Принцип работы свинцового аккумулятора

Физические процессы, происходящие в аккумуляторе, объясняются свойством электролитического растворения металлов, которое заключается в переходе положительно заряженных ионов металла в раствор. Легкоокисляющиеся металлы (например, свинец) обладают этим свойством в большей степени, чем инертные металлы.
При погружении свинцового электрода в раствор электролита от него начнут отделяться положительно заряженные ионы свинца и переходить в раствор, при этом сам электрод будет заряжаться отрицательно.

Принцип работы свинцового аккумулятора

Свинцовый аккумулятор электрической энергии был изобретен в 1859 году французским физиком Гастоном Планте. В последующие годы конструкция аккумулятора, особенно – химический состав его электродов (пластин) постоянно совершенствовалась. В настоящее время свинцовые аккумуляторы и аккумуляторные батареи широко применяются в разных областях техники в качестве накопителей электроэнергии (стартерные батареи, аварийные и резервные источники энергии и т. п.).

Конструктивно аккумулятор представляет собой емкость, наполненную электролитом, в которой размещены свинцовые электроды. В качестве электролита используется раствор серной кислоты и дистиллированной воды. Электроды выполнены в виде пластин, одна из которых изготовлена из губчатого свинца Pb, а вторая – из диоксида свинца PbO2. При взаимодействии электродов с электролитом между ними возникает разность потенциалов.

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты.

При подключении к электродам аккумулятора внешней нагрузки начинается электрохимическая реакция взаимодействия оксида свинца и серной кислоты, при этом металлический свинец окисляется до сульфата свинца.

Во время разряда происходит восстановление диоксида свинца на положительном электроде (аноде) и окисление свинца на отрицательном электроде (катоде). При пропускании через электроды аккумулятора зарядного тока в нем протекают обратные реакции. При перезаряде аккумулятора, после исчерпания сульфата свинца начинается электролиз воды, при этом на аноде выделяется кислород, а на катоде — водород.

Электрохимические реакции (слева направо — при разряде, справа налево — при заряде):

Реакции на аноде:

Реакции на катоде:

Физические процессы, происходящие в аккумуляторе, объясняются свойством электролитического растворения металлов, которое заключается в переходе положительно заряженных ионов металла в раствор. Легкоокисляющиеся металлы (например, свинец) обладают этим свойством в большей степени, чем инертные металлы.
При погружении свинцового электрода в раствор электролита от него начнут отделяться положительно заряженные ионы свинца и переходить в раствор, при этом сам электрод будет заряжаться отрицательно.

По мере протекания процесса растет разность потенциалов раствора и электрода, и переход положительных ионов в раствор будет замедляться.
При какой-то определенной разности потенциалов электрода и раствора наступит равновесие между силой электролитической упругости растворения свинца, с одной стороны, и силами электростатического поля и осмотического давления — с другой.
В результате переход ионов свинца в электролит прекратится.

По завершению процессов восстановления свинца на электродах заряд аккумулятора прекращается. При дальнейшем прохождении электрического тока через электролит начинается процесс электролиза (разложения) воды, при этом аккумулятор «закипает», и выделяющиеся пузырьки образуют смесь водорода и кислорода. Смесь этих газов является взрывоопасной, поэтому следует избегать перезаряда до появления электролизных явлений по разложению воды.

Кроме того, длительный перезаряд приводит к потере электролитом воды (испарению), в результате чего его плотность повышается и для корректировки требуется доливка дистиллированной воды.
При доливке воды необходимо помнить, что вода, попадающая в концентрированную серную кислоту, закипает и сильно разбрызгивает кислотные капли, что при попадании на открытое тело или одежду может привести к ожогам кожи, слизистых оболочек, прожигу одежды и другим неприятным последствиям.

При постоянном напряжении источника зарядного тока по мере увеличения степени заряженности аккумулятора повышается его ЭДС и, следовательно, уменьшается сила зарядного тока. Когда напряжение на клеммах источника тока будет равно ЭДС полностью заряженного аккумулятора плюс ЭДС поляризации, зарядный ток прекратится.

Среднее значение напряжения аккумулятора – 2 В. Поскольку электрооборудование современных автомобилей рассчитано для работы при напряжении в бортовой сети 12 или 24 В, аккумуляторы соединяют в батареи (по 6 или 12 шт.).

Емкость аккумулятора не постоянна, она зависит от силы разрядного тока, температуры электролита и состояния активной поверхности пластин. При увеличении разрядного тока и понижении температуры электролита емкость аккумулятора уменьшается, что объясняется неполным протеканием электрохимических реакций разрядки в этих условиях, вследствие сокращения времени разрядки и повышения вязкости электролита при низких температурах.

Расход кислоты у положительных электродов больше, чем у отрицательных. Если учитывать количество воды, образующейся у положительных электродов, то количество кислоты, необходимое для них в течение разряда, в 1,6 раза больше, чем для отрицательных.

Принцип работы свинцового аккумулятора

Свинцовые аккумуляторы являются вторичными химическими источниками тока, которые могут использоваться многократно. Активные материалы, израсходованные в процессе разряда, восстанавливаются при последующем заряде.

Химический источник тока представляет собой совокупность реагентов (окислителя и восстановителя) и электролита. Восстановитель (отрицательный электрод) электрохимической системы в процессе токообразующей реакции отдает электроны и окисляется, а окислитель (положительный электрод) восстанавливается.

Электролитом, как правило, является жидкое химическое соединение, обладающее хорошей ионной и малой электронной проводимостью. В свинцовом аккумуляторе в токообразующих процессах участвуют двуокись свинца (диоксид свинца) РЬО2 (окислитель) положительного электрода, губчатый свинец РЬ (восстановитель) отрицательного электрода и электролит (водный раствор серной кислоты H2S04).

Активные вещества электродов представляют собой относительно жесткую пористую электронопроводящую массу с диаметром пор 1,5 мкм у РЬО2 и 5-10 мкм у губчатого свинца. Объемная пористость активных веществ в заряженном состоянии — около 50%.

Часть серной кислоты в электролите диссоциирована на положительные ионы водорода Н + и отрицательные ионы кислотного остатка SO4 2- . Губчатый свинец при разряде аккумулятора выделяет в электролит положительные ионы двухвалентного свинца РЬ 2+ . Избыточные электроны отрицательного электрода по внешнему участку замкнутой электрической цепи перемещаются к положительному электроду, где восстанавливают четырехвалентные ионы свинца РЬ 4+ до двухвалентного свинца РЬ 2+ .

Положительные ионы свинца РЬ 2+ соединяются с отрицательными ионами кислотного остатка SO4 2- , образуя на обоих электродах сернокислый свинец РЬSО4 (сульфат свинца).

При подключении аккумулятора к зарядному устройству электроны движутся к отрицательному электроду, нейтрализуя двухвалентные ионы свинца РЬ 2+ . На электроде выделяется губчатый свинец РЬ. Отдавая под влиянием напряжения внешнего источника тока по два электрона, двухвалентные ионы свинца РЬ 2+ у положительного электрода окисляются в четырехвалентные ионы РЬ 4+ . Через промежуточные реакции ионы РЬ 4+ соединяются с двумя ионами кислорода и образуют двуокись свинца РЬO2.

Химические реакции в свинцовом аккумуляторе описываются уравнением:

Содержание в электролите серной кислоты и плотность электролита уменьшаются при разряде и увеличиваются при заряде. По плотности электролита судят о степени разряженности свинцового аккумулятора:

где ΔCp — степень разряженности аккумулятора, %;

РЗ и Рр — плотность электролита соответственно полностью заряженного и полностью разряженного аккумулятора при температуре 25°С, г/см 2 ;

Р25 — измеренная плотность электролита, приведенная к температуре 25°С, г/см 3 .

Расход кислоты у положительных электродов больше, чем у отрицательных. Если учитывать количество воды, образующейся у положительных электродов, то количество кислоты, необходимое для них в течение разряда, в 1,6 раза больше, чем для отрицательных.

При разряде происходит незначительное увеличение объема электролита, а при заряде — уменьшение (около 1 см 3 на 1 А·ч). На 1 А·ч электрической емкости расходуется: при разряде — свинца 3,86 г, диоксида свинца 4,44 г, серной кислоты 3,67 г, а при заряде — воды 0,672 г, сульфата свинца 11,6 г.

Рис. 3. Изменение напряжения свинцового аккумулятора в некоторых возможных процессах заряда и разряда

Аккумулятор после разряда может повторно заряжаться от нескольких десятков до нескольких тысяч раз, в зависимости от конкретного типа. Наиболее распространенным является свинцовый кислотный аккумулятор, принцип устройства которого представлен на рис. 1.

Рис. 1. Принцип устройства свинцового аккумулятора и электрохимическая схема разрядного процесса

В заряженном состоянии анод (отрицательный электрод) такого аккумулятора состоит из свинца, а катод (положительный электрод) – из двуокиси свинца PbO2 . Оба электрода изготовлены пористыми, чтобы площадь их соприкосновения с электролитом была как можно больше. Конструктивное исполнение электродов зависит от назначения и емкости аккумулятора и может быть весьма разнообразным.

Химические реакции при заряде и разряде аккумулятора представляются формулой

Рис. 2. Теоретическая и фактическая удельная аккумулирующая способность свинцового аккумулятора

Различными специальными мерами (повышением концентрации кислоты до 39 %, использованием пластмассовых конструкционных частей и медных соединительных частей и др.) в последнее время удалось повысить удельную аккумулирующую способность до 40 Wh/kg и даже немногим выше.

Следует отметить, что еще в 1980-е годы примененялись открытые стационарные аккумуляторные батареи, удельная аккумулирующая способность которых находилась в пределах от 5 Wh/kg до 10 Wh/kg.

ЭДС свинцового аккумулятора зависит от плотности электролита и может определяться экспериментальной формулой

Согласно этой формуле, начальная ЭДС аккумулятора, в зависимости от конкретного типа, находится в пределах от 2,05 V до 2,10 V. Напряжение на зажимах аккумулятора может в конце разряда снизиться до 1,7 V, а в конце заряда повыситься до 2,6 V (рис. 3).

Рис. 3. Изменение напряжения свинцового аккумулятора в некоторых возможных процессах заряда и разряда

Другим необратимым процессом является электролиз воды («закипание» аккумулятора), возникающий в конце зарядного процесса. Потерю воды легко компенсировать путем доливки, но выделяющийся водород может вместе с воздухом привести к образованию взрывоопасной смеси в аккумуляторном помещении или отсеке. Во избежание опасности врыва должна предусматриваться соответствующая надежная вентиляция.

В последние 20 лет появились герметически закрытые свинцовые аккумуляторы, в которых применяется не жидкий, а желеобразный электролит. Такие аккумуляторы могут устанавливаться в любом положении, а кроме того, учитывая, что во время заряда они не выделяют водорода, могут размещаться в любых помещениях.

Применение свинцовых аккумуляторов в средствах передвижения (в автомобилях, на лодках, на поездах и др.) затруднено из-за их относительно большой массы, превышаюшей обычно массу двигателей внутреннего сгорания, а в случае приемлемой массы – слишком малым пробегом после заряда (обычно приблизительно 100 km). Поэтому для электромобилей и для других электрических средств передвижения предложены различные аккумуляторы с большей удельной аккумулирующей способностью.

В процессе разрядки аккумулятора концентрация серной кислоты снижается — плотность электролита падает. А когда по окончании зарядки количество сульфата свинца на электродах практически исчерпывается, начинает брать верх процесс электролиза воды. Данное явление можно наблюдать в виде обилия пузырьков кислорода и водорода, что является признаком перезаряда свинцово-кислотного аккумулятора, и многие автолюбители знают о нем не понаслышке.

В основе устройства и функционирования классического свинцово-кислотного аккумулятора лежат обратимые электрохимические реакции свинца и диоксида свинца с водным раствором серной кислоты: когда аккумулятор разряжается на нагрузку, оксид свинца на катоде и свинец на аноде, взаимодействуя с анионами серной кислоты, превращаются в сульфат свинца (диоксид свинца на катоде восстанавливается, свинец на аноде окисляется).

Когда аккумулятор заряжается — сульфат свинца на пластинах распадается на ионы, на катоде образуется оксид свинца, а на аноде — снова металлический свинец. При этом концентрация раствора серной кислоты увеличивается, поскольку ионы серной кислоты воссоединяясь с водородом снова образуют серную кислоту. Таким образом реализуется возможность снова и снова использовать один и тот же аккумулятор, просто время от времени перезаряжая его.

В процессе разрядки аккумулятора концентрация серной кислоты снижается — плотность электролита падает. А когда по окончании зарядки количество сульфата свинца на электродах практически исчерпывается, начинает брать верх процесс электролиза воды. Данное явление можно наблюдать в виде обилия пузырьков кислорода и водорода, что является признаком перезаряда свинцово-кислотного аккумулятора, и многие автолюбители знают о нем не понаслышке.

Лучше такого явления не допускать, ибо при этом, во-первых, необратимо расходуется вода, а во-вторых, возникает угроза взрыва. Поэтому все нормальные зарядные устройства понижают ток заряда по достижении определенного напряжения на клеммах заряжаемого аккумулятора. Что же касается потерь воды, то их традиционно восполняют доливкой в аккумулятор дистиллированной воды.

Фактически внутри корпуса свинцово-кислотного аккумулятора на 12 вольт располагается батарея из шести последовательно соединенных друг с другом элементов — ячеек. Одна ячейка (максимальное напряжение одной такой ячейки составляет 2,17 вольт) состоит из двух электродов и разделительных пластин — сепараторов, химически не взаимодействующих с электролитом, но препятствующих контакту между электродами.

Электроды представляют собой решетки чистого свинца, причем в анодную решетку впрессован порошок диоксида свинца, а в катодную — порошок свинца. Порошки используются здесь для того, чтобы максимально увеличить площадь взаимодействия электродов с электролитом, и тем самым получить возможно большую электроемкость аккумулятора, поскольку электроды погружены в электролит. Батареи из 3, 6 или 12 ячеек дают 6, 12 и 24 вольта на клеммах аккумулятора соответственно.

Стартерная батарея автомобиля (с жидким электролитом)

Классические автомобильные аккумуляторы — аккумуляторы кислотные, с жидким электролитом, на номинальное напряжение 12 вольт. В крышке такого аккумулятора имеется 6 отверстий с пробками для удобства обслуживания — можно проверить плотность электролита при помощи ареометра, если нужно — долить дистиллированной воды. Диапазон емкостей — от 35 до 230 А*ч, обеспечивают пусковые токи от 330 до 1500 А.

Задача такого аккумулятора — провернуть стартер в момент запуска автомобиля, а также питать бортовую сеть (фары, приборы, бортовые потребители через прикуриватель и т. д.) Аккумуляторы данного формата на жидком электролите постепенно уходят в прошлое, уступая место более современным аккумуляторам с загущенным электролитом.

Гелевые аккумуляторы (GEL) для ИБП, охранных систем и т. д.

В бытовых источниках бесперебойного питания (ИБП, UPS) (смотрите — Как устроены и работают ИБП), в цепях питания систем охранных сигнализаций и других подобных применениях, служат герметичные свинцово-кислотные аккумуляторы с загущенным электролитом — гелевые аккумуляторы.

Жидкий кислотный электролит здесь загущен до пастообразной консистенции водным щелочным раствором силикатов натрия (Na2Si2O4). Аккумуляторы данного типа не требуют обслуживания и доливки дистиллированной воды. Выпускаются гелевые аккумуляторы на емкости от 1 до 100 А*ч.

Технология AGM

Более совершенная версия гелевого аккумулятора — необслуживаемый свинцово-кислотный аккумулятор с пористыми сепараторами из стеклоткани (Absorbent Glass Mat), допускающий более жесткие режимы заряда и эксплуатации. Отличительная особенность технологии AGM заключается в использовании пропитанного жидким электролитом пористого заполнителя отсеков корпуса из стекловолокна.

Микропоры такого материала заполнены электролитом не полностью, и свободный от электролита объем используется здесь для рекомбинации газов. Аккумулятор, произведённый по технологии AGM, имеет ряд преимуществ: устойчивость к вибрации, нормальная работоспособность в любом положении (главное — не располагать вверх дном, так как сверху находятся аварийные клапаны).

Конструктивно аккумуляторная батарея представляет собой диэлектрический короб, разделенный внутренними перегородками на несколько отсеков. Обычно бывает шесть отсеков, в каждом из которых находится аккумулятор небольшой мощности. Все аккумуляторы в шести отсеках объединяются в единую аккумуляторную батарею.

Устройство аккумуляторной батареи

Конструктивно аккумуляторная батарея представляет собой диэлектрический короб, разделенный внутренними перегородками на несколько отсеков. Обычно бывает шесть отсеков, в каждом из которых находится аккумулятор небольшой мощности. Все аккумуляторы в шести отсеках объединяются в единую аккумуляторную батарею.

Сверху ячейки аккумуляторной батареи закрыты единой крышкой диэлектрического короба. Крышка имеет ряд отверстий, через которые электролит поступает в каждый аккумулятор, и которые служат окнами для выводов двух полюсов батареи.

Каждый из составных аккумуляторов имеет два чередующихся между собой блока положительных и отрицательных пластин. Пластины одной полярности приварены к специальным элементам крепления на перегородках, конструкция которых соединяет выводы всех аккумуляторов между собой.

Конструктивно пластины выполнены в виде решеток, изготовленных из сплава свинца, сурьмы и кальция, обладающего свойствами замедлять процесс разрядки аккумулятора за счет увеличения времени разложения электролита.

В решетку пластин впрессовано активное вещество, полученное из водного раствора серной кислоты и свинцового сурика для увеличения емкости положительных пластин и такого же раствора со свинцовым глетом для увеличения емкости пластин отрицательных.

Блоки, состоящие из соединенных между собой одноименных пластин, имеют полюсные выводы в виде штырей.

Конструктивная особенность блоков заключается в том, что положительно заряженные пластины чередуются с пластинами отрицательного заряда, располагаясь между последними. За счет такого способа расположения отрицательных пластин обычно бывает на одну больше, что защищает от разрушения или деформации положительные пластины и позволяет более эффективно использовать активные свойства их крайних экземпляров.

Выводы автомобильного аккумулятора выполнены в виде конусов стандартных размеров. Такая форма выводов обеспечивает прочный контакт с проводными клеммами даже в случае их износа. С целью исключения неправильного подсоединения выводов при установке аккумуляторных батарей в электрическую систему автомобиля положительные выводы имеют больший диаметр, чем отрицательные.

Отверстия в крышке диэлектрического короба, через которые в каждый отсек заливается электролит, закрываются пробками, имеющими вентиляционные отверстия малого диаметра для возможности выхода газообразных продуктов, образующихся в процессе работы аккумуляторной батареи.

Аккумуляторная батарея является одним из важнейших элементов электрической системы автомобиля. Надежный аккумулятор – залог качественной и долговременной эксплуатации всего автомобиля в целом.

Для повышения пористости и уменьшения усадки активной массы в пасту добавляют графит, сажу, кремний, стеклянный порошок, сернокислый барий и другие инертные материалы, называемые расширителями. Они не принимают участия в электрохимических реакциях, но затрудняют слипание (спекание) частиц свинца и его окислов и предотвращают этим уменьшение пористости.

Принцип действия. Аккумулятором называется химический источник тока, который способен накапливать (аккумулировать) в себе электрическую энергию и по мере необходимости отдавать ее во внешнюю цепь. Накапливание в аккумуляторе электрической энергии происходит при пропускании по нему тока от

Рис. 158. Заряд (а) и разряд (б) аккумулятора

На локомотивах и электропоездах наибольшее распространение получили щелочные аккумуляторы, которые имеют значительно больший срок службы, чем кислотные. Кислотные аккумуляторы ТН-450 применяют только на тепловозах, они имеют емкость 450 А*ч, номинальное напряжение — 2,2 В. Аккумуляторная батарея 32 ТН-450 состоит из 32 последовательно соединенных аккумуляторов; буква Т означает, что батарея установлена на тепловозе, буква Н — тип положительных пластин (намазные).

Устройство. В кислотном аккумуляторе электродами являются свинцовые пластины, покрытые так называемыми активными массами, которые взаимодействуют с электролитом при электрохимических реакциях в процессе заряда и разряда. Активной массой положительного электрода (анода) служит перекись свинца PbO2, а активной массой отрицательного электрода (катода) — чистый (губчатый) свинец Pb. Электролитом является 25—34 %-ный водный раствор серной кислоты.

Пластины аккумулятора могут иметь конструкцию поверхностного или намазного типа. Пластины поверхностного типа отливают из свинца; поверхность их, на которой происходят электрохимические реакции, увеличена благодаря наличию ребер, борозд и т. п. Их применяют в стационарных аккумуляторных батареях и некоторых батареях пассажирских вагонов.

В аккумуляторных батареях тепловозов применяют пластины намазного типа (рис. 159, а). Такие пластины имеют остов из сплава свинца с сурьмой, в котором устроен ряд ячеек, заполняемых пастой.

Ячейки пластин после заполнения пастой закрывают свинцовыми листами с большим количеством отверстий. Эти листы предотвращают возможность выпадания из пластин активной массы и не препятствуют в то же время доступу к ней электролита.

Исходным материалом для изготовления пасты для положительных пластин служит порошок свинца Pb, а для отрицательных— порошок , перекиси свинца PbO2, которые замешиваются на водном растворе серной кислоты. Строение активных масс в таких пластинах пористое; благодаря этому в электрохимических реакциях участвуют не только поверхностные, но и глубоколежащие слои электродов аккумулятора.

Для повышения пористости и уменьшения усадки активной массы в пасту добавляют графит, сажу, кремний, стеклянный порошок, сернокислый барий и другие инертные материалы, называемые расширителями. Они не принимают участия в электрохимических реакциях, но затрудняют слипание (спекание) частиц свинца и его окислов и предотвращают этим уменьшение пористости.

Намазные пластины имеют большую поверхность соприкосновения с электролитом и хорошо им пропитываются, что способствует уменьшению массы и размеров аккумулятора и позволяет получать при разряде большие токи.

Рис. 159. Устройство пластин (а) и общий вид (б) кислотного аккумулятора: 1 — блок намазных отрицательных пластин; 2 — выводные штыри; 3 — блок панцирных положительных пластин; 4 — панцирь; 5 — активная масса; 6 — отверстие с пробкой для заливки электролита; 7 — крышка; 8 — эбонитовый сосуд; 9 — пространство для осаждения шлама

При изготовлении аккумуляторов пластины подвергают специальным зарядно-разрядным циклам. Этот процесс носит название формовки аккумулятора. В результате формовки паста положительных пластин электрохимическим путем превращается в перекись (двуокись) свинца PbO2 и приобретает коричневый цвет. Паста отрицательных пластин при формовке переходит в чистый свинец Pb, имеющий пористую структуру и называемый поэтому губчатым; отрицательные пластины приобретают серый цвет.

В некоторых аккумуляторах применены положительные пластины панцирного типа. В них каждая положительная пластина заключена в специальный панцирь (чехол) из эбонита или стеклоткани. Панцирь надежно удерживает активную массу пластины от осыпания при тряске и толчках; для сообщения же активной массы пластин с электролитом в панцире делают горизонтальные прорези шириной около 0725 мм.

Для предотвращения замыкания пластин посторонними предметами (щупом для измерения уровня электролита, устройством для заливки электролита и др.) пластины в некоторых аккумуляторах покрывают полихлорвиниловой сеткой.

Для увеличения емкости в каждый аккумулятор устанавливают несколько положительных и отрицательных пластин; одноименные пластины соединяют параллельно в общие блоки, к которым приваривают выводные штыри. Блоки положительных и отрицательных пластин обычно устанавливают в эбонитовом аккумуляторном сосуде (рис. 159,б) так, чтобы между каждыми двумя

Рис. 160. Прохождение через электролит положительных и отрицательных ионов при разряде (а) и заряде (б) кислотного аккумулятора

пластинами одной полярности располагались пластины другой полярности. По краям аккумулятора ставят отрицательные пластины, так как положительные пластины при установке по краям склонны к короблению. Пластины отделяют одну от другой сепараторами, выполненными из микропористого эбонита, полихлорвинила, стекловойлока или другого изоляционного материала. Сепараторы предотвращают возможность короткого замыкания между пластинами при их короблении.

Пластины устанавливают в аккумуляторном сосуде так, чтобы между их нижней частью и дном сосуда имелось некоторое свободное пространство. В этом пространстве скапливается свинцовый осадок (шлам), образующийся вследствие отпадания отработавшей активной массы пластин в процессе эксплуатации.

Электрохимические реакции при разряде и заряде аккумулятора могут быть выражены уравнением

Читая это уравнение слева направо, получаем процесс разряда, справа налево — процесс заряда.

Номинальный разрядный ток численно равен 0,1СНОМ, максимальный при запуске дизеля (стартерный режим) — примерно 3СНОМ, зарядный ток — 0,2 СНОМ, где СНОМ — номинальная емкость.

При заряде напряжение аккумулятора быстро поднимается до 2,2 В, а затем медленно повышается до 2,3 В и, наконец, снова довольно быстро возрастает до 2,6—2,7 В. При 2,4 В начинают выделяться пузырьки газа, образующегося в результате разложения воды на водород и кислород. При 2,5 В оба электрода выделяют сильную струю газа, а при 2,6—2,7 В аккумулятор начинает как бы кипеть, что служит признаком окончания заряда. При отключении аккумулятора от источника зарядного тока напряжение его быстро снижается до 2,2 В.

Уход за аккумуляторами. Кислотные аккумуляторы быстро теряют емкость или даже приходят в полную негодность при

Рис. 161. Кривые напряжения кислотного аккумулятора при заряде и разряде

неправильной эксплуатации. В них происходит саморазряд, в результате которого они теряют свою емкость (примерно 0,5— 0,7 % в сутки). Для компенсации саморазряда неработающие аккумуляторные батареи необходимо периодически подзаряжать. При загрязнении электролита, а также крышек аккумуляторов, их выводов и междуэлементных соединений происходит повышенный саморазряд, быстро истощающий батарею.

На сегодняшний день в России свинцовые аккумуляторы (АКБ) являются наиболее популярными и востребованными среди вторичных ХИТ.
Свинцовые аккумуляторы находят разнообразное практическое применение в промышленности и других производствах благодаря оносительно высокой мощности в сочетании с надежностью и низкой стоимостью.

Свинцовые аккумуляторы от «НПО ССК (SSK group)»

Купить свинцовые аккумуляторы компании «НПО ССК (SSK group)» сертифицированы Госстандартом и испытательным центром МакНИИ на соответствие ГОСТ Р и ISO 9002 и с 2001 года применяются на всех, без исключения, электропогрузчиках и других электромашинах, эксплуатируемых в странах СНГ, а также эксплуатируются в качестве стационарных источников электропитания и в системах бесперебойного электропитания. Номенклатурный перечень аккумуляторных батарей SSK насчитывает несколько тысяч позиций.

•сложно спрогнозировать момент выхода из строя батареи;

Свинцовые аккумуляторы были изобретены еще в 1859 году, являясь своеобразным «классическим» решением в мире автономных источников питания. Несмотря на давность технологии, свинцовые аккумуляторы наиболее часто используются в современном обществе.

Особенности свинцовых аккумуляторов

В основе свинцовых аккумуляторов лежат химические реакции между диоксидом свинца и чистым свинцом. Электролитом в таком устройстве выступает раствор серной кислоты. Потому такие аккумуляторные батареи часто еще называют свинцово-кислотными.

Сама внутренняя структура аккумуляторов достаточно проста. Существует два типа электродов: положительные (диоксида свинца) и отрицательные (свинец). Кроме того, в электроды, кроме основных элементов, часто добавляют немного (1-2%) примесей для большей эффективности работы. Сами же электроды опущены в электролит.

Сфера применения свинцовых аккумуляторов

Условно, такой тип автономных источников питания можно поделить на 4 группы:

Стартерные аккумуляторы. Используются для запуска двигателей современных автомобилей и обеспечения электропитанием внутренних систем транспортного средства.

Стационарные свинцовые аккумуляторы. Широко используются в роли аварийных источников питания. Работа при этом, осуществляется в режиме непрерывного заряда.

Тяговые аккумуляторы. Большой ресурс, возможность глубокого разряда и небольшая стоимость позволяет их активно применять в электромобилях различного направления.

Портативные. Активно используются для питания небольшого инструмента, лампочек и обладают широкими рабочими температурами.

Преимущества и недостатки

Преимущества свинцовых аккумуляторов:

•широкий диапазон емкостей;

•небольшой показатель саморазряда;

•стабильность работы и подаваемого напряжения;

•отработанная технология переработки свинцовых аккумуляторов позволяет снизить нагрузку на окружающую среду.

Вместе с явными преимуществами, свинцовым аккумулятором присущи такие недостатки:

•большой вес и габариты батареи;

•остро негативное влияние на цикл жизни батареи в случае глубокого разряда;

•большие (до 30%) потери электроэнергии при заряде;

•не герметичные (обслуживаемые) аккумуляторы, необходимо регулярно подливать дистиллированную воду;

•сложно спрогнозировать момент выхода из строя батареи;

•нельзя оставлять сильно разряженный аккумулятор на морозе.

Благодаря своей стабильной работе и невысокой цене, свинцовые аккумуляторы не собираются сдавать свои позиции на рынке без боя. Впрочем, в ближайшее будущее возможен прорыв в создании кардинально более эффективных автономных источников питания.

Для этих батарей актуально целых 3 стратегии зарядки:

Технология скоростной зарядки↑

Существует быстрый способ зарядки аккумулятора, в рамках которого можно за 6 часов добиться полного восстановления заряда. Это актуально для батарей, использующихся в циклическом режиме, в том числе, на электровелосипедах и прочей технике.

Данная технология предполагает, 2 этапа:

  • сначала нужно заряжать изделие постоянным током, пока напряжение не достигнет 14,5 (плюс-минус 0,2) вольта (параметры указаны для батарей, чье номинальное напряжение равно 12 В);
  • затем нужно отсоединить зарядное или перевести его в режим функционирования, когда поддерживается напряжение 13,8 (плюс-минус 0,15) вольт.

Наиболее современными считаются гелевые аккумуляторы. В таких моделях электролит находится не в жидком, а в связанном виде (такой эффект достигается за счёт добавления к серной кислоте компонентов на основе кремния). Благодаря этому гелевые АКБ имеют увеличенный рабочий ресурс, заряжаются в 5-6 раз быстрее обычных батарей и практически не боятся сильной вибрации, ударов.

Преимущества

Среди прочих достоинств свинцовых АКБ можно выделить:

  • низкий уровень саморазряда — при хранении в заряженном виде этот процесс происходит в 5-8 раз медленнее, чем у никель-кадмиевых аналогов;
  • устойчивость к перепадам напряжения в бортовой сети за счёт низких показателей внутреннего сопротивления;
  • стабильность подаваемого тока;
  • высокий КПД (до 80-90%).

Ранее существенным недостатком источников питания этого типа было негативное воздействие электролита и свинцовых пластин на окружающую среду. Однако с развитием технологий вторичной переработки данная проблема практически решена — так, в США перерабатывается более 97% свинца из батарей.

При заряде возможно также образование AgO. Поэтому на зарядных и разрядных кривых наблюдаются ступени, соответствующие р-циям с участием Ag2O и AgO. НРЦ 1,60-1,85 В, ресурс не превышает 100-200 циклов.

Наиб. распространены свинцовые аккумуляторы, часто наз. также кислотными. Их действие основано на р-ции:

Щелочные никель-кадмиевые (НКА) и никельжелезные (НЖА) аккумуляторы по распространению занимают второе место после свинцовых. Токообразующая реакция:

Серебряно-цинковые аккумуляторы со щелочным электролитом имеют высокую уд. энергию (до 130 Вт*ч/кг) и способны разряжаться большими токами, но из-за высокой стоимости серебра нашли применение только в специальных отраслях, напр. в космической технике. Токообразующая р-ция:

При заряде возможно также образование AgO. Поэтому на зарядных и разрядных кривых наблюдаются ступени, соответствующие р-циям с участием Ag2O и AgO. НРЦ 1,60-1,85 В, ресурс не превышает 100-200 циклов.

Попытки замены Ag др. материалами привели к созданию никель-цинковых аккумуляторах, в к-рых используют спеченный или прессованный окисноникелевый электрод от НКА и цинковый электрод от серебряно-цинковых аккумуляторов. Токообразующая р-ция:

НРЦ 1,74-1,78 В, уд. энергия ок. 60 Вт*ч/кг, ресурс ок. 300 циклов. Разрабатываемые варианты этих аккумуляторах предназначены в осн. для электромобилей, но широкому использованию их мешает недостаточный пока ресурс работы.

В никель-водородных аккумуляторах протекает след. токообразующая р-ция:

Выделяющийся при заряде Н2 накапливается под давлением. Поэтому блок с электродами помещают в стальной цилиндр, выдерживающий давления до 10 МПа. НРЦ 1,32-1,36 В, уд. энергия 50-60 Вт*ч/кг, ресурс неск. тысяч циклов. Из-за дороговизны произ-ва такие аккумуляторы применяют пока только в космич. технике.

Среди перспективных конструкций аккумуляторов с неводными электролитами Наиб. интерес представляют серно-натриевые с твердым керамич. электролитом из алюминатов натрия, обладающим проводимостью по ионам Na + . Рабочая т-ра такого аккумулятора 300-350°С. Токообразующая р-ция:

НРЦ 2,08 В. Осн. трудность при разработке: создание технологии изготовления тонких, но достаточно стойких деталей из твердого электролита. Разрабатывают также высокотемпературные сульфид-железо-литиевые аккумуляторы; в них вместо твердого электролита применяют расплав солей, окислителями служат FeS или FeS2. По своим характеристикам эти аккумуляторы близки к серно-натриевым.

В отличие от гальванич. элементов аккумуляторы требуют ухода при эксплуатации: их необходимо заряжать, периодически доливать электролит и поддерживать постоянной его концентрацию, проводить тренировочные и контрольные зарядно-разрядные циклы и т.п. Разрабатывают т. наз. малообслуживаемые и необслуживаемые аккумуляторы, уход за которыми упрощен.

===
Исп. литература для статьи «АККУМУЛЯТОРЫ» : Романов В. В., Хашев Ю. М., Химические источники тока, 2 изд., М., 1978; Багоцкий В.С., Скундин А. М., Химические источники тока, М., 1981. B.C. Багоцкий.

Страница «АККУМУЛЯТОРЫ» подготовлена по материалам химической энциклопедии.

Источники
Источник — http://k-a-t.ru/mdk.01.01_elektro/2-ab/index.shtml
Источник — http://principact.ru/content/view/144/108/1/2/
Источник — http://eti.su/articles/electrotehnika/electrotehnika_312.html
Источник — http://electrik.info/avto/1502-svincovo-kislotnyy-akkumulyator-ustroystvo-i-rabota.html
Источник — http://selectelement.ru/total-block/car-electricity/battery-car.php
Источник — http://electrono.ru/ximicheskie-istochniki-toka/42-kislotnye-akkumulyatory
Источник — http://www.sskgroup.ru/tree/?lang=rus&id=62
Источник — http://pue8.ru/elektricheskie-seti/588-svintsovye-akkumulyatornye-batarei.html
Источник — http://electric-wheels.ru/batterie/kak-pravilno-zarjadit-svincovo-kislotnyj-akkumulyator
Источник — http://econrj.ru/stati/akkumuljatornie-batarei-i-vsjo-s-nimi-svjazannoe/svincovo-kislotnie-akkumuljatori%3A-pljusi-i-minusi.html
Источник — http://xumuk.ru/encyklopedia/86.html

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий