей и продлить их ресурс.

Где установить

Необходимо учесть степень освещенности, особенности объекта и ряд других факторов. Рассмотрим каждый из них:

  • Затененность. Если основную часть времени солнечные батареи будут в тени, их производительность будет минимальной. В этом случае так и не удастся оправдать вложенные в их покупку средства. По этой причине нецелесообразно выполнять установку возле высоких (относительно уровня кровли) деревьев, зданий и других сооружений, препятствующих проникновению солнечных лучей на кровлю дома.

  • Ориентация фотоэлементов. При выборе направленности важно учесть географическое расположение — так, если объект расположен в северном полушарии, лицевую (рабочую) часть батареи ориентируют на юг. В южном? Значит, на север.

  • Наклон. Формулы расчета сложны, упрощенно можно выразиться так: угол наклона равен географической широте. Внимание! Для повышения продуктивности солнечных батарей необходима сезонная коррекция угла наклона: +12 ° летом, -12° — зимой.

  • Доступность регламентного обслуживания. Хотя солнечные батареи не содержат подвижных элементов, поверхность панелей со временем загрязняется и нуждается в очистке от пыли, упавших листьев, снега — зимой. Следует заранее позаботиться о доступности этой процедуры.

  • Нагрузочная способность кровли. Масса солнечных батарей, в зависимости от площади, может превышать 100 кг. Таким образом, чтобы исключить ее разрушение из-за повышенной нагрузки, надо точно рассчитать прочность. Если существует вероятность, что крыша не выдержит вес панелей, их установку следует производить на специальные фермы — для этого потребуется дополнительная площадь.

Место под монтаж солнечных батарей мы рекомендуем подбирать еще на этапе выбора конкретного решения. В этом случае удастся добиться максимальной эффективности, а значит, существенно сократится срок окупаемости системы.

Существует несколько вариантов установки солнечных батарей: на открытой площадке, на стене или на крыше. Чаще всего их закрепляют на кровле — для экономии места.

Какая установка солнечных батарей предпочтительнее: самостоятельная или силами специалистов

Перед монтажом солнечных панелей предстоит решить массу вопросов: подобрать наиболее удачное направление освещенности, решить, под каким углом расположить панель, чтобы добиться максимальной эффективности. Наиболее важные параметры: угол наклона поверхности моно- или поликристаллической системы относительно горизонта, широта установки (относительно экватора, в градусах — 0−90 °), часовой угол, а также солнечного склонения, и азимут.

Чтобы исключить повреждение солнечных панелей, в том числе во время эксплуатации (в результате влияния вредных факторов), необходим определенный опыт. Предстоит защитить их от коррозии, механического разрушения, а также влияния неблагоприятной погоды (ветер, атмосферные осадки, в том числе снег, град).

Экономия на услугах по установке солнечных батарей несоизмерима с возможным ущербом в результате действий непрофессионала. По этой причине мы советуем воспользоваться услугами специалиста, так как даже незначительная ошибка может обойтись слишком дорого или же привести к снижению эффективности установленной системы.

Этапы монтажа солнечных батарей

Итак, основные вопросы решены: определились с местом, с позиционированием — пришла пора переходить к установке. Этапы монтажа:

·         Фиксация крепежей в соответствии с чертежами и расчетами.

·         Установка фотоэлементов.

·         Подключение кабеля, сопутствующего оборудования (аккумулятора, инвертора, системы управления, защитных устройств, заземления).

·         Настройка, выбор оптимального позиционирования (в регулируемых системах).

·         Пробный запуск.

·         Сдача в эксплуатацию.

Есть своя специфика монтажа солнечных батарей на разные типы покрытий. Принципиальное значение имеет тип покрытия: если оно жесткое, каркас устанавливают прямо на кровлю. Если мягкое – конструкцию закрепляют на лагах перекрытия, а для защиты от протекания место фиксации герметизируют. Особенности монтажа солнечных батарей на разных кровельных покрытиях:

·         На керамической черепице. Два варианта установки. «В кровлю» — с использованием прижимов и крепежей из нержавеющей стали, на подложку из металлочерепицы, с обрешеткой. Над кровлей. Фиксация крепежей на стропильной части – они служат для монтажа профиля (алюминий с антикоррозийным покрытием) с последующей установкой солнечных панелей.

·         На битумной черепице. Фиксация крепежа на деревянном настиле. В остальном все так же, как и при установке на керамическую черепицу.

·         Профнастил, шифер, другие варианты жестких покрытий. Профиль закрепляют непосредственно на стропильной части, если это нереально – прямо на покрытии с использованием силиконовых герметизирующих прокладок.

Возможные варианты установки: на скаты с углом до 40 градусов, на плоскую кровлю с применением специальных систем, на навесы, в том числе автомобильный. Вкратце последовательность работ можно описать так: подключение аккумулятора, подсоединение солнечных панелей и заряжаемой цепи. Как правило, в комплект поставки оборудования входят не только компоненты системы, но и крепеж с аксессуарами.

Особенности монтажа солнечных батарей на крыше

Хотя кажется, что с установкой солнечных батарей не должно быть никаких проблем, есть много нюансов, которые не учитывают мастера-любители. Вот некоторые из них:

  • нельзя использовать скрутки — вместо этого следует использовать специальные аксессуары, в том числе распределительные щиты, проходные коробки;

  • обязательна разбивка потребителей на группы одного типа: осветительные приборы, силовое оборудование, бытовая техника;

  • запрещена прокладка кабеля в мобильных конструкциях;

  • предельную длину проводников определяют с учетом сечения кабеля, вида солнечных батарей, мощности подключаемых приборов/оборудования;

  • обязательно использование плавких предохранителей при подключении аккумуляторов — это поможет избежать повреждения оборудования при аварийных ситуациях;

  • используя трекерные системы/поворотные механизмы, можно добиться максимальной продуктивности солнечных батарей — в этом случае минимальное расстояние между батареями должно превышать высоту рабочей плоскости не менее, чем в 1,7 раза;

  • нельзя допускать хотя бы частичное затенение панелей — это приведет к снижению их эффективности и повышенной деградации;

  • во избежание перегрева нижней части фотоэлементов необходимо обеспечить вентиляционный зазор;

  • с целью снижения потерь в проводах предпочтительнее дополнить систему контроллером заряда;

  • если объект еще на стадии строительств, стоит предусмотреть ниши для прокладки кабеля, также стоит оставить место под ревизионные проходы;

  • при установке солнечных батарей в строящемся здании следует выделить участки под установку снегозадержателей.

В процессе установки солнечных батарей могут возникнуть дополнительные проблемы, с успешным решением которых быстрее и лучше справится мастер с опытом. Также необходимо принимать во внимание нагрузку на кровельную систему, которая в среднем составляет 12,5 кг/м2.

Установка солнечных панелей специалистами

Предлагаем услуги по установке солнечных батарей. Предоставляем гарантию на монтаж на 1 год. Но это не единственная причина обратиться к нам:

  • опыт установки солнечных панелей — свыше 10 лет, работали как с коммерческими, так с промышленными и жилыми объектами;

  • обеспечиваем максимально возможную эффективность — за счет правильной ориентации, использования поворотных механизмов и особенностей местности;

  • подбираем качественные крепежи, не подверженные коррозии;

  • за счет отличного технического оснащения и опыта устанавливаем солнечные панели быстро и грамотно.

Срок выполнения работ зависит от площади солнечных панелей и возможных затруднений при их установке. Точную дату завершения монтажа указываем в договоре и несем финансовую ответственность за несвоевременное выполнение обязательств. Позвоните нам для обсуждения деталей сотрудничества — всегда на связи в рабочее время.

« назад

Сколько нужно солнечных батарей для дома и дачи?

Здесь все просто. Покупателю не нужно заниматься сложным расчетом мощности солнечной станции и подбирать для нее батареи. Эту работу уже проделали специалисты компаний, выпускающих и продающих данное оборудование.

Потребителю остается лишь выбрать из предложенного ряда готовый комплект, исходя из своих потребностей. В качестве примера рассмотрим несколько стандартных вариантов, которые представлены на сайтах продавцов (актуально на 2016 год).

Гелиостанция, построенная на одной панели мощностью 250 Ватт, рассчитана на энергоснабжение потребителей, перечисленных в таблице №1.

Таблица №1 Набор потребителей для солнечной станции мощностью 250 Ватт

Ее ориентировочная цена складывается из стоимости устройств, указанных в таблице №2.

Таблица №2 Стоимость оборудования для 250-ти ваттной станции

Солнечная станция мощностью 500 Ватт способна обеспечить электричеством набор бытовых приборов, указанный в таблице №3.

Таблица №3 Энергетический потенциал гелиостанции мощностью 500 Ватт

Ее ориентировочную стоимость (с разбивкой по видам и моделям оборудования) вы найдете в таблице №4.

Таблица №4

Гелиостанция на 1000 Ватт способна питать током не только экономные светодиодные лампочки, телевизор, ноутбук и спутниковую антенну. Одновременно с ними она «потянет» микроволновку, водяной насос или мощную электроплиту (таблица №5).

Таблица №5

Основа данной гелиостанции — 4 солнечные панели мощностью по 250 Ватт каждая. За весь комплект оборудования (без стоимости монтажа, соединительных муфт и кабеля) нужно заплатить сумму, указанную в таблице №6

Таблица №6 Ориентировочная стоимость оборудования гелиостанции мощностью в 1 КВт

Изучая представленные комплекты оборудования, нетрудно заметить, что стоимость инвертора сравнима с ценой солнечной батареи. Поэтому некоторые владельцы солнечных станций предпочитают обходиться без инверторного преобразователя. Они покупают для своего дома бытовые приборы, работающие от постоянного тока напряжением 12 Вольт. Помимо высокой цены инвертор при работе потребляет около 10% энергии, получаемой от солнечной батареи. Поэтому его исключение из цепочки оборудования дает неплохую экономию.

Энергия солнца – альтернативный источник тепла

Идея использования солнечной энергии для отопления не нова. Более того, целесообразность ее применения доказана американцами, китайцами, испанцами, израильтянами и японцами.

Рынок изобилует предложениями различных установок по преобразованию энергии солнца и дальнейшего ее использования для хозяйственных нужд.

Гелиосистемы активно используют в качестве основного источника теплп во многих странах мира. В наших широтах оно пока применяется в качестве дополнения к системе отопления

Стоимость систем зависит от их типа, площади, материала, применяемого при изготовлении. Из года в год наблюдается устойчивая тенденция к снижению цен на все виды солнечных установок – гелиосистем.

Это делает их более доступными широким слоям населения. Вот только пока не каждый желающий готов совершить такую покупку.

Зато, при желании, можно соорудить эффективную систему солнечного отопления своими руками, потратив ощутимо меньше средств.

Привычная система отопления, отлично выполняющая свои функции многие годы, становиться все дороже. Виной этому – глобальное подорожание энергоресурсов во всем мире. Естественное желание, возникающее у хозяина – сэкономить на отоплении, съедающим значительную долю семейного бюджета.

Так солнечная система отопления может полноценно заменить привычную твердотопливную, газовую или любую другую. Все зависит от типа и размера помещения, в котором она будет использоваться.

Вариант, подходящий для зернохранилища не подойдет для жилого дома, а система, удовлетворяющая потребности дачи, никак не справится с отоплением 2-этажного особняка.

Полная замена традиционного отопления солнечным иногда проблематична. Владелец опасается, что система может не справиться или физически не хватает места для монтажа нужного количества панелей.

Поэтому, часто используют комбинированную систему отопления, не отказываясь полностью от установленного газового (электрического или другого) оборудования. Уровень замещения привычного отопления солнечным может достигать 90%.

Также, важное значение имеет годовое количество солнечных дней местности, в которой располагается жилище. Причем, среднесуточная температура не столь важна

Многие установки эффективно поглощают свет в зимние морозные дни (солнечные коллекторы, использующие в качестве теплоносителя антифриз).

Кроме отопления солнечная установка способна обеспечить жилище теплой водой и электроэнергией

Метод увеличения производительности

Обычно, поэкспериментировав с небольшим количеством солнечных модулей, владельцы частных домов идут дальше и совершенствуют систему различными способами.

Самый простой способ – это увеличение количества задействованных модулей, соответственно, привлечение дополнительных площадей для их размещения и покупка более мощного сопутствующего оборудования

Что делать, если существует дефицит свободной площади? Вот несколько рекомендаций для повышения эффективности солнечной станции (с фотоэлементами или коллекторами):

Изменение ориентации модулей. Перемещение элементов относительно положения солнца. Проще говоря, установка основной части панелей на южной стороне. При длинном световом дне также оптимально задействовать поверхности, выходящие на восток и запад.

Регулировка угла наклона. Производитель обычно указывает, какой угол является наиболее предпочтительным (например, 45º), но порой при монтаже приходится вносить свои коррективы с учетом географической широты.

Правильный выбор места установки. Крыша подходит, потому что чаще всего является наивысшей плоскостью и не затеняется другими объектами (предположим, садовыми деревьями). Но существуют еще более подходящие площади – поворотные устройства слежения за солнцем.

При перпендикулярном расположении элементов к лучам солнца система работает более эффективно, однако на стабильно закрепленной поверхности (например, крыше) это возможно лишь на короткий промежуток времени. Чтобы его увеличить, придумали практичные устройства слежения.

Механизмы слежения – это динамические платформы, которые своей плоскостью поворачиваются вслед за солнцем. Благодаря им производительность генератора увеличивается летом примерно на 35-40%, зимой – на 10-12 %

Большим минусом устройств слежения является их высокая стоимость. В некоторых случаях она не окупается, поэтому нет смысла вкладываться в бесполезные механизмы.

Подсчитано, что 8 панелей – минимальное количество, при котором затраты со временем оправдают себя. Можно задействовать и 3-4 модуля, но при одном условии: если они напрямую, в обход аккумуляторов, подключены к водяному насосу.

Буквально на днях компания Тесла Моторс объявила о создании нового типа крыши – с интегрированными солнечными батареями. Илон Маск заявил, что модифицированная крыша будет дешевле, чем обычная кровля с установленными на нее коллекторами или модулями.

Устройство солнечной батареи

Солнечные панели состоят из комплекта батарей на фотоэлектрических элементах, основное предназначение которых – преобразовывать солнечную энергию в электрическую. Сила тока системы зависит от интенсивности света: чем ярче излучения, тем больший ток генерируется.

Основными конструктивными элементами системы выступают:

  • Солнечная батарея – преобразует солнечный свет в электрическую энергию.
  • Аккумулятор – химический источник тока, который накапливает сгенерированную электроэнергию.
  • Контроллер заряда – следит за напряжением аккумуляторов.
  • Инвертор, преобразующий постоянное электрическое напряжение аккумуляторной батареи в переменное 220В, которое необходимо для функционирования системы освещения и работы бытовой техники.
  • Предохранители, устанавливаемые между всеми элементами системы и защищающие систему от короткого замыкания.
  • Комплект коннекторов стандарта МС4.

Помимо основного предназначения контроллера – следить за напряжением аккумуляторов, устройство по мере необходимости отключает те или иные элементы. Если показатель на клеммах аккумулятора в дневное время достигает отметки в 14 Вольт, что указывает на их перезарядку, контроллер прерывает зарядку.

Помимо солнечного модуля в устройство такой электростанции входят фотоэлектрические преобразователи – контроллер и инвертор, а также подключенные к ним аккумуляторы

В ночной период, когда показатель напряжения аккумуляторов достигает предельно низкой отметки в 11 Вольт, контроллер останавливает работу электростанции.

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий