Принцип работы автотрансформатора

Существует конструкция, в которой реализован механизм ручного регулирования выходного напряжения (Вариак, ЛАТР). Так же применяются блоки автоматической регулировки с обратной связью, по сути, автотрансформатор с таким устройством можно назвать стабилизатором напряжения.

Автотрансформаторы бывают повышающие и понижающие, однофазные и трехфазные. Применяются они для питания бытовых приборов, пуска асинхронных электрических двигателей, в промышленных электрических сетях. В быту автотрансформаторы используют для регулировки напряжения сети, если оно завышено или занижено. В промышленности с их помощью уменьшают пусковые токи электрических двигателей, повышают напряжение в линиях электропередач для уменьшения потерь.

Лабораторные автотрансформаторы (ЛАТРы)

Назначение, устройство и принцип действия автотрансформаторов

В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не двухобмоточными трансформаторами, а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).

Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.

В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.

Рис. 1 Схемы однофазных автотрансформаторов: а — понижающего, б — повышающего.

Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.

Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.

В электромагнитных преобразователях энергии — трансформаторах — передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.

Трансформатор и автотрансформатор

Автотрансформаторы успешно конкурируют с двухобмоточными трансформаторами, когда их коэффициент трансформации — мало отличается от единицы и но более 1,5 — 2. При коэффициенте трансформации свыше 3 автотрансформаторы себя не оправдывают.

В конструктивном отношении автотрансформаторы практически не отличаются от трансформаторов. На стержнях магнитопровода располагаются две обмотки. Выводы берутся от двух обмоток и общей точки. Большинство деталей автотрансформатора в конструктивном отношении не отличаются от деталей трансформатора.

Лабораторные автотрансформаторы (ЛАТРы)

Автотрансформаторы применяются также в низковольтных сетях в качестве лабораторных регуляторов напряжения небольшой мощности (ЛАТР). В таких автотрансформаторах регулирование напряжения осуществляется при перемещении скользящего контакта по виткам обмотки.

Лабораторные регулируемые однофазные автотрансформаторы состоят из кольцеобразного ферромагнитного магнитопровода, обмотанного одним слоем изолированного медного провода (рис. 2).

От этой обмотки сделано несколько постоянных ответвлений, что позволяет использовать эти устройства как понижающие или повышающие автотрансформаторы с определенным постоянным коэффициентом трансформации. Кроме того, на поверхности обмотки, очищенной от изоляции, имеется узкая дорожка, по которой перемещают щеточный или роликовый контакт для получения плавно регулируемого вторичного напряжения в пределах от нуля до 250 В.

При замыкании соседних витков в ЛАТР не происходит витковых замыканий, так как токи сети и нагрузки в совмещенной обмотке автотрансформатора близки друг к другу и направлены встречно.

Лабораторные автотрансформаторы изготовляют номинальной мощностью 0,5; 1; 2; 5; 7,5 кВА.

Схема лабораторного регулируемого однофазного автотрансформатора

Лабораторный автотрансформатор (ЛАТР)

Наряду с однофазными двухобмоточными автотрансформаторами часто применяются трехфазные двухобмоточные и трехфазные трехобмоточные автотрансформаторы.

В трехфазных автотрансформаторах фазы обычно соединяют звездой с выведенной нейтральной точкой (рис. 3). При необходимости понижения напряжения электрическую энергию подводят к зажимам А, В, С и отводят от зажимов а, b , с, а при повышении напряжения — наоборот. Их применяют в качестве устройств для снижения напряжения при пуске мощных двигателей, а также для ступенчатого регулирования напряжения на зажимах нагревательных элементов электрических печей.

Рис. 3. Схема трехфазного автотрансформатора с соединением фаз обмотки звездой с выведенной нейтральной точкой

Трехфазные высоковольтные трехобмоточные трансформаторы используются также в высоковольтных электрических сетях.

Трехфазные автотрансформаторы, как правило, на стороне высшего напряжения соединяются в звезду с нулевым проводом. Соединение в звезду обеспечивает снижение напряжения, на которое рассчитывается изоляция автотрансформатора.

Применение автотрансформаторов улучшает КПД энергосистем, обеспечивает снижение стоимости передачи энергии, но приводит к увеличению токов короткого замыкания.

Недостатком автотрансформатора является необходимость выполнения изоляции обеих обмоток на большее напряжение, так как обмотки имеют электрическую связь.

Существенный недостаток автотрансформаторов — гальваническая связь между первичной и вторичной цепями, что не позволяет использовать их в качестве силовых в сетях 6 — 10 кВ при понижении напряжения до 0,38 кВ, так как напряжение 380 В подводится к оборудованию, на котором работают люди.

При авариях из-за наличия электрической связи между обмотками в автотрансформаторе высшее напряжение может оказаться приложенным к обмотке низшего. При этом все части эксплуатируемой установки окажутся соединенными с высоковольтной частью, что не допускается по условиям безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования.

Учитывая то, что падение напряжений в обмотках трансформатора невелико – его можно не учитывать. В таком случае равенства: U1 = E1; U2 = E2 можно считать справедливыми. Таким образом, приведённая выше формула приобретает вид: U1/U2 = w1/w2 = k, то есть, соотношение напряжений к числу витков такое же, как и для обычного трансформатора.

Устройство и конструктивные особенности

Как было отмечено выше, автотрансформатор состоит из одной катушки. Её наматывают на обычный или на тороидальный сердечник.

Тороидальный трансформатор

В силу конструктивных особенностей у него отсутствуют гальванические развязки между цепями, что может привести к поражению высоковольтным током. Поэтому понижающий автотрансформатор, ввиду его повышенной опасности, требует принятия дополнительных мер по защите от поражения электротоком. Работа с ним допускается при условии строгого соблюдения правил безопасности.

Устройство современного автотрансформатора делает оборудование востребованным, если показатель трансформации приближается к 1 или находится в пределах от 1,5 до 2. Если же коэффициент будет больше 3, применение подобного прибора становится неоправданным.

Сегодня применяются однофазный и трехфазный автотрансформатор. В первом случае оборудование представлено такой разновидностью, как ЛАТР. Его применяют для низковольтных сетей. При повышенном напряжении требуется понижающая конструкция, например, автотрансформатор типа 220/110 или 220/100. В этом случае вторичная обмотка входит в состав первичного контура. Повышающий тип автотрансформаторов, наоборот, включает первичную обмотку в состав вторичного контура.

В обеих разновидностях устройств регулирование производится посредством скольжения подвижного контакта по обмоточным виткам. ЛАТРы состоят из магнитопривода кольцеобразной формы. Его обмотка включает в себя один слой. Она состоит из изолированного провода из меди.

Однофазные автотрансформаторы имеют несколько ответвлений, которые отходят от обмотки. Именно эти элементы конструкции определяют, будет ли агрегат работать на повышение или понижение напряжения сети. Чтобы получить плавность настройки вторичного напряжения создается небольшая дорожка на поверхности обмотки. Она очищена от слоя изоляции. По этой дорожке перемещается роликовый или щеточный контакт. Регулировка осуществляется в пределах от 0 до 250 В.

Коэффициент трансформации является масштабным показателем преобразования устройства и в данном случае определяется так же, как для обычного трансформатора:

ПРИНЦИП РАБОТЫ АВТОТРАНСФОРМАТОРА

Рассмотрим принцип работы устройства на примере самой простой схемы с обмоточной катушкой, имеющей три отвода — два крайних и один средний (рис.1).

Полное число витков обмотки Wв подключено к сети высокого напряжения, часть витков до отпайки Wн — к стороне низкого напряжения. Нижний по схеме вывод является общим.

В случае, когда устройство используется как повышающий преобразователь, на выводы Uн подаётся питающее напряжение, с выводов Uв снимается его повышенное значение в результате трансформации. Если мощность направлена от Uв к Uн, питающее напряжение подключается к отпайкам высокой стороны.

Коэффициент трансформации является масштабным показателем преобразования устройства и в данном случае определяется так же, как для обычного трансформатора:

K = Uв/Uн = Wв/Wн,

то есть численно равен отношению количества витков первичной и вторичной обмотки. Коэффициент трансформации может быть выражен также через значения токов. Соотношение в этом случае будет обратным:

K = Iн/Iв = Wв/Wн,

которое иллюстрирует, что с увеличением числа витков и соответственно значения U обмотки, ток в ней пропорционально уменьшается. Физически это означает, что значения мощностей в обмотках одинаковы, если пренебречь величиной потерь.

Сфера применения автотрансформаторов распространяется на различные отрасли, в числе которых:

  • энергетика (электроснабжение), где данные устройства большой мощности широко применяются на сетевых электрических подстанциях;
  • электроника, в которой многие радиотехнические устройства содержат АТ;
  • лабораторные электротехнические устройства регулирования электрических параметров (ЛАТР).

Рис. 1. Обмотки автотрансформатора: 1 трехфазного; 2 однофазного

Распределение токов, в работающем автотрансформаторе в режиме номинальной нагрузки, между обмотками неодинаково. В последовательной обмотке АmАпроходит ток нагрузки ВН — IА. По закону электромагнитной индукции в сердечнике автотрансформатора создается магнитный поток, который индуктирует в обмотке СН ток IAm. Таким образом, ток общей обмотки СН образован суммой токов последовательной обмотки IА с электрической связью (ВН и СН), и тока IAm, по магнитной связи этих же обмоток — IСН=IА+IAm.

Рис. 1. Обмотки автотрансформатора: 1 трехфазного; 2 однофазного

Значение мощности на выходе автотрансформатора равно мощности на его входе. При отсутствии обмотки НН, мощность ВН равна мощности СН, это и есть номинальная мощность Sном автотрансформатора по электрической связи. Она равна произведению номинального напряжения обмотки ВН UВН, на номинальный ток IВН последовательной обмотки.

Рассчитывают еще и типовую мощность автотрансформатора называют, которая составляет часть номинальной мощности, передаваемой электромагнитным путем.

Sт=Sном*ав, где ав=1-UСН/UВН — коэффициент выгодности автотрансформатора. Он определяет долю типовой мощности в составе номинальной, чем она меньше, тем меньше габариты и сечения сердечника (магнитопровода) и обмоток автотрансформатора, которые рассчитываются исходя не из полной номинальной, а только из её части — типовой мощности. Поэтому изготовление автотрансформаторов значительно дешевле, чем обычных трансформаторов такой же мощности.

Мощность на общей обмотке является одним из главных параметров, которые нужно контролировать при работе автотрансформатора, превышение её в длительном режиме недопустимо. На рисунке 1 показаны варианты подключения амперметра для измерения нагрузки на общей обмотке при трехфазном и однофазном варианте автотрансформатора.

Чем меньше коэффициент трансформации (чем ближе значения UСН и UВН), тем выгоднее использование автотрансформаторов и дешевле их изготовление.

На рисунке 2 показаны схемы регулирования напряжения выхода Аmна автотрансформаторе на стороне ВН (1) и на стороне СН (2). Таковы устройство и принципы работы автотрансформаторов.

2. Меньшая масса и габариты позволяют создавать трансформаторы больших мощностей.

Мощность, передаваемая первичной обмоткой во вторичную цепь автотрансформатора, будет равна:

Учитывая, что I2 = I1 + I12, ее можно записать в виде:

Здесь U2 I1 = SЭ , есть мощность, поступающая во вторичную цепь электрическим путем, U2 I12 = Sм – мощность, поступающая во вторичную цепь посредством магнитного потока.

Следовательно, в автотрансформаторе посредством магнитного потока передается только часть мощности, что дает возможность уменьшить поперечное сечение магнитопровода. Магнитные потери при этом также уменьшаются. При меньшем поперечном сечении магнитопровода уменьшается средняя длина витка обмотки, следовательно, вновь уменьшается расход обмоточной меди и снижаются электрические потери.

1. Меньший расход меди, стали, а также изоляционных материалов и меньшая стоимость по сравнению с трансформаторами той же мощности.

2. Меньшая масса и габариты позволяют создавать трансформаторы больших мощностей.

3. Автотрансформаторы имеют меньшие потери и больший КПД.

4. Имеют лучшие условия охлаждения.

1. Необходимость глухого заземления нейтрали, что приводит к увеличению токов однофазного КЗ.

2. Сложность регулирования напряжения.

3. Опасность перехода атмосферных перенапряжений с одной обмотки на другую из-за электрической связи обмоток.

У однофазного автотрансформатора всего одна обмотка. В режиме холостого хода автотрансформатор ничем не отли­чается от обычного трансформатора. В режиме нагрузки по общей части витков протекает ток, который равен разности токов (i1 i2), так как вторичный ток ослабляет магнитный поток в сердечнике (т. е. соответствующий магнитный поток имеет знак, противоположный знаку потока, создаваемого током первичной обмотки).

15. Трансформаторы тока и напряжения.

Трансформатор тока состоит из сердечника и двух обмо­ток — первичной и вторичной (рис. 7.8).

Первичную обмотку, которая содержит небольшое коли­чество витков, включают последовательно с нагрузкой, в цепи которой необходимо измерить ток, а к вторичной обмотке, с большим числом витков, подключают амперметр. Так как сопротивление амперметра мало, то можно считать, что транс­форматор тока работает в режиме короткого замыкания, при котором суммарный магнитный поток равен разности пото­ков, созданных первичной и вторичной обмотками.

Измеряемый ток, протекая по первичной обмотке с низ­ким сопротивлением, создает на ней весьма небольшое паде­ние напряжения, которое трансформируется во вторичную обмотку. Поскольку число витков вторичной обмотки значи­тельно больше, чем у первичной, то на ней получается значи­тельно большее напряжение при меньшем токе.

Трансформатор тока применяют не только для определе­ния силы тока, но и для включения токовых обмоток ват­тметров и некоторых других приборов. Выводы обмоток транс­форматора тока маркируют следующим образом: первичная обмотка — Л1 и Л2 (линия), вторичная — И1 и И2 (измери­тель). На рис. 7.8 также изображено схематическое обозна­чение трансформатора тока.

Один и тот же трансформатор тока можно использовать для одновременного включения нескольких измерительных приборов (рис. 7.9), однако желательно, чтобы их было не больше двух. Это объясняется тем, что по мере увеличения числа приборов их общее сопротивление возрастает, и режим работы трансформатора тока все более отходит от режима короткого замыкания (уменьшается ток вторичной обмотки).

Конструктивно трансформаторы тока выполняют по-раз­ному. Все они, как правило, имеют несколько коэффициен­тов трансформации. Наиболее удобный переносной транс­форматор тока — измерительные клещи (рис. 7.10).

Трансформатор напряжения состоит из сердечника и двух обмоток — первичной и вторичной (рис. 7.11).

изготавливают таким образом, чтобы номинальное напряже­ние вторичной обмотки было равно 100 В.

В целях безопасности обслуживающего персонала один зажим вторичной обмотки и стальной кожух трансформато­ра напряжения обязательно заземляют для того, чтобы при пробое изоляции между обмотками провод с высоким потен­циалом оказался замкнутым на землю. Конструктивно транс­форматоры напряжения очень похожи на маломощные си­ловые трансформаторы.

Из приведенных схем видно, что обмотки электрически связаны: обмотка низшего напряжения представляет собой часть обмотки высшего.

Автотрансформаторы — один из видов трансформаторов напряжения, отличительная конструктивная особенность которых состоит в том, что они имеют всего одну обмотку.

Минимальное количество выводов автотрансформаторов — три, при большем их количестве возможно получение на выходе разных значений напряжений.

Из приведенных схем видно, что обмотки электрически связаны: обмотка низшего напряжения представляет собой часть обмотки высшего.

Принцип работы автотрансформатора. При прохождении напряжения от источника переменного тока, подключенного к обмотке с полным количество витков W1 возникает ЭДС, индуктируемая магнитным потоком. Ее величина в прямой пропорции зависит от количества задействованных витков W2 обмотки, к которым подключена нагрузка R (см. схему 1).

Обозначив условно индуктируемую в обмотке с количеством витков W1 величину ЭДС E1, а в обмотке с W2 — E2, математически можно выразить коэффициент трансформации k следующим соотношением: E1/E2=W1/W2.

Ввиду незначительности падения напряжения в обмотке из-за относительно низкого сопротивления примем U1=E1 и U2=E2. Таким образом, соотношение E1/E2=W1/W2 может быть приведено к виду U1/U2=W1/W2, из которого понятно, что вторичное напряжение будет меньше первичного (k) во столько-же раз, во сколько количество задействованных витков W2 обмотки меньше W1.

В рассматриваемом примере используется понижающий трансформатор (W1>W2), при количестве витков W1 меньшем чем W2 (см. схему 2) вторичное напряжение будет больше первичного исходя из того же соотношения U1/U2=W1/W2.

Область применения автотрансформаторов довольна широка: устройства небольшой мощности используются для питания, наладки и тестирования бытового и промышленного электрооборудования, устройств автоматического управления, в лабораторных стендах — ЛАТРы, устройствах связи и пр. Силовые трехфазные автотрансформаторы могут быть использованы для уменьшения пусковых напряжений мощных электродвигателей.

В энергетике автотрансформаторы большой мощности успешно используют для связи высоковольтных сетей с близкими по значению напряжениями (110-220 кВ, 220-500 кВ, 330-750 кВ). Коэффициент трансформации этих устройств, как правило не превышает 2-2,5. Для изменений напряжения более этих значений экономическая целесообразность использования автотрансформаторов существенно снижается.

Для этих целей используют трехфазные автотрансформаторы, с соединениями обмоток «звездой» (наиболее часто используемая схема) или «треугольником».

Автотрансформатор имеет множество применений и устройств, в том числе и пуск асинхронных двигателей, используемых для регулирования напряжения линий электропередачи, и может быть использована для преобразования напряжения, когда первичные к вторичному отношению близко к единице.

Автотрансформатор пример

Автотрансформатор требует повышающее напряжение от 220 вольт до 250 вольт. Общее количество витков катушки на главной обмотке трансформатора составляет 2000. Определите положение первичной точки ответвления, первичного и вторичного токов, когда мощность на выходе равна 10 кВА, а экономия меди сохраняется.

Таким образом, первичный ток составляет 45,4 А, вторичный ток, потребляемый нагрузкой, составляет 40 А, и через общую обмотку протекает 5,4 А. Экономия меди составляет 88%.

Однофазный(слева) и трёхфазный(справа)
По значению выходного напряжения автотрансформаторы могут быть повышающими или понижающими. Особый класс образуют устройства со скользящими отводами. Важной характеристикой, которую учитывают при выборе, является тип сердечника — ламинированный, сплит и тороидальный.

Основными областями применения устройств являются:

  1. Компенсация падения потенциала в распределительных системах, которое производится повышением значений напряжения питания.
  2. Системы управления асинхронных и синхронных двигателей, где наличие автотрансформатора с несколькими ответвлениями облегчает запуск.
  3. В условиях исследовательских лабораторий, когда требуется варьировать электрические переменные в широких пределах.

Данные устройства используются также для регулировки яркости света; такие приборы называют диммерами. В этих случаях особое внимание уделяют правильному подбору предохранителей, в противном случае более высокое напряжение питания может оказаться на вторичных клеммах.

Источники
Источник — http://www.sdelai-sam.su/avtotransformator.html
Источник — http://electricalschool.info/main/osnovy/538-avtotransformatory.html
Источник — http://www.asutpp.ru/chto-takoe-avtotransformator.html
Источник — http://protransformatory.ru/vidy/avtotransformator
Источник — http://video-praktik.ru/transformatory_avto.html
Источник — http://www.stabilno220.ru/auxpage_avtotransformator_principi_raboti/
Источник — http://studfile.net/preview/7444684/page:15/
Источник — http://studfile.net/preview/4597816/page:8/
Источник — http://forum220.ru/autotransformer.php
Источник — http://meanders.ru.com/chto-takoe-avtotransformator.shtml
Источник — http://ofaze.ru/elektrooborudovanie/latr

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий