Данное выше определение хоть и емкое, но не всегда понятное. Попытаемся своими словами объяснить общий принцип работы тепловых электростанций любого типа.
Согласно общепринятому определению, тепловые электростанции – это электростанции, вырабатывающие электроэнергию посредством преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.
Данное выше определение хоть и емкое, но не всегда понятное. Попытаемся своими словами объяснить общий принцип работы тепловых электростанций любого типа.
Система пар/вода замкнута. Пар, после прохождения через турбину, конденсируется и вновь превращается в воду, которая дополнительно проходит через систему подогревателей и вновь попадает в паровой котел.
ГРЭС (государственная районная электрическая станция) – довольно известное и привычное название. Это не что иное, как тепловая паротурбинная электростанция, оборудованная специальными конденсационными турбинами, которые не утилизируют энергию отработанных газов и не превращают её в тепло, например, для обогрева зданий. Такие электростанции еще называют конденсационными электростанциями.
В том же случае, если ТПЭС оснащены специальными теплофикационными турбинами, преобразующих вторичную энергию отработанного пара в тепловую энергию, используемую для нужд коммунальных или промышленных служб, то это уже теплоэлектроцентрали или ТЭЦ. К примеру, в СССР на долю ГРЭС приходилось около 65% вырабатываемой паротурбинными электростанциями электроэнергии, и, соответственно, 35% — на долю ТЭЦ.
Существуют также иные виды тепловых электростанций. В газотурбинных электростанциях, или ГТЭС, генератор вращается посредством газовой турбины. В качестве топлива на таких ТЭС применяют природный газ или жидкое топливо (дизель, мазут). Однако КПД таких электростанций не очень высок, около 27-29%, так что их используют в основном как резервные источники электроэнергии для покрытия пиков нагрузки на электрическую сеть, или для снабжения электричеством небольших населенных пунктов.
Тепловые электростанции с парогазотурбинной установкой (ПГЭС). Это электростанции комбинированного типа. Они оборудованы паротурбинными и газотурбинными механизмами, и их КПД достигает 41-44%. Эти электростанции также позволяют утилизировать тепло и превращать его в тепловую энергию, идущую на отопление зданий.
Главным недостатком всех тепловых электростанций является тип используемого топлива. Все виды топлива, которые применяют на ТЭС, являются невосполнимыми природными ресурсами, которые медленно, но неуклонно заканчиваются. Именно поэтому в настоящее время, наряду с использованием атомных электростанций, ведутся разработки механизма выработки электроэнергии при помощи восполняемых или других альтернативных источников энергии.
Чтобы газ лучше горел, в котлах установлены тягодутьевые механизмы. В котел подается воздух, который служит окислителем в процессе сгорания газа. Для снижения уровня шума механизмы снабжены шумоглушителями. Образовавшиеся при горении топлива дымовые газы отводятся в дымовую трубу и рассеиваются в атмосфере.
Интерактивное приложение «Как работает ТЭЦ» (JPG, 377 КБ)
На картинке слева — электростанция « Мосэнерго » , где вырабатывается электроэнергия и тепло для Москвы и области. В качестве топлива используется самое экологически чистое топливо — природный газ. На ТЭЦ газ поступает по газопроводу в паровой котел. В котле газ сгорает и нагревает воду.
Чтобы газ лучше горел, в котлах установлены тягодутьевые механизмы. В котел подается воздух, который служит окислителем в процессе сгорания газа. Для снижения уровня шума механизмы снабжены шумоглушителями. Образовавшиеся при горении топлива дымовые газы отводятся в дымовую трубу и рассеиваются в атмосфере.
Раскаленный газ устремляется по газоходу и нагревает воду, проходящую по специальным трубкам котла. При нагревании вода превращается в перегретый пар, который поступает в паровую турбину. Пар поступает внутрь турбины и начинает вращать лопатки турбины, которые связаны с ротором генератора. Энергия пара превращается в механическую энергию. В генераторе механическая энергия переходит в электрическую, ротор продолжает вращаться, создавая в обмотках статора переменный электрический ток.
Водоснабжение осуществляется от Москвы-реки. В здании химводоочистки вода очищается от механических примесей и поступает на группы фильтров. На одних она подготавливается до уровня очищенной воды для подпитки теплосети, на других — до уровня обессоленной воды и идет на подпитку энергоблоков.
Цикл, используемый для горячего водоснабжения и теплофикации, также замкнутый. Часть пара из паровой турбины направляется в водонагреватели. Далее горячая вода направляется в тепловые пункты, где происходит теплообмен с водой, поступающей из домов.
Высококлассные специалисты « Мосэнерго » круглосуточно поддерживают процесс производства, обеспечивая огромный мегаполис электроэнергией и теплом.
Last update Вс, 29 Янв 2017 11pm
- » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
Дата Категория: Физика
У этой паровой турбины хорошо видны лопатки рабочих колес.
Тепловая электростанция (ТЭЦ) использует энергию, высвобождающуюся при сжигании органического топлива — угля, нефти и природного газа — для превращения воды в пар высокого давления. Этот пар, имеющий давление около 240 килограммов на квадратный сантиметр и температуру 524°С (1000°F), приводит во вращение турбину. Турбина вращает гигантский магнит внутри генератора, который вырабатывает электроэнергию.
Современные тепловые электростанции превращают в электроэнергию около 40 процентов теплоты, выделившейся при сгорании топлива, остальная сбрасывается в окружающую среду. В Европе многие тепловые электростанции используют отработанную теплоту для отопления близлежащих домов и предприятий. Комбинированная выработка тепла и электроэнергии увеличивает энергетическую отдачу электростанции до 80 процентов.
Паротурбинная установка с электрогенератором
Типичная паровая турбина содержит две группы лопаток. Пар высокого давления, поступающий непосредственно из котла, входит в проточную часть турбины и вращает рабочие колеса с первой группой лопаток. Затем пар подогревается в пароперегревателе и снова поступает в проточную часть турбины, чтобы вращать рабочие колеса с второй группой лопаток, которые работают при более низком давлении пара.
Вид в разрезе
Типичный генератор тепловой электростанции (ТЭЦ) приводится во вращение непосредственно паровой турбиной, которая совершает 3000 оборотов в минуту. В генераторах такого типа магнит, который называют также ротором, вращается, а обмотки (статор) неподвижны. Система охлаждения предупреждает перегрев генератора.
Выработка энергии при помощи пара
На тепловой электростанции топливо сгорает в котле, с образованием высокотемпературного пламени. Вода проходит по трубкам через пламя, нагревается и превращается в пар высокого давления. Пар приводит во вращение турбину, вырабатывая механическую энергию, которую генератор превращает в электричество. Выйдя из турбины, пар поступает в конденсатор, где омывает трубки с холодной проточной водой, и в результате снова превращается в жидкость.
Мазутный, угольный или газовый котел
Внутри котла
Котел заполнен причудливо изогнутыми трубками, по которым проходит нагреваемая вода. Сложная конфигурация трубок позволяет существенно увеличить количество переданной воде теплоты и за счет этого вырабатывать намного больше пара.
Чистое сжигание угля (Clean Coal)
Новые технологии сжигания угля
КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.
Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.
Чистое сжигание угля (Clean Coal)
Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.
Метод «oxyfuel capture»
Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.
Метод «pre-combustion»
Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO2 – оксид серы. Далее происходит удаление СО2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.
Связь ТЭЦ с другими станциями энергосистемы выполняется на повышенном напряжении через повышающие трансформаторы. При ремонте или аварийном отключении одного генератора недостающая мощность может быть передана из энергосистемы через эти же трансформаторы.
Теплоэлектроцентрали
Теплоэлектроцентрали, являясь источниками комбинированной выработки электрической и тепловой энергии, имеют значительно больший, чем КЭС, коэффициент полезного действия (до 75 %). Это объясняется тем. что часть отработавшего в турбинах пара используется для нужд промышленного производства (технологии), отопления, горячего водоснабжения.
Этот пар или непосредственно поступает для производственных и бытовых нужд или частично используется для предварительного подогрева воды в специальных бойлерах (подогревателях), из которых вода через теплофикационную сеть направляется потребителям тепловой энергии.
Основное отличие технологии производства энергии на ТЭЦ в сравнении с КЭС состоит в специфике пароводяного контура. Обеспечивающего промежуточные отборы пара турбины, а также в способе выдачи энергии, в соответствии с которым основная часть ее распределяется на генераторном напряжении через генераторное распределительное устройство (ГРУ).
Связь ТЭЦ с другими станциями энергосистемы выполняется на повышенном напряжении через повышающие трансформаторы. При ремонте или аварийном отключении одного генератора недостающая мощность может быть передана из энергосистемы через эти же трансформаторы.
Для увеличения надежности работы ТЭЦ предусматривается секционирование сборных шин.
Так, при аварии на шинах и последующем ремонте одной из секций вторая секция остается в работе и обеспечивает питание потребителей по оставшимся под напряжениям линиям.
По таким схемам сооружаются промышленные ТЭЦ с генераторами до 60 мВт, предназначенные для питания местной нагрузки в радиусе 10 км.
На крупных современных ТЭЦ применяются генераторы мощностью до 250 мВт при общей мощности станции 500—2500 мВт.
Такие ТЭЦ сооружаются вне черты города и электроэнергия передается на напряжении 35—220 кВ, ГРУ не предусматривается, все генераторы соединяются в блоки с повышающими трансформаторами. При необходимости обеспечить питание небольшой местной нагрузки вблизи блочной ТЭЦ предусматриваются отпайки от блоков между генератором и трансформатором. Возможны и комбинированные схемы станции, при которых на ТЭЦ имеется ГРУ и несколько генераторов соединены по блочным схемам.
- Зола, которая накапливается на пластинах осадителя ,удаляется и собирается в огромных хопперах, или накопителях
- Зольная пыль и зольный остаток удаляются со станции и вывозятся на места захоронения отходов или отстойные пруды
- В зависимости от рыночного спроса зольная пыль, которая производится на трех станциях TransAlta, продается для нужд цементной промышленности, а именно для строительства
2. Угольная мельница
- Затем уголь растирается или измельчается в тонкомолотый порошок, смешанный с воздухом, и подается в бойлер или в паровой котел для горения
3. Бойлер
- Смесь воздуха с парами горючего сразу же возгорается в бойлере
- Миллионы литров очищенной воды прокачиваются через испарительные трубы котла
- Сильная жара от сжигаемого угля превращает очищенную воду испарительных трубах котла в пар, который в свою очередь запускает турбины ( см № 4) для создания электричества
4. Осадитель, вытяжная труба
- При сжигании уголь выделяет углекислый газ ( СО2), сернистый ангидрит (SO2) и окиси азота (NOx).
- Эти газы удаляются из бойлера
- Зольный остаток, который получается из грубых обломков, которые падают на дно бойлера, удаляется
- Очень легкая зольная пыль находится в бойлере вместе с горячими газами
- Электростатический прибор для осаждения пыли из воздуха (огромный воздушный фильтр) удаляет 99,4% зольной пыли до того, как топочные газы рассеются в атмосфере
5. Турбогенератор
- Вода в испарительных трубах котла нагревается из бойлера и превращается в пар
- Пар высокого давления из бойлера поступает в турбину (огромный цилиндр с тысячей лопастей воздушного винта)
- Как только пар достигает лопастей турбины, он заставляет турбину быстро вращаться
- Воздушная турбинка заставляет вращаться ось внутри генератора, в свою очередь образуя электрический ток
6. Конденсатор и система водяного охлаждения
7. Водоочистная станция водоснабжения
- Для снижения коррозии вода, которая используется в испарительных трубах котла, должны быть очищенная
- Другие системы очистки природных вод на станции собирают воду, которая необходима для очистки труб и другого оборудования и осаждается в результате процесса очищения и других процессов.
- Сбрасываемая вода откачивается в отстойные пруды
8. Осадитель, зольная система
- Зола, которая накапливается на пластинах осадителя ,удаляется и собирается в огромных хопперах, или накопителях
- Зольная пыль и зольный остаток удаляются со станции и вывозятся на места захоронения отходов или отстойные пруды
- В зависимости от рыночного спроса зольная пыль, которая производится на трех станциях TransAlta, продается для нужд цементной промышленности, а именно для строительства
9. Электроподстанция, преобразователь, трансмиссионные подводящие
- При образовании электричества преобразователи увеличивают напряжение так, чтобы оно могло подаваться через трансмиссионные подводящие
- Как только электричество подается на электроподстанции города или населенного пункта, напряжение, которое протекает по трансмиссионным подводящим, уменьшается и затем уменьшается повторно для доставки электричества потребителям
0 0 0 01.09.2008, 15683 просмотра.
У турбин с противодавлением весь отработавший пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой паровой турбиной, зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной турбиной или электросетью, которые покрывают возникающий дефицит в электроэнергии.
Теплофикационные паровые турбины служат для одновременного получения электрической и тепловой энергии. Но основной конечный продукт таких турбин — тепло. Тепловые электростанции, на которых установлены теплофикационные паровые турбины, называются теплоэлектроцентралями (ТЭЦ). К теплофикационным паровым турбинам относятся турбины с противодавлением, с регулируемым отбором пара, а также с отбором и противодавлением.
У турбин с противодавлением весь отработавший пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой паровой турбиной, зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной турбиной или электросетью, которые покрывают возникающий дефицит в электроэнергии.
В турбинах с регулируемым отбором часть пара отводится из 1 или 2 промежуточных ступеней, а остальной пар идёт в конденсатор. Давление отбираемого пара поддерживается в заданных пределах системой регулирования. Место отбора (ступень турбины) выбирают в зависимости от нужных параметров пара.
У турбин с отбором и противодавлением часть пара отводится из 1 или 2 промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопительную систему или к сетевым подогревателям.
Поскольку ТЭЦ часто строятся, расширяются и реконструируются в течение десятков лет (что связано с постепенным ростом тепловых нагрузок), то на многих станциях имеются установки разных типов.
Разновидность тепловой электростанции, которая не только производит электроэнергию, но и является источником тепловой энергии в централи
Теплоэлектроцентраль (ТЭЦ) — разновидность тепловой электростанции, которая не только производит электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов).
ТЭЦ конструктивно устроена, как конденсационная электростанция (КЭС, ГРЭС).
Главное отличие ТЭЦ от КЭС состоит в возможности отобрать часть тепловой энергии пара после того, как он выработает электрическую энергию.
В зависимости от вида паровой турбины, существуют различные отборы пара, которые позволяют забирать из нее пар с разными параметрами.
Турбины ТЭЦ позволяют регулировать количество отбираемого пара.
Отобранный пар конденсируется в сетевых подогревателях и передает свою энергию сетевой воде, которая направляется на пиковые водогрейные котельные и тепловые пункты.
На ТЭЦ есть возможность перекрывать тепловые отборы пара, в этом случае ТЭЦ становится обычной КЭС.
Это дает возможность работать ТЭЦ по 2 м графикам нагрузки:
тепловому — электрическая нагрузка сильно зависит от тепловой нагрузки (тепловая нагрузка — приоритет);
электрическому — электрическая нагрузка не зависит от тепловой, либо тепловая нагрузка вовсе отсутствует, например, в летний период (приоритет — электрическая нагрузка).
Совмещение функций генерации тепла и электроэнергии (когенерация) выгодно, т. к. оставшееся тепло, которое не участвует в работе на КЭС, используется в отоплении.
Это повышает расчётный КПД в целом (35-43% у ТЭЦ и 30% у КЭС), но не говорит об экономичности ТЭЦ.
Основными же показателями экономичности являются удельная выработка электроэнергии на тепловом потреблении и КПД цикла КЭС.
При строительстве ТЭЦ необходимо учитывать близость потребителей тепла в виде горячей воды и пара, т. к. передача тепла на большие расстояния экономически нецелесообразна.
По типу соединения котлов и турбин теплоэлектроцентрали могут быть:
неблочные (с поперечными связями).
На блочных ТЭЦ котлы и турбины соединены попарно (иногда применяется дубль-блочная схема: 2 котла на 1 турбину).
Такие блоки имеют, как правило, большую электрическую мощность: 100-300 МВт.
Схема с поперечными связями позволяет перебросить пар от любого котла на любую турбину, что повышает гибкость управления станцией.
Однако для этого необходимо установить крупные паропроводы вдоль главного корпуса станции.
Кроме того, все котлы и все турбины, объединённые в схему, должны иметь одинаковые номинальные параметры пара (давление, температуру).
Если в разные годы на ТЭЦ устанавливалось основное оборудование разных параметров, должно быть несколько схем с поперечными связями.
Для принудительного изменения параметров пара может быть использовано редукционно-охладительное устройство (РОУ).
По типу паропроизводящих установок ТЭЦ могут быть:
с паровыми котлами,
с парогазовыми установками,
с ядерными реакторами (атомная ТЭЦ).
Могут быть также ТЭЦ без паропроизводящих установок — с газотурбинными установками.
Поскольку ТЭЦ часто строятся, расширяются и реконструируются в течение десятков лет (что связано с постепенным ростом тепловых нагрузок), то на многих станциях имеются установки разных типов.
Паровые котлы ТЭЦ различаются также по типу топлива:
По типу выдачи тепловой мощности различают турбины:
с регулируемыми теплофикационными отборами пара (в обозначении турбин, выпускаемых в России, присутствует буква «Т», например, Т-110/120-130),
с регулируемыми производственными отборами пара («П»),
с противодавлением («Р»).
Обычно имеется 1-2 регулируемых отбора каждого вида.
При этом количество нерегулируемых отборов, используемых для регенерации тепла внутри тепловой схемы турбины, может быть любым (как правило, не более 9, как для турбины Т-250/300-240).
Давление в производственных отборах (номинальное значение примерно 1-2 МПа) обычно выше, чем в теплофикационных (примерно 0,05-0,3 МПа).
Термин «противодавление» означает, что турбина не имеет конденсатора, а весь отработанный пар уходит на производственные нужды обслуживаемых предприятий.
Такая турбина не может работать, если нет потребителя пара противодавления.
В похожем режиме могут работать теплофикационные турбины (типа «Т») при полной тепловой нагрузке: в таком случае весь пар уходит в отопительный отбор, однако давление в конденсаторе поддерживается немногим более номинального (обычно не более 12-17 кПа).
Для некоторых турбин возможна работа на «ухудшенном вакууме» — до 20 кПа и более.
Кроме того, выпускаются паровые турбины со смешанным типом отборов:
с регулируемыми теплофикационными и производственными отборами («ПТ»),
с регулируемыми отборами и противодавлением («ПР») и др.
На ТЭЦ могут одновременно работать турбины различных типов в зависимости от требуемого сочетания тепловых нагрузок.
Рис. 2.5. Тепловая диаграмма цикла Ренкина
В гонку котла (Кт) поступает топливо и подогретый воздух. Образовавшиеся при сгорании топлива газы отсасываются из котла и выбрасываются наружу дымососом (высота дымовых груб составляет
Рис. 2.2. Схема КЭС:
Э — экономайзер; ПН, КП, ЦП — питательный, конденсационный, циркуляционный насосы
Пропуск основного количества пара через конденсатор приводит к тому, что значительная часть тепловой энергии (до 70%) бесполезно уносится циркуляционной водой.
КЭС размешают вблизи источников энергоресурсов (угля, газа, мазута). Единичная мощность блоков (агрегатов) составляет 500. 1200 МВт, тогда как мощность ЭС равна 2000. 3600 МВт. Особенность КЭС — низкая маневренность блоков. Гак, разворот турбины и набор наг рузки блоком из «холодного состояния» составляет от 3 до 10 ч.
Тепловой баланс КЭС приведен на рис. 2.3.
Рис. 2.3. Тепловой баланс КЭС Главным недостатком КЭС является ее малый КПД.
Теплоэлектроцентрали выполняют по такому же принципу, что и КЭС, но при этом чаеть отработанного поеле турбины пара отводитея к еетевым подогревателям (СИ).
Потребители получают тепло от сетевых подогревателей (СИ). Чем больше отбор пара из котла на цели теплофикации, тем меньше тепла уходит с циркуляционной водой, и КПД станции будет больше.
ТЭЦ строят вблизи потребителей тепла и поэтому они работают на привозном топливе, большая часть ЭЭ потребляется в прилегающем районе. ТЭЦ по КПД намного превосходят КЭС (у КЭС КПД — 25. 40 %, ТЭЦ — 60. 70 %).
Конструктивная схема КЭС показана на рис. 2.4.
Рис. 2.4. Схема конденсационной электростанции, работающей на угле:
I — топливный бункер; 2 — устройство пылеприготовления; 3 — подача воздуха;
- 4 — топка котла; 5 — барабан; б — конвективная шахта котла; 7 — дымовая труба;
- 8 — ЧВД турбины; 9 — ЧНД турбины; К) — электрогенератор; 11 — сборные шины электростанции; 12 — водоем; 13 — насос; 14 — конденсатор; 15 — питательный насос
В действительном цикле расширение пара в турбине происходит по линии 1-2′, т. е. используется только часть тепловыделения, AqK — внутренние потери энергии в турбине.
Нар при температуре 600 °С и давлении 30 МПа передается в сопла диафрагм турбины, выполняющих роль преобразователя внутренней энергии пара в кинет ическую энергию упорядоченного движения молекул.
Рис. 2.5. Тепловая диаграмма цикла Ренкина
Газотурбинные установки (/ТУ)
ГТУ в качестве рабочего тела используют смесь продуктов сгорания с воздухом или нагретый воздух при большом давлении и высокой температуре. Тепловая энергия газов превращается в кинетическую энергию вращения ротора турбины. Но принципу преобразования энергии Г’ГУ не отличаются от паровых ЭС. Схема ГТУ показана на рис. 2.6.
Рис. 2.6. Схема газотурбинной установки
ГРЭС расшифровывается, как государственная районная электрическая станция.
Что такое ГЭС.
Гидроэлектростанция — это комплекс сложных гидротехнических сооружений и оборудования. Его назначение — преобразовывать энергию потока воды в электрическую энергию.
Все энергетическое оборудование находится в самом здании ГЭС. Помимо машинного отделения, в котором расположены все гидроагрегаты, имеются отделы, которые содержат дополнительное оборудование, трансформаторную станцию, устройства контроля и управления работой ГЭС и пр.
Стоит отметить, что основная ценность ГЭС заключается в том, что для получения электроэнергии используется возобновляемый ресурс – вода. Таким образом, получаемая электроэнергия имеет более низкую стоимость, по сравнению с другими типами электростанций.
Посмотреть принцип работы гидроагрегата можно на примере «Бурейской ГЭС»:
Так вот, вращающийся ротор турбины сопряжен здесь с якорем турбогенератора огромной мощности (несколько мегаватт), который в конечном счете и генерирует электроэнергию на данной тепловой электростанции.
Тепловые электростанции подразделяют на станции:
по виду приводного двигателя — паротурбинные, газотурбинные, с двигателями внутреннего сгорания;
по виду топлива — с твердым органическим топливом (уголь, дрова, торф), жидким топливом (нефть, бензин, керосин, дизельное топливо), работающие на газе.
На тепловых электростанциях энергия сжигаемого топлива преобразуется в тепловую энергию, которая используется для нагрева воды в котле и образования пара. Энергия водяного пара приводит во вращение паровую турбину, соединенную с генератором.
Тепловые электростанции, в которых пар полностью используется для получения электроэнергии, называются конденсационными электростанциями (КЭС). Мощные КЭС располагаются вблизи районов добычи топлива, удалены от потребителей электроэнергии, поэтому передача электроэнергии осуществляется при высоких напряжениях (220 — 750 кВ). Строятся электростанции блоками.
В городах широко используются теплофикационные электростанции или теплоэлектроцентрали (ТЭЦ). На этих электростанциях пар, частично отработавший в турбине, используется для технологических нужд, а также для отопления и горячего водоснабжения в жилищно-коммунальном хозяйстве. Одновременное производство электрической и тепловой энергии снижает затраты на электро- и теплоснабжение по сравнению с раздельным производством электрической и тепловой энергии.
На тепловых электростанциях, для получения из воды большого количества пара под высоким давлением, используют тепло, образуемое в процессе сжигания органического топлива, такого как нефть, газ, уголь или мазут. Как понимаете, пар тут хотя и выступает теплоносителем из эпохи паровых машин, тем не менее он вполне способен вращать турбогенератор.
Пар из котла подается в турбину, с валом которого соединен генератор трехфазного переменного тока. Механическая энергия вращения турбины преобразуется в электрическую энергию генератора и передается потребителям на генераторном напряжении либо на повышенном напряжении через повышающие трансформаторы.
Давление подаваемого к турбине пара составляет порядка 23,5 МПа, при этом его температура может доходить до 560°С. А вода применяется на тепловой электростанции именно потому, что разогревается она типичным для таких станций ископаемым органическим топливом, запасы которого в недрах нашей планеты пока еще достаточно велики, хотя и дают огромный минус в виде вредных выбросов, загрязняющих окружающую среду.
Так вот, вращающийся ротор турбины сопряжен здесь с якорем турбогенератора огромной мощности (несколько мегаватт), который в конечном счете и генерирует электроэнергию на данной тепловой электростанции.
Самая обычная турбина генератора тепловой электростанции содержит на своем валу множество колес с лопатками, разнесенных в две отдельные группы. Пар под наиболее высоким давлением — тот, что выбрасывается из котла, он сразу попадает на проточную часть генераторной установки, где и вращает первую группу рабочих колес с лопатками. Далее этот же пар дополнительно подогревается в пароподогревателе, после чего попадает уже на вторую группу колес, работающих при давлении пара пониже.
В итоге турбина, напрямую связанная с ротором генератора, совершает 50 оборотов в секунду (с соответствующей частотой вращается и магнитное поле якоря, пересекающее обмотку статора генератора). Чтобы генератор не нагревался бы в процессе работы сверх меры, на станции реализована система охлаждения генератора, предотвращающая его перегрев.
Внутри котла тепловой электростанции установлена горелка, на которой сгорает топливо, образуя высокотемпературное пламя. К примеру, сжигаться может угольная пыль с подачей кислорода. Пламя охватывает большую площадь трубопровода сложной конфигурации с движущейся по нему водой, которая разогреваясь становится паром, вырывающимся наружу под высоким давлением.
Вырывающийся под высоким давлением водяной пар подается на лопатки турбины, передавая ей свою механическую энергию. Турбина вращается, и энергия механическая преобразуется в электрическую. Преодолев систему лопаток турбины, пар направляется в конденсатор, где попадая на трубы с холодной водой, он конденсируется, то есть снова становится жидкостью — водой. Такая тепловая электростанция называется конденсационной электростанцией (КЭС).
Теплоэлектроцентрали (ТЭЦ), в отличие от конденсационных электростанций (КЭС), содержат в своем составе систему отбора тепла у пара, после того как он прошел через турбину и уже поспособствовал выработке электроэнергии.
Пар отбирается с разными параметрами, что зависит от вида конкретной турбины, при том количество отбираемого от турбины пара также регулируется. Отобранный для получения тепла пар конденсируется в сетевых подогревателях воды, где он отдает свою энергию воде из сети, а вода насосами направляется в пиковые водогрейные котельные и тепловые пункты. Далее вода подается в систему тепломагистралей.
При необходимости отбор тепла у пара на ТЭЦ может быть полностью перекрыт, тогда теплоэлектроцентраль превратится в обычную КЭС. Таким образом ТЭЦ способна работать в одном из двух режимов: в тепловом режиме — когда приоритет на выработку тепла или в электрическом — когда приоритет электричеству, например летом.
http://mosenergo.gazprom.ru/about/plantwork/
http://information-technology.ru/sci-pop-articles/23-physics/243-kak-rabotaet-teplovaya-elektrostantsiya-tets
http://www.techcult.ru/technology/5057-princip-raboty-i-ustrojstvo-tec-tes
http://pue8.ru/elektrotekhnik/26-teplovye-elektricheskie-stancii.html
http://elstan.ru/articles/teplovye-elektrostantsii/10027/
http://manbw.ru/analitycs/steam-turbines.html
http://neftegaz.ru/tech-library/elektrostantsii/142466-teploelektrotsentral-tets/
http://studme.org/276586/tehnika/printsipy_ustroystva_teplovyh_elektricheskih_stantsiy
http://et.bstu.ru/goodtoknow
http://electricalschool.info/spravochnik/poleznoe/2027-kak-proizvoditsya-elektroenergiya-na-teplovoy-elektrostancii.html