Маркировка на конденсаторах
Знать характеристики электронных приборов требуется для точной и безопасной работы.
Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).
На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.
Номинальная емкость кодируется по стандартам IEC — Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.
Стандарт IEC использует обозначения:
- Кодировка из 3 цифр. 2 знака в начале — количество пФ, третий — число нулей, 9 в конце — номинал меньше 10 пФ, 0 спереди — не больше 1 пФ. Код 689 — 6,8 пФ, 152 — 1500 пФ, 333 — 33000 пФ или 33 нФ, или 0,033 мкФ. Для облегчения чтения десятичная запятая в коде заменяется буквой «R». R8=0,8 пФ, 2R5 — 2,5 пФ.
- 4 цифры в маркировке. Последняя — число нулей. 3 первых — величина в пФ. 3353 — 335000 пФ, 335 нФ или 0,335 мкФ.
- Использование букв в коде. Буква µ — мкФ, n — нанофарад, p — пФ. 34p5 — 34,5 пФ, 1µ5 — 1,5 мкФ.
- Планерные керамические изделия кодируют буквами A-Z в 2 регистрах и цифрой, обозначающей степень числа 10. K3 — 2400 пФ.
- Электролитические SMD приборы маркируются 2 способами: цифры — номинальная емкость в пФ и рядом или во 2 строчке при наличии места — значение номинального напряжения; буква, кодирующая напряжение и рядом 3 цифры, 2 определяют емкость, а последняя — количество нулей. А205 значит 10 В и 2 мкФ.
- Изделия для поверхностного монтажа маркируются кодом из букв и чисел: СА7 — 10 мкФ и 16 В.
- Кодировки — цветом корпуса.
Маркировка IEC, национальные обозначения и кодировки брендов делают запоминание кодов бессмысленным. Разработчикам аппаратуры и мастерам-ремонтникам требуются справочные источники.
Вычисление с помощью формул
Вычисление номинальной емкости элемента требуется в 2 случаях:
- Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
- Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.
RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.
Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.
Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.
Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.
Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.
Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.
Как измерить ёмкость конденсатора мультиметром?
Измеряя параметры, конденсатор предварительно разряжают, замкнув выводы между собой отверткой с изоляцией на ручке. Если этого не сделать, маломощный мультиметр выйдет из строя.
Ответ на вопрос, как проверить емкость конденсатора мультиметром с режимом «Сх» такой:
- Включить режим «Сх» и подобрать предел замера — 2000 пФ — 20 мкФ в стандартном приборе;
- Вставить конденсатор в гнезда в приборе или приложить щупы к выводам конденсатора и посмотреть значение на шкале прибора.
Амперовольтметром или мультиметром определяют наличие внутри корпуса короткого замыкания или обрыва.
Полярный конденсатор включают в цепь прибора с учетом направления тока. Электроды изделия производители маркируют. Конденсатор, рассчитанный для напряжения 1-3 В, при обратном токе выше нормы выйдет из строя.
Перед тем как измерить характеристики, полярный электролитический конденсатор выпаивают из платы. Включают мультиметр в режим измерения сопротивления или проверки полупроводников. Прикладывают щупы к электродам полярного конденсатора — плюс к плюсу, минус к минусу. Исправная емкость покажет плавный рост сопротивления. По мере заряда ток уменьшается, ЭДС растет и достигает напряжения источника питания.
Обрыв в конденсаторе будет выглядеть на мультиметре как бесконечное сопротивление. Прибор не отреагирует или стрелка на аналоговом экземпляре едва шевельнется.
При пробое элемента измеряемый параметр не соответствует номинальному значению в меньшую сторону, пропорционально величине пробоя.
Если задаться вопросом, как измерить мультиметром комплексное или эквивалентное последовательное сопротивление (ESR конденсатора), то без приставки сделать это проблематично. Реактивные свойства конденсатор проявляет при высокочастотном токе.
Прочие способы измерения
Измеритель емкости конденсаторов своими руками собирают по схемам импульсных устройств. Последовательности RC цепей с переменными резисторами создают на выходе изделия серии сигналов со ступенчатым изменением частоты. Для наладки устройства используют мультиметр, с которым будет применяться приставка.
Набор проверенных конденсаторов поочередно подключают к конструкции и настраивают точность работы в каждом поддиапазоне.
Измеритель ёмкости полярных электролитических элементов своими руками схематически реализуется и настраивается, как часть приставки без колебательного контура. На выходе вместо импульсного — постоянное напряжение.
В цифровых измерителях ёмкости источник питания — высокостабильный. «Плавающие» параметры элементов, из которых собирается схема, дадут неприемлемую для точности измерений погрешность.
На логических элементах создаются источники переменного импульсного тока для замеров ESR.
Недорогие приборы для измерения емкости конденсатора, типа мостовых RLC устройств с дополнительной функцией проверки SMD сопротивлений, сетевой зарядкой и жидкокристаллическим дисплеем, сами размером с палец. Выполняют функции профессионального метрологического комплекса. Способны выступать в роли измерителя емкости электролитических конденсаторов, как полярных, так и переменных.
Понятие асинхронного двигателя
Для асинхронного двигателя, рассчитанного на 220 В требуется питание от переменного электротока. Подключать такой двигатель нужно к однофазной сети. Однофазный асинхронный двигатель на 220 В будет исправно работать, если напряжение в сети составляет также 220 В, а частота 50 Гц.
Такие значения можно встретить в любых бытовых условиях по всей территории бывшего Советского Союза. А вот в Соединенных штатах, например, величина напряжения бытовой сети – 110 В.
Что касается производств, в странах, ранее входивших в состав СССР, можно встретить и однофазное и трехфазное и еще несколько видов электросетей.
Как устроен однофазный электродвигатель
На самом деле, несмотря на название, в однофазных двигателях на 220 В присутствует две фазы. Однако, из-за того, что непосредственно работает только одна фаза, их прозвали однофазными. Строение привода, в целом, не сильно отличается от любых других двигателей. Состав его таков:
- Статичный элемента под названием статор.
- Вращающийся элемент, под названием ротор.
Описать однофазный электродвигатель можно следующим образом: это асинхронный электрический привод, на статическом элементе которого расположена рабочая (основная) обмотка. Ее и подключают к однофазной сети с переменным электрическим током.
Вспомогательная или пусковая обмотка в однофазном моторе
Для самостоятельного запуска и начала вращения на однофазном электродвигателе специально установлена еще одна катушка. Только благодаря ей ротор и вал приходят в движение и начинают вращаться.
Такую катушку (пусковую) устанавливают на статоре, но смещают относительно рабочей на 90 градусов. То есть вспомогательная и основная обмотки перпендикулярны друг другу. А чтобы были сдвинуты не только катушки, но и токи, к цепи подключают элемент, который называют фазосдвигающим.
Сдвигать фазы можно с помощью следующих устройств:
- активного резистора;
- конденсатора;
- индуктивной катушки.
Нужно отметить, что двигатель с конденсатором, подключенным в качестве фазосдвигающего элемента, будет выдавать лучшие показатели при работе и запуске.
Процесс пуска электропривода
Магнитное поле способствует пуску электродвигателя. Оно буквально заставляет ротор начать вращение.
Само магнитное поле возникает благодаря работе главной и дополнительной обмотки. Дополнительная, в свою очередь, меньше, что видно даже невооруженным глазом. Она подключена к рабочей с помощью конденсатора, катушки индуктивности или активного резистора.
В случае, когда двигатель маломощный, пусковая фаза является замкнутой. Для пуска такого электромотора подключение электричества к пусковой обмотке допустимо только на некоторое время. Максимум – три секунды. За это отвечает специальная кнопка, расположенная на корпусе агрегата. Она называется пусковой и вставлена в устройство пуска.
При нажатии на кнопку запуска электричество начинает подаваться на обе катушки в одно и то же время. Электродвигатель при этом запускается в роли двухфазной машины. Но уже через 2-3 секунды мотор полностью набирает свою нормальную скорость. Кнопку теперь нужно отпустить. Электроэнергия больше не подается на вспомогательную обмотку, соответственно, она перестает работать. А вот рабочая продолжает питаться. Агрегат переходит в режим однофазной работы. Это – основной принцип работы всех однофазных электромашин.
ВАЖНО! Если передержать кнопку запуска однофазного электродвигателя, обмотка перегреется и мотор потеряет работоспособность. Пуская катушка рассчитана лишь на работу в течение трех секунд.
Для избежания перегрева и опасных аварийных ситуаций, которые могут за ним последовать, в корпус однофазной машины обязательно устанавливают тепловое реле и центробежный выключатель. Последний работает полностью автоматизировано: когда нужная скорость вращения набрана, устройство само отключает подачу тока на пусковую обмотку.
Отметим также тот факт, что во тока пуска однофазной машины выше, чем рабочий. Когда стадия запуска завершается, снижается и величина тока (становится рабочей).
Типы подключений машины
Однофазную асинхронную машину можно подключить к сети двумя способами:
- с помощью пусковой обмотки;
- с помощью рабочего конденсатора.
В цепях маломощных однофазных приводов на 220 В, которые включаются с помощью дополнительной обмотки, есть конденсаторы, которые включаются при запуске мотора. Когда разгон ротора завершен, Пусковая катушка, как описано в предыдущем разделе, отключается.
В том случае, когда к двигателю подключен рабочий конденсатор, вспомогательная катушка продолжает работу на протяжении всего времени работы привода. Ее происходит благодаря работе такой катушки через конденсатор.
Один и тот же электропривод можно использовать в разных устройствах. Можно снять двигатель с одного прибора и поставить в другой. Подключить его можно с помощью трех разным схем:
- Временная подача электроэнергии на вспомогательную катушку через конденсатор.
- Временная подача электроэнергии на вспомогательную катушку через резистор (конденсатор отсутствует).
- Постоянная подача электричества на вспомогательную и основную катушки одновременно. Подача происходит через конденсатор.
Если использовать в пусковой цепи резистор, величина активного сопротивления обмотки будет больше. Сдвиг фаз произойдет и его вполне хватит для того, чтобы заставить ротор вращаться.
Возможно также использование вспомогательной обмотки с более высоким сопротивлением и меньшей индуктивностью. Для полного соответствия обмотка должна обладать меньшим количеством витков и более тонким проводом.
Понятие конденсаторного пуска подразумевает, что конденсатор подключен к вспомогательной катушке, а подача электричества временная.
Чтобы значение пускового момента было максимальным, круговое магнитное поле статора начать вращение. Это требует перпендикулярного (относительно друг друга) положения обмоток. Резистор не даст такого сдвига.
В этой ситуации поможет конденсатор с правильно подобранной емкостью. Если все подходит, то катушки будут сдвинуты на угол в 90 градусов относительно друг друга.
Рассчитываем емкость конденсатора
Основная задача стабилизатора заключается в выполнении роли емкостного наполнителя энергии, нужной выпрямителям фильтров этого стабилизатора. С их помощью также происходит передача сигнала между усилителями. Чтобы запустить асинхронную однофазную машину переменного тока и обеспечить ее продолжительную работу тоже используют конденсаторы. Определив емкость определенного конденсатора можно предсказать, какое время будет продолжаться работа двигателя.
Основной и главный параметр такого устройства – его емкость. Между этим параметром и площадью активного подключения, изолированного диэлектриком, существует некая зависимость. Диэлектрик почти невозможно увидеть невооруженным глазом, так как слой подобной изоляции состоит их из небольшого количества атомов, которые формируют пленку.
По сути, главное назначение конденсатора – накопление, хранение и передача определенного количество энергии. А зачем так заморачиваться, спросите вы? Можно ведь просто подключить однофазную машину к источнику питания. Не тут то было. Подключая электропривод в сеть без посредника в виде конденсатора, вы рискуете работоспособностью агрегата. Он может просто сгореть.
Да и чтобы успешно включить трехфазную машину в однофазную не обойтись без устройства, которое поможет смещению фазы на 90 градусов на третьем выводе.
Помимо всего вышесказанного, конденсатор может выполнять функцию индуктивной катушки. Скачки переменного тока, протекающего через него, успешно нивелируются благодаря тому, что перед началом работы, на пластинах конденсатора равномерно копятся заряды и только потом передаются устройству, которое является принимающим.
Конденсатор может быть одним из трех видов:
- электролитическим;
- неполярным;
- полярным.
Выбор конденсатора для однофазного двигателя
Расчет емкости конденсатора для трехфазного асинхронного двигателя выполняется с использованием величины номинального тока (I), который, как правило, указан на шильдике электродвигателя, фазного напряжения (U), а также коэффициента (k). Он будет равен значению 4800 для обмоток подключенных по схеме звезды, и 2800 для обмоток, подключенных по схеме треугольника. Расчёт ёмкости происходит по следующей формуле:
С = k*I / U
Хотя, если нужно рассчитать ёмкость конденсатора быстрее, можно использовать онлайн калькулятор. Полученную величину емкости в дальнейшем и используют для подбора конденсатора к трехфазному двигателю. А что же с ёмкостью конденсатора для однофазного мотора?
Мы все знаем, что двигатели, которые предназначены для работы в однофазной сети, как правило, подключают на 220 В. Только вот, если включение трехфазного мотора задается расположением катушек и смещением фаз сети, то однофазный требует создания вращательного момента, чтобы заставить ротор прийти в движение. Для этого и нужна дополнительная пусковая обмотка. А фазы тока смещаются благодаря конденсатору.
Подбираем конденсатор для однофазного электромотора
Зачастую общая емкость, заметьте, не отдельного устройства, С рабочего + С пускового равна одному мкФ на каждые 100 Вт. Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.
Приводы подобного вида могут работать в нескольких режимах, перечисленных ниже:
- Пусковой конденсатор и пусковая катушка (отключается после набора нормальной скорости вращения). Емкость такого конденсатора подбирают из расчета 70 мкФ на 1 кВт мощности привода.
- Рабочий конденсатор и пусковая катушка, которая работает на протяжении всего времени работы двигателя. Емкость такого устройства должна быть в диапазоне от 23 мкФ до 35 мкФ.
- Рабочий и пусковой конденсаторы вместе. Их емкость, как сказано выше, подпирают из расчета 1 мкФ на 100 Вт.
Подбирая конденсатор для однофазного асинхронного двигателя, всегда придерживайтесь указанных выше пропорций. Но и не забывайте следить за состоянием привода во время его запуска и работы. Если вы заметили, что двигатель значительно перегрелся, емкость конденсатора лучше уменьшить. Общая рекомендация для подбора фазосдвигающего устройства: его рабочее напряжение должно быть не ниже 450 В.
Подбор подходящего конденсатора для электропривода – кропотливый процесс. Для обеспечения максимально эффективных результатов работы мотора подходить к расчету параметра емкости нужно очень аккуратно и внимательно. Всегда исходите, в первую очередь, их условий конкретного двигателя.
Проверяем работоспособность машины
Очень важно провести тщательный осмотр двигателя на предмет повреждений:
- В случае, если у мотора сломалась опора, он может начать работать неудовлетворительно
- Проверьте, нет ли в корпусе посторонних предметов. Этот фактор тоже может быть причиной плохой работы и перегрева.
- Если вы видите признаки потемнения примерно в середине корпуса, значит двигатель однозначно перегревается.
- Грязные или изношенные подшипники также способствую замедлению работы и перегреву.
- Если к вспомогательной катушке подключили конденсатор, емкость которого слишком высока для данного двигателя, это тоже будет причиной перегрева. Если вы подозреваете в причине плохой работоспособности привода именно его, отключите устройство от обмотки пуска, подключите привод к сети, покрутите вал руками. Он запустится и ротор начнет свое вращение. Позвольте электродвигателю поработать 10-15 минут. После этого проверьте его на предмет перегрева. Если все в порядке и мотор не нагрелся, то причина всех бед – конденсатор. Если нагрелся, ищите другую поломку.
Существует бесчисленное количество моделей однофазных электродвигателей. Перед его покупкой вы должны четко понимать, для чего он вам нужен и какие характеристики должен выдавать.
Где применяют однофазные электродвигатели переменного тока на 220В
Конденсаторные двигатели сегодня, в основном, выпускаю на основе двухфазных (с рабочей и пусковой обмотками). Хотя трехфазные тоже достаточно просто модифицировать для включения в однофазную сеть. Производят и трехфазные двигатели, которые изначально оптимизированы под для однофазной сети.
Однофазные и трехфазные двигатели, модифицированные под однофазную сеть установлены в большинстве приборов, которые мы используем каждый день. В их число входят посудомоечные машины, холодильники, пылесосы и вентиляторы.
Подобные моторы нашли и применение и в промышленности: они установлены во всех циркулярных насосах, воздуходувках и дымососах.
Приводы такого типа выпускаются с разными значениями мощности и количества оборотов. Тем не менее однофазные двигатели применяют там, где требуется применение маломощных агрегатов. С этим связаны основные преимущества трехфазных моторов перед однофазными:
- Большее значение коэффициента полезного действия.
- Большее значение пускового момента.
- Относительно большая мощность.
- Устойчивость к большим нагрузкам.
Преимущества и недостатки однофазных двигателей
Основные плюсы применения электромоторов заключаются в следующих его характеристиках:
- несложное строение;
- дешевизна;
- долгий срок службы;
- затраты на амортизацию и ремонт практически отсутствуют;
- мотор может работать от бытовой сети без использования преобразователей.
Минусы использования машин такого типа следующие:
- нет пускового или начального момента;
- низкая мощность;
- слишком большая величина пускового тока;
- управление вызывает затруднения;
- скорость работы привода ограничивает частота сети, от которой он запитан.
Электромоторы, о которых шла речь в статье, получили широчайшее распространение и применение в каждом аспекте нашей жизни, так как их преимущества намного весомее всех минусов. Благодаря им человечество добилось и продолжает добиваться удобств и комфорта все больше.
С использованием мультиметра и формул
Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.
Режим «Сх» в мультиметре
Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис.
Рис. Схема подключения конденсатора
Алгоритм измерения следующий:
- Измерьте напряжение источника питания щупами контактов измерительного прибора.
- Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
- Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
- Замерьте напряжение образованной цепи с помощью мультиметра.
- Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
- Вычислите 95% от полученного значения. Запишите показатели измерений.
- Возьмите секундомер и включите его одновременно с убиранием закоротки.
- Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
- По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.
Рис. Измерение с помощью тестера. Проверка
Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.
Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0. 5*π*f*Xc , где f – частота тока, а Xc – ёмкостное сопротивление.
Как проверить конденсатор мультиметром
В данном материале речь пойдет о том, как проверить конденсатор мультиметром, если вы нет прибора, проверяющего емкость конденсаторов – LC-метром.
Существует два вида конденсатора: полярные (электролитические конденсаторы), и неполярные к которым можно отнести все оставшиеся. Кондеры полярного типа получили свое название благодаря тому, что они припаиваются к радиоаппаратуре в строгом порядке: плюсовым контактом конденсатора к плюсовому контакту схемы.
В случае нарушения полярности такого конденсатора, он может выйти из строя, вплоть до взрывания.
Импортные конденсаторы располагаются на своей верхней части небольшим крестиком либо иной фигуркой, которые вдавлены в корпус. В этих местах корпус тоньше.
Это сделано для того чтобы обеспечить безопасность. По этой причине, если произойдет взрыв импортного конденсатора, то просто осуществиться раскрытие его верхней части. На изображении вы можете видеть вздувшийся конденсатор от материнской платы компьютера. Прорыв осуществлен точно вдоль линии.
Нет разъема для измерения емкости
Прозвонить полярный или неполярный конденсатор мультиметром, не имеющим специальной функции, можно в режиме максимального сопротивления, при котором происходит его зарядка постоянным током.
Этот способ проверки подходит даже для таких элементов, как smd конденсатор (для поверхностного монтажа) или пленочный конденсатор. Проверка полярного элемента отличается только необходимостью соблюдать полярность.
- разрядить элемент, закоротив его ножки;
- выставить максимальный предел измерения сопротивления — вплоть до мегаом, если позволяет прибор;
- подключить черный щуп мультиметра к гнезду COM — это ноль или, в нашем случае, минус, а красный щуп — в гнездо для измерения напряжения и сопротивления;
- коснуться черным щупом минуса детали, а красным — плюса;
- наблюдать за показаниями прибора.
Что происходить в этом случае? Мультиметр начинает заряжать деталь постоянным током. Во время зарядки его сопротивление увеличивается.
Быстрый рост показаний сопротивления вплоть до значения «1» (бесконечно большое) означает, что конденсатор потенциально исправен, хотя таким способом и невозможно определить его фактическую емкость.
Возможная ошибка! Во время такой проверки нельзя касаться щупов или ножек элемента пальцами. Вы зашунтируете его сопротивлением собственного тела, и тестер покажет ваше собственное сопротивление. Рекомендуется применять щупы-крокодилы, если таковые есть.
Параллельное включение в схему исправного компонента
Еще один способ проверить конденсатор без выпаивания состоит в подключении параллельно ему заведомо исправного аналога той же емкости. Если устройство заработает, значит проблема действительно была в конденсаторе и его необходимо заменить.
В схемах с высоким напряжением этот способ проверки применять нельзя.
Проверка на искру
При отсутствии измерительного прибора под рукой либо в случае большой емкости конденсатора его можно проверить «на глазок».
Элемент заряжают, затем металлическим инструментом с изолированными ручками замыкают его выводы. На руки следует надеть резиновые перчатки.
Яркая искра в сопровождении характерного звука свидетельствует об исправности конденсатора. Если разряд получился вялым, радиодеталь пора утилизировать.
Для получения исчерпывающей информации о состоянии конденсатора требуется мультиметр с функцией замера емкости (на панели управления имеется сектор «CX»).
Но и не оснащенный такой опцией тестер немало расскажет о данном элементе. Демонтаж конденсатора с платы требуется не всегда, но следует быть готовым к тому, что при измерениях на плате, точность окажется далеко не идеальной.
Типы конденсаторов
Промышленностью выпускается большое количество различных типов конденсаторов. Они применяются в автомобильной электронике, радиотехнике, устройствах индустрии, станках, бытовых и многих других приборах. Эти элементы играют роль «запасников» энергии при кратковременных сбоях питания, позволяют фильтровать полезные сигналы, а также задавать частоту генераторов сигналов. Выделяют два основных типа конденсаторов: полярные и неполярные.
Для проектирования и ремонта аппаратуры применяются различные типы конденсаторов. По типу внутреннего диэлектрика (материала между обкладками) их различают на:
- вакуумные (между обкладками находится вакуум);
- с газообразным диэлектриком;
- жидкостные;
- с неорганическим диэлектриком (слюдяные, стеклянные, керамические);
- с органической прослойкой (бумажные, пленочные различных видов);
- электролитические и оксидно-полупроводниковые;
- твердотельные.
К тому же электроконденсаторы различают по типу применения: общего или специального. Общего вида используются в большинстве аппаратуры. Специального вида могут быть:
- высоковольтные (RTR ENERGIA);
- пусковые (например, cbb60);
- импульсные (например, ИМ-70);
- дозиметрические;
- помехоподавляющие.
Выявление обрыва конденсаторов
Неисправность в виде обрыва случается достаточно редко. Такое нарушение обусловлено механическими повреждениями на накопителе. После подобной поломки у устройства в полной мере теряется накопительная функция, его емкость становится равна нулю. Целостный элемент после повреждения оказывается в виде двух проводников, которые изолированы друг от друга. Выявить такие повреждения конструкции посредством омметра не представляется возможным.
Своеобразные симптомы обрыва у полярного электролитического конденсатора проявляются в том, что в случае изменения сопротивления никакие изменения на экране прибора не проявляются. Что касается неполярных типов, стоит отметить что он имеет малую емкость и обладает высоким сопротивлением, поэтому проверить его также невозможно. Единственным правильным выходом является возможность измерения емкости.
Измерение емкости в режиме сопротивления
Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.
Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.
Измерение в режиме сопротивления
Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.
Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.
Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.
Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением
Как проверять емкость конденсатора
Не всегда исправность конденсаторов можно определить, заряжая его от постороннего источника и контролируя зарядный ток. При небольших значениях емкости (менее 0,5 мкФ) они заряжаются настолько быстро, что за этим не сможет уследить ни один прибор. В таких случаях нужно определить, насколько емкость детали соответствует номинальной. Для этого используются специализированный прибор для проверки конденсаторов: измеритель емкости или LC-метр.
Одна из разновидностей электронных LC-метров
Профессиональные приборы выполняют измерения с большой точностью, но они имеют большие габаритные размеры, дороги и сложны в эксплуатации. Применение их оправдано только при профессиональной деятельности, связанной не только с ремонтом, но и наладкой сложных радиотехнических устройств, требующих точной подгонки емкостей конденсаторов.
Для использования в бытовых условиях используются компактные цифровые измерители емкости, по габаритам не отличающиеся от обычного мультиметра. Они имеют точно такие же щупы для подключения измеряемого элемента, жидкокристаллический дисплей и переключатель пределов измерения. Для проверки конденсаторов сначала узнают его емкость по надписям на корпусе, выбирают соответствующий предел измерения и подключают элемент к прибору. Некоторые модели способны измерять емкость деталей без выпаивания их из схемы.
Как известно, у радиодеталей существует разброс параметров, который регламентируется величиной допуска. Измеренное значение должно укладываться в этот допуск. В этом случае конденсатор считается исправным.
Причины неисправности
Основная причина выхода из строя большинства конденсаторов — подача на него напряжения, превышающего допустимые нормы для этого типа элементов. Это может происходить как из-за ошибочного проектирования, так и по причине скачка питающего напряжения. Выявить это можно, если знать, как проверить конденсатор тестером. При превышении напряжения происходит так называемый пробой — выход из строя диэлектрика, разделяющего обкладки. При этом происходит замыкание обкладок, которое можно определить, если измерить сопротивление между выводами. Если оно меньше 50 Ом — значит, произошел пробой.
Пробой возможно определить и визуально. Обычно при этом конденсатор темнеет или его корпус вздувается. Потеря работоспособности может быть вызвана также изменением свойств диэлектрика — он может высохнуть, вытечь или растрескаться. При этом сразу меняется емкость элемента. Емкость можно измерить только с помощью измерителей.
Необходимый минимум сведений
Как известно, конденсаторы имеют определенную емкость и служат для накопления и непродолжительного хранения электрического заряда. При подаче напряжения заряд какое-то время должен увеличиваться, затем происходит резкое снижение уровня — разряд, и все повторяется снова — заряд/разряд. Чем больше емкость конденсатора, тем более длительное время необходимо для накопления заряда. По сути, это все свойства, которые стоит знать для проверки конденсатора мультиметром.
Узнать рабочий конденсатор или нет несложно. Нужен только мультиметр. Можно недорогой. Главное — рабочий
Если говорить о видах, то способ производства конденсаторов на проверку не влияет. Проверяют работоспособность бумажных, тонкопленочных, электролитических, жидкостных, керамических, твердотельных и всех других, абсолютно одинаково. Не влияет на способ проверки и положение элемента на плате — входные, помехоподавляющие, шунтирующие — без разницы. Не имеет значения и вольтаж. Низковольтные — на 6 В или 50 В, высоковольтные на 1000 В — проверка одинаковая.
Единственное, что необходимо принимать во внимание — полярный конденсатор или нет. Как, наверное, понятно по названию, полярные конденсаторы требовательны к полярности питания
Так как при проверке мультиметром, прибор тоже подает питание на проверяемый элемент, положение щупов при проверке полярного конденсатора должно быть строго определенным:
- Красный щуп — к положительному выводу.
- Черный щуп — к минусовому (отрицательному).
Для неполярных положение щупов может быть любым. Еще, наверное, стоит сказать, как опознать полярные конденсаторы. Это всегда электролитические (полярные) емкости, которые выглядят обычно как небольшие бочонки. На полярных на корпусе у одного из выводов идет полоса контрастного цвета. Если корпус белый — полоса черная, корпус черный — полоса белая (светло-серая). Вот этой полосой отмечается отрицательный вывод (минус).
Внешний вид электролитического (полярного) конденсатора и его обозначение на схемах
Перед тем как проверить конденсатор мультиметром, осмотрите его корпус. Если полосы нет — можно не задумываться о положении щупов.
Как измерить основную характеристику (емкость)
Не все неисправности конденсатора поддаются тестированию в режиме омметра, например, при обрыве. И если мультиметр показывает бесконечно большое сопротивление полярного элемента, что может является явным признаком его неисправности (при условии правильного подключения), то для неполярных радиодеталей этот способ совершенно не годится.
Проверить потерю номинальной емкости в режиме омметра также невозможно. В этом случае не обойтись без прибора, позволяющего измерять эту характеристику. Как правило цифровые мультиметры позволяют проводить тестирование в пределах от 20нФ до 200мкФ, что вполне достаточно для диагностики.
Мультиметром с данной функцией можно тестировать любые конденсаторы, в том числе и электролитические, при проверке последних следует соблюдать полярность.
Для проверки достаточно вставить выводы детали в гнезда Сх, а ручку переключателя прибора установить на необходимый диапазон измерений, после чего параметры емкости отобразятся на дисплее.
Подключение при измерении емкости
Диагностика устройств неполярного типа
При проверке мультиметром нам не понадобится замерять емкость конденсатора неполярного типа, достаточно измерить его сопротивление, оно должно быть бесконечно большим. В случае пробоя прибор покажет его незначительную величину, то есть деталь будет себя вести как обычный проводник электрического тока.
Очередность действий при тестировании следующая:
- необходимо выставить максимальный диапазон измерения в режиме омметра;
- щупами прибора прикасаемся к выводам радиодетали (учитывая тип конденсатора, нет необходимости соблюдать полярность);
Проверка неполярных моделей
если на табло отображается «1», это указывает нам, что измеряемое сопротивление больше двух мегаом, следовательно, деталь исправна, в противном случае мультиметр покажет какую-либо величину, что означает короткое замыкание внутри радиодетали.
Важный момент! При замере не следует держать щупы прибора за неизолированные места, поскольку в этом случае показания будут недостоверны, вы просто измерите величину сопротивления своего тела.
Тестирование также можно вести в режиме проверки диодов, в этом случае, если существует пробой, прибор обозначит короткое замыкание характерным звуковым сигналом.
Физическое определение конденсатора
Конденсатор — электрический элемент, служащий для накопления заряда или энергии. Конструктивно радиоэлемент представляет собой две пластины, выполненные из токопроводящего материала, между которыми располагается слой диэлектрика. Токопроводящие пластины называются обкладками. Они не связаны между собой общим контактом, но при этом каждая имеет собственный вывод.
Конденсаторы имеют многослойный вид, в них слой диэлектрика чередуется со слоями обкладок. Они представляют собой цилиндр или параллелепипед с закруглёнными углами. Основной параметр электрического элемента — это ёмкость, единицей измерения которой является фарада (F, Ф). На схемах и в литературе радиодеталь обозначается латинской буквой C. После символа указывается порядковый номер на схеме и значение номинальной ёмкости.
Так как одна фарада — это довольно большая величина, то реальные значения ёмкости конденсатора значительно ниже. Поэтому при записи принято использовать условные сокращения:
- П — пикофарада (pF, пФ);
- Н — нанофарада (nF, нФ);
- М — микрофарада (mF, мкФ).
Принцип работы
Принцип действия радиодетали зависит от вида электрической сети. При подключении к выводам обкладок источника постоянного тока носители заряда попадают на токопроводящие пластины конденсатора, где происходит их накопление. Вместе с тем на выводах обкладок появляется разность потенциалов. Её значение увеличивается до тех пор, пока не достигнет величины, равной источнику тока. Как только это значение выровняется, на обкладках перестаёт накапливаться заряд, а электрическая цепь разрывается.
В сети с переменным током конденсатор представляет собой сопротивление. Его величина связана с частотой тока: чем она выше, тем ниже сопротивление и наоборот. При воздействии на радиоэлемент переменной силы тока происходит накопление заряда. Со временем ток заряда уменьшается и пропадает полностью. Во время этого процесса на обкладках устройства концентрируются заряды разных знаков.
Диэлектрик, проложенный между ними, препятствует их перемещению. В момент смены полуволны происходит разряд конденсатора через нагрузку, подключённую к его выводам. Возникает ток разряда, то есть в электрическую цепь начинает поступать накопленная радиоэлементом энергия.
Характеристики и виды
Измерения параметров конденсаторов связаны с нахождением величин их характеристик
Но среди них наиболее важной является ёмкость, которая обычно и измеряется. Эта величина обозначает количество заряда, которое может накопить радиоэлемент
В физике электроёмкостью называют величину, равную отношению заряда на любой обкладке к разности потенциалов между ними.
При этом ёмкость конденсатора зависит от площади обкладок элемента и толщины диэлектрика. Кроме ёмкости радиоприбор характеризуется также полярностью и величиной внутреннего сопротивления. Применяя специальные приборы, эти величины также можно измерить. Сопротивление устройства влияет на саморазряд элемента. Кроме этого, к основным характеристикам конденсатора относят:
- Сопротивление утечки. Это внутренний импеданс, через который происходит разряд конденсатора, неподключенного к внешней цепи.
- Эквивалентную индуктивность. Это паразитная характеристика, влияющая на работу элемента на высоких частотах.
- Эквивалентное последовательное сопротивление (ESR). Состоит из обобщённого сопротивления выводов и обкладок, представляется как резистор, подключённый последовательно с конденсатором.
Классифицируются конденсаторы по разным критериям, но в первую очередь их разделяют по типу диэлектрика. Он может быть газообразным, жидким и твёрдым. Чаще всего в качестве него используются стекло, слюда, керамика, бумага и синтетические плёнки. Кроме того, конденсаторы различаются по способности изменения величины ёмкости и могут быть:
- Постоянными. Относящиеся к этому виду конденсаторы обладают постоянным значением ёмкости.
- Переменными. К ним относятся радиоэлементы, величину ёмкости которых можно изменять в процессе работы устройства. Изменение происходит за счёт смены температурного режима, электрических параметров цепи и механических методов.
- Построечными. Позволяют изменять ёмкость при настройке аппаратуры, при этом элемент не должен быть подключён к источнику питания.
Применение формул
Что делать, если под рукой нет такого мультиметра с гнездами измерения, а есть только обычный бытовой прибор? В таком случае необходимо вспомнить законы физики, которые помогут определить емкость.
Для начала вспомним, что в случае, когда конденсатор заряжается от источника неизменного напряжения через резистор, то существует закономерность, согласно которой напряжение на устройстве будет подходить к напряжению источника и в конечном итоге сравняется с ним.
Но для того чтобы этого не ожидать, можно процесс упростить. Например, за определенное время, которое равняется 3*RC, во время заряжения элемент достигает напряжения 95% примененного к RC цепи. Таким образом, по току и напряжению можно определить константу времени. А правильнее, если знать вольтаж в блоке питания, номинал самого резистора, происходит определение постоянной времени, а затем и емкости устройства.
Например, есть электролитический конденсатор, узнать емкость которого можно по маркировке, где прописывается 6800 мкф 50в. Но что если устройство давно лежало без дела, а по надписи сложно определить его рабочее состояние? В этом случае лучше проверить его емкость, чтобы знать наверняка.
Для этого необходимо выполнить следующее:
- С помощью мультиметра измерить сопротивление резистора в 10 кОм. Например, оно получилось равно 9880 Ом.
- Подключаем блок питания. Мультиметр переводим в режим замера постоянного напряжения. Затем подключаем его к блоку питания (через его выводы). После этого в блоке устанавливается 12 вольт (на мультиметре должна появиться цифра 12,00 В). Если же не удалось отрегулировать напряжение в блоке питание, то тогда записываем те результаты, которые получились.
- С помощью конденсатора и резистора собираем электрическую RC-цепь. На схеме ниже указана простая RC-цепочка:
- Закоротить конденсатор и подключить цепь к питанию. С помощью прибора еще раз определить напряжение, которое подается на цепь, и записать это значение.
- Затем необходимо высчитать 95% от полученного значения. К примеру, если это 12 Вольт, то это будет 11,4 В. То есть, за определенное время, которое равняется 3*RC, конденсатор получит напряжение в 11,4 В. Формула выглядит следующим образом:
- Осталось определить время. Для этого устройство раскорачиваем и с помощью секундомера производим отсчет. Определение 3*RC будет вычисляться таким образом: как только напряжение на устройстве будет равно 11,4 В, то это и будет означать нужное время.
- Производим определение. Для этого полученное время (в секундах) делим на сопротивление в резисторе и на три. Например, получилось 210 секунд. Эту цифру делим на 9880 и на 3. Получилось значение 0,007085. Это величина указывается в фарадах, или 7085 мкф. Допустимое отклонение может быть не более 20%. Если учитывать, что на изделии указано 6800 мкф, наши расчеты подтверждаются и укладываются в норматив.
А как определить емкость керамического конденсатора? В этом случае можно сделать определение с помощью сетевого трансформатора. Для этого RC-цепочку подсоединяем ко вторичной обмотке трансформатора, и его подсоединяют в сеть. Далее с помощью мультиметра осуществляется замер напряжения на конденсаторе и на резисторе. После этого необходимо сделать подсчеты: высчитывается ток, что проходит через резистор, затем его напряжение делится на сопротивление. Получается емкостное сопротивление Хс.
Если есть частота тока и Хс, можно определить емкость по формуле:
Принцип работы конденсаторов
При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.
В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.
Виды конденсаторов
Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.
Характеристики и свойства
К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:
- Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
- Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
- Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
- Полярность. При неверном подключении произойдет пробой и выход из строя.
- Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
- Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
- Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.
Физические величины, используемые в маркировке емкости керамических конденсаторов
Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.
Таблица единиц емкости, применяемых для бытовых керамических конденсаторов
Наименование единицыВарианты обозначенийСтепень по отношению к ФарадуМикрофарадMicrofaradмкФ, µF, uF, mF10-6FНанофарадNanofaradнФ, nF10-9FПикофарадPicofaradпФ, pF, mmF, uuF10-12F
Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф).
Маркировка отечественных конденсаторов
Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.
Ёмкость
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10-3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10-6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10-9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10-12 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Маркировка конденсаторов импортного производства
На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.
Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.
Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.
Цветовая маркировка импортных конденсаторов
Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.
Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.
Способы маркировки емкости конденсатора
На деталях советского производства, чаще всего имеющих довольно большую площадь поверхности, наносились числовые значения емкости, ее единица измерения и номинальное напряжение в вольтах. Например, 23 пФ, то есть 23 пикофарада.
Расшифровка маркировки обозначений современных керамических конденсаторов отечественного и зарубежного производства – мероприятие более сложное.
Немного о параметрах
Про два последних параметра (мощность и допуск) стоит сказать пару слов. Допуск в характеристиках конденсаторов — это допустимое/возможное отклонение ёмкости от указанного номинала. Есть виды с малым допуском — в несколько процентов, есть с больши́м — до 20%. Заменить конденсатор с малым допуском на аналог по ёмкости и напряжению, но более высоким допуском можно далеко не всегда. Такое допустимо только в бытовой технике. И то, только там, где величина заряда не слишком критична. Но лучше искать замену с аналогичным допуском.
Кодировка допустимого отклонения емкостиДопуск %E0. 005L0. 01P0. 002W0. 005B0. 1C0. 25D0. 5F1G2H2. 5J5K10M20N30Q-10 … +30T-10…+50S-20…+50Z-20…+80
Часто бывает так, что периодически «вылетает» конденсатор на одном и том же месте. По нашей логике хочется заменить его на элемент с больши́м напряжением. Но здесь может быть 2 варианта. Во-первых: в цепи имеют место скачки напряжения превышающие номинальное напряжение детали. Во-вторых, не учтена реактивная мощность конденсатора, если он работает в высокочастотных цепях.
По большей части параметр мощности не указывают и найти его можно в спецификации на деталь. Им обычно пользуются узкие специалисты.
Ещё может быть указан температурный коэффициент — ТКЕ, но он ставится далеко не во всех случаях. Он отображает изменение ёмкости в зависимости от температуры элемента. Обычно проставляется, если есть значительная зависимость. Если изменения незначительны, их просто опускают. Многие параметры легко узнавать имея тестер радиоэлементов.
Зачем нужна маркировка?
Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:
- данные о ёмкости конденсатора – главной характеристике элемента;
- сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
- данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
- процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
- дату выпуска.
Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.
Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.
Кодовая маркировка, дополнение
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1. 0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1. 0 пФ, код 0R5 — 0. 5 пф.
* Иногда последний ноль не указывают.
Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Маркировка емкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
КодЕмкостьp100,1 пФIp51,5 пФ332p332 пФ1НО или 1nО1,0 нФ15Н или 15n15 нФ33H2 или 33n233,2 нФ590H или 590n590 нФm150,15мкФ1m51,5 мкФ33m233,2 мкФ330m330 мкФ1mO1 мФ или 1000 мкФ10m10 мФ
Кодовая маркировка электролетических конденсаторов для поверхностного монтажа
Приведенные ниже принципы кодовой маркировки применяются такими известными , «Hitachi» и др. Различают три основных способа кодирования
Маркировка 2 или 3 символами
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4. 7 мкФ и рабочим напряжением 10 В.
Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.