Принцип работы ветровой электростанции

Ветряные электростанции производят электричество за счет энергии перемещающихся воздушных масс — ветра. Для ветряных электростанций с горизонтальной осью вращения минимальная скорость ветра составляет:

Ветряные электростанции производят электричество за счет энергии перемещающихся воздушных масс — ветра. Для ветряных электростанций с горизонтальной осью вращения минимальная скорость ветра составляет:

  • 4-5 м/сек — при мощности >= 200 кВт
  • 2-3 м/сек — если мощность

Уважаемые друзья!
Поздравляем вас с Новым годом!
Желаем любви, счастья и благоденствия!

Следует учитывать, что каждые 10 метров подъема позволяют получить скорость ветра на 1 м/с больше. Соответственно, от высоты мачты непосредственно зависит, насколько эффективно сможет функционировать генераторное оборудование. Также на эффективность работы будет оказывать влияние и диаметр ротора, поэтому предпочтительнее, чтобы он был большим.

Особенности устройства ветрогенератора

Данное оборудование имеет лопасти, которые приводятся в движение вследствие воздействия силы ветра. Данное вращение запускает турбину, которая также начинает вращаться. В турбине начинает генерироваться энергия, мощность которой определяется силой ветра. С ростом ветровой энергии увеличивается и механическая, вырабатываемая турбиной.

Устройство ветрогенератора может отличаться наличием или отсутствием мультипликатора на роторе. Если он предусмотрен, энергия от турбины передается ему. Назначением мультипликатора является ускорение вращения оси. Установки без этого оборудования являются более эффективными, поскольку в них не происходит генерации дополнительной энергии (для ускорения вращения оси), а значит, и ее растраты. Такому оборудованию вполне достаточно ветровой энергии для полноценного функционирования.

Принцип работы ветряной электростанции позволил получать электроэнергию альтернативным способом и обеспечить автономность каждого объекта. Мощность данного оборудования полностью определяется размерами его лопастей. Чем больше их площадь, тем выше мощность можно получить, используя принцип работы ветроустановки.

Расчет мощности ветряного оборудования производится на основе кубической зависимости скорости ветряного потока. Кубическая зависимость означает, что если ветровой поток скорости, условно 6 м/сек, обеспечивает мощность установки 100 Вт, то увеличение потока до 12 м/сек приведет к возрастанию мощности в восемь раз – до 800 Вт.

Если турбина характеризуется небольшими размерами, для получения высокой мощности будет необходим очень сильный ветер. Если же турбина большая, она способна и при незначительной ветровой скорости выдавать необходимую мощность.

Конструкция ветряка полностью определяет его способности вырабатывать определенное количество электроэнергии за единицу времени в зависимости от скорости ветрового потока.

Обладаем бесценным опытом. Знаем, что к чему.

Применение и рекомендации по месту установки ветрогенератора

Ветрогенераторы характеризуются широким применением на объектах различного назначения: частные дома и домохозяйства, предприятия, отдельные сооружения, которые требуют автономного энергоснабжения.

Их устанавливают на открытых, желательно возвышенных территориях, где есть хороший ветровой потенциал: поле, горы (холмы), остров и даже мелководье.

Ветрогенераторы могут устанавливаться как по одиночке так и группами, объединяясь в ветропарк для энергоснабжения масштабных предприятий.

Чаще всего ветряные электростанции применяются для энергоснабжения автономных зданий, где отсутствует подключение к городской электросети.

Маломощные ветряки используются на охотничьих угодьях, рыбацких станах, на дачных участках для пчеловодов, на автономных светильниках для освещения дорог.

В настоящее время применение ветрогенераторов как альтернативы центральному энергоснабжению нерентабельно из-за большой стоимости оборудования, но, в то же время, возможно использование ветрогенераторов в местах, где отсутствует централизованное энергоснабжение или присутствуют частые перебои. Период окупаемости – 25 лет.

Также существует техническая возможность исполнения генератора выдающего переменный ток, который можно использовать для прямого питания потребителей, которые не требуют бесперебойного питания, к примеру, насос для осушения какой-нибудь территории.

В Украине на всей территории возможно использование ветрогенераторов с той или иной степенью эффективности. Наиболее выгодно, с точки зрения ветрового потенциала, размещать ветрогенераторы в Крыму и Закарпатье.

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

Также станции можно разделить по типу конструкции:

Oбзop пoпyляpных моделей мировых производителей

Еще один промышленный ветряк, но уже украинского производства от компании “Фурлендер Виндтехнолоджи”. WTU-2.0 имеет номинальную мощность в 2 мВт, а диаметр ротора достигает 100 метров. Минимальная скорость ветра, при которой работает ветряк, 3 м/с, а максимальная — 25 м/с. 22 ветряка WTU-2.0 от “Фурлендер Виндтехнолоджи” были введены в эксплуатацию в Казахстане.

Немецкая компания Enercon выпускает три модели наземных ветряков E66 разной мощности: 1500 кВт, 1800 кВт и 2000 кВт. Диаметр их ротора неизменен, несмотря на разную производимую мощность, и равен 66 метрам. Трехлопастные ветряки работают при минимальной скорости ротора в 8 об/мин и максимальной в 22 оборота в минуту.

Также в Германии есть предприятие, выпускающее небольшие ветряки, схожие больше для частного использования. Как пример — Nordex N27, которые включают в себя турбины разной мощности: 150 кВт, 225 кВт и 250 кВт. Диаметр роторной подвижной части достигает 27 метров. Это старые модели, которые теперь сложно найти на рынке новыми и продаются они в основном в состоянии б/у. Средняя цена варьируется между 22 и 25 тысячами евро.

Невероятную производительность также имеет ветровой генератор Siemens SWT-7.0-154. Его мощность достигает 7 МВт, а диаметр движущейся части — 154 метра. Гигант работает при минимальной скорости ветра в 3 м/с и при максимальной в 25 м/с. Трехлопастный ветряк работает на прямом приводе и на одном генераторе. Стоимость формируется индивидуально для заказчика, исходя из объемов производства и количества ветряков.

Если неподалеку находится лес, то это будет способствовать снижению эффективности работы ветрогенератора. Отсутствие поблизости ВЛЭП не даст возможности перенаправлять вырабатываемую электроэнергию к потребителям.

Принцип работы ветряной электростанции основан преобразовании энергии ветра во вращательное движение турбины. Это происходит при помощи лопастей (ротора). Ветер следует контуру лопасти, приводя их во вращение.

Современные ветровые электрические станции имеют три лопасти. Их длина может достигать 56 метров. Скорость вращения в пределах 12-24 оборотов в минуту. Для увеличения скорости вращения используют редукторы. Мощность современных ветрогенераторов может достигать 750кВт.

Анемометр предназначен для измерения скорости ветра. Он монтируется на тыльной стороне корпуса турбины. Информация о скорости ветра анализируется встроенным компьютером для выработки наибольшего количества электроэнергии.

Конструкция ветроэлектростанции может работать при скорости ветра 4 метра в секунду. При достижении скорости ветра 25 метров в секунду ветровые электростанции принцип работы, которых основан на использовании энергии ветра автоматически выключаются. Бесконтрольное вращение лопастей при сильном ветре является одной из причин аварий и разрушения ветряка.

Трансформатор преобразовывает напряжение до величин необходимых для транспортировки электроэнергии к потребителю по проводам линии электропередачи. Обычно трансформаторы устанавливают у основания мачты

Мачта является важным элементом конструкции ветряной электростанции. От ее высоты зависит выработка генератора. Высота мачты современных ветряков колеблется в пределах 70-120 метров. Некоторые конструкции предусматривают наличие вертолетных площадок.

Работа лопасти ветрогенератора можно сравнить с принципом действия крыла самолета. При наличии необходимого для движения лопастей воздушного потока создается «воздушный мешок» на подветренной стороне лопасти ветрогенератора. Проворачиваться ротор ветрогенератора заставляет зона с низким давлением в «воздушном мешке», создающая подъемную силу. Эта подъемная сила, преодолевая незначительное сопротивление воздуха, является основной силой для вращения ветрогенератора и производства электроэнергии.

Ветряные турбины поглощают энергию ветра за счет нескольких лопастей, находящихся на высоте для получения преимущества от более сильного и стабильного ветра. Ветрогенераторы, как источник получения электрической энергии, построены на принципах, схожих с обычными электростанциями. Получаемая от ветра энергия преобразуется

Работа лопасти ветрогенератора можно сравнить с принципом действия крыла самолета. При наличии необходимого для движения лопастей воздушного потока создается «воздушный мешок» на подветренной стороне лопасти ветрогенератора. Проворачиваться ротор ветрогенератора заставляет зона с низким давлением в «воздушном мешке», создающая подъемную силу. Эта подъемная сила, преодолевая незначительное сопротивление воздуха, является основной силой для вращения ветрогенератора и производства электроэнергии.

Эффективность работы ветряных электростанций определяется не только мощностью ветрогенераторов, но и типом системы, которая используется для передачи или хранения электроэнергии. Как правило, ветряные электростанции не могут выдерживать конкуренции с тепловыми или атомными электростанциями из-за нестабильности генерации. Чтобы обеспечить стабильный поток электроэнергии для потребителей вблизи ветропарков строят особые хранилища, которые способны запасать энергию.

Размер и конфигурация лопастей определяют эффективность их вращения по соотношению к силе ветра. Турбина играет роль преобразователя механического движения (вращения) в электрическую энергию. Существуют модификации ветровых генераторов, которые предусматривают возможность складывания мачт, что упрощает обслуживание оборудования.

Особенности конструкции ветряной электростанции

Конструкция устройств, использующих безвозмездный источник энергии, достаточно проста. Ветряная электростанция состоит из лопастей, мачты, электрогенератора и дополнительных приборов, обеспечивающих преобразование, накопление и передачу к потребителям электроэнергии.

Размер и конфигурация лопастей определяют эффективность их вращения по соотношению к силе ветра. Турбина играет роль преобразователя механического движения (вращения) в электрическую энергию. Существуют модификации ветровых генераторов, которые предусматривают возможность складывания мачт, что упрощает обслуживание оборудования.

Если выполнить анализ всех затрат, то самым дешевым источником энергии могут оказаться ветровые HAWP-установки (High-Altitude Wind Power). Поспорить с ними смогут только гидроэлектростанции и обычные ветрогенераторы, используемые для питания локальных потребителей.

Ветер, в отличие от сжигаемого топлива, является источником возобновляемой, доступной и чистой энергии, использование которой не приводит к выбросу парниковых газов в атмосферу. Таким образом, ветровая энергия создает гораздо меньше проблем для экологии по сравнению с традиционными невозобновляемыми источниками энергии.

Средняя годовая мощность, генерируемая ветрогенератором, оказывается примерно постоянной. Однако уровень мощности на более коротких временных отрезках может очень сильно колебаться. Чтобы обеспечить стабильное электроснабжение, ветрогенераторы должны использоваться в сочетании с другими источниками энергии. Увеличение доли энергии, вырабатываемой ветровыми электростанциями, требует модернизации сети линий электропередач, и приводит к последовательному вытеснению традиционных генерирующих мощностей.

Рис. 1. Типовая ветровая электростанция

Принцип работы ветрогенератора достаточно прост (рис. 2). Ветер заставляет вращаться двух или трехлопастные турбины, приводящие в движение основной вал, к которому подключен ротор генератора. Вращение ротора приводит к генерации электричества.

Рис. 2. Внутреннее устройство ветрогенератора

Если копнуть глубже, то окажется, что ветер на самом деле является формой солнечной энергии и становится результатом неравномерного нагрева атмосферы солнцем. Карта направления и силы ветров является сильно неоднородной и зависит от рельефа местности, наличия растительности и водоемов. Энергия ветра используется для различных целей: мореходство, полеты воздушных змеев и дельтапланов, генерация электричества.

Турбины горизонтальных ветрогенераторов обычно имеют две или три лопасти. Эти лопасти приводятся во вращение фронтальными воздушными потоками.

Промышленные ветрогенераторы имеют мощность от 100 киловатт до нескольких мегаватт. Ветровые турбины большой мощности оказываются более экономически выгодными и объединяются в ветровые электростанции, которые поставляют электроэнергию в сеть. В последние годы произошло значительное увеличение числа крупных морских и прибрежных ветровых электростанций в США. Это было сделано для того, чтобы максимально использовать потенциал энергии ветра прибрежных регионов.

Отдельные ветрогенераторы мощностью менее 100 киловатт применяются для энергоснабжения домов, телекоммуникационных вышек, насосных станций и т.д. Небольшие ветровые турбины иногда используются в сочетании с дизель-генераторами, батареями и солнечными панелями. Такие решения называются гибридными и обычно размещаются в удаленных местах, в которых отсутствуют собственные линии электропередач.

В настоящее время большинство турбин используют генераторы с регулируемой скоростью в сочетании с промежуточным преобразователем мощности между генератором и системой сбора энергии, что является наиболее подходящим вариантом для межсетевого соединения и обеспечивает возможность отключения при низком выходном напряжении. В современных системах используются либо машины с двойным питанием, либо генераторы с короткозамкнутым ротором или синхронные генераторы.

Современные энергетические системы сталкиваются со множеством проблем, в том числе, с проблемой избыточной мощности, которую удается решать за счет реализации специальных мер: экспорта и импорта электроэнергии в соседние районы, изменения уровня воды в водохранилищах гидроэлектростанций, преобразования электрической мощности в механическую энергию, ограничения потребления и т.д. При использовании локальных ветрогенераторов эту проблему можно сгладить.

В ветряной электростанции отдельные турбины объединяются в единый комплекс с помощью системы сбора мощности и информационных каналов связи. Среднее выходное напряжение для ветрогенераторов обычно составляет 34,5 кВ. На трансформаторной подстанции это напряжение дополнительно увеличивается для дальнейшей передачи по высоковольтным линиям электропередач.

Другая проблема заключается в том, что транзитная мощность новых линий передач оказывается недостаточной. Это связано с тем, что, несмотря на поддержку альтернативной энергетики, государство разрешило транзитным компаниям обеспечивать минимальный уровень пропускной способности, оговоренный в стандартах. Эти важные проблемы необходимо решить, так как в противном случае ветряные электростанции будут вынуждены работать не на полную мощность или работать попеременно.

Не смотря на не полностью реализованный потенциал ветряной энергетики, она уже сейчас помогает сглаживать пики потребления и повышает надежность поставок электроэнергии.

Морские ветряные электростанции

Рис. 3. Морская ветряная электростанция

При использовании понятия «мелководье» речь идет о диапазоне глубин от 0 м до 30 м. Данный диапазон относится к большинству существующих морских ветряных электростанций. Переходные глубины колеблются в диапазоне от 30 м до 60 м. Для глубоководья (более 60 м) были разработаны плавающие концепции ветряных электростанций, которые были позаимствованы из нефтяной и газовой отрасли.

Стоит отметить, что приведенные диапазоны мелководья, переходных глубин и глубоководья являются специфическими для рассматриваемой отрасли морских ветровых электростанций и не совпадают с диапазонами, принятыми в нефтяной и газовой отрасли, где под глубоководьем понимают глубины от 2000 м и более. Кроме того, эти диапазоны на самом деле являются всего лишь ориентирами при разработке новых технологий. Они помогают оценить требуемые ресурсы при создании новых решений.

Вполне очевидно, что с ростом глубины стоимость конструкций возрастет из-за увеличения срока проектирования, усложнения процесса производства и монтажа, а также из-за увеличения количества расходуемых материалов, необходимых для постройки основания. Рост затрат, связанных с увеличением глубины, обнаруживается поэтапно по мере достижения технических ограничений. Однако накопление и применение новых технических решений способно смягчить эти скачки в каждом конкретном проекте.

Для транспортировки генерируемой электроэнергии необходимы линии передачи. В случае с морской электростанцией для транзита энергии по морскому участку пути потребуется подводный кабель. Как было сказано выше, строительство новой сухопутной высоковольтной линии специально для транзита электроэнергии морской электростанции может быть слишком дорогостоящим, но ситуацию спасают существующие линии электропередач, созданные ранее для обычных электростанций.

Коэффициент использования установленной мощности

Доля ветровой энергетики

Колебания генерируемой мощности

Производимая ветрогенератором мощность колеблется и при слабом воздушном потоке должна заменяться другими источниками энергии. Современные энергосистемы способны справляться с аварийными отключениями генерирующих мощностей, а также с суточными перепадами потребления. При этом традиционные электростанции способны выдавать максимальную мощность в течение 95% рабочего времени. Этого нельзя сказать о ветряных электростанциях.

Совместное использование непостоянных возобновляемых источников энергии со стабильными невозобновляемыми источниками, помогает создавать устойчивую энергосистему, которая обеспечивает надежное электроснабжение потребителей. Увеличение доли возобновляемых источников энергии успешно происходит в реальном мире.

HAWP-установки

Если выполнить анализ всех затрат, то самым дешевым источником энергии могут оказаться ветровые HAWP-установки (High-Altitude Wind Power). Поспорить с ними смогут только гидроэлектростанции и обычные ветрогенераторы, используемые для питания локальных потребителей.

HAWP-установки работают на больших высотах. Речь идет вовсе не о десятках метров, где отлично справляются обычные ветрогенераторы. Технологии HAWP подразумевают использование летающих установок на высоте, где энергия ветра оказывается гораздо больше, чем у поверхности земли.

Стоит отметить, что при реализации AWE-технологий еще предстоит решить проблему эффективной передачи энергии на землю. При использовании традиционных подходов напряжение на электрическом кабеле оказывается слишком высоким.

К пьезоэлектрическому генератору

Когда цилиндрическая структура, как труба, стоит на пути жидкости или ветра, происходит явление, называемое вихрями Кармана. Жидкость или воздух образуют цикличность, закрученную в спиральном движении, что делает колебания по бокам. Он имеет аэродинамическое объяснение и расшифрован физиком Теодором фон Карманом в 1911 году.

С тех пор инженер принимает во внимание эти вихри и делает доступными методами профилактику для предотвращения неустойчивости инфраструктур от компрометации. Испанский стартап Vortex Bladeless решил сделать новый шаг и использовать это негативное для обычных инженеров явление для получения энергии ветра. Для этого, они создали Вихрь, ветровую турбину без лопастей, что колеблется от одной стороны к другой в соответствии с ветром, чтобы захватить кинетическую энергию.

Вот как это работает

“Эти вихри – проблема, как правило, инженеры стараются избегать любой ценой, потому что здания могут рухнуть,” объясняет Дэвид Суриол (Devid Suriol) соучредитель Vortex Bladeless. Менеджер объясняет, что его дело обстоит как раз наоборот: “Мы сознательно искали и оптимизировли его”.

Устройство представлено в виде вертикального конусообразного цилиндра, изготовленного из стекловолокна, что делает его как легким, так и жестким. Текущие прототипы достигают шести метров в высоту, хотя компания планирует более высокие версии. В 2015 году они будут запускать модель 12,5 метров и в течение трех лет, один выше, чем 100 метров. “Чем больше высота, тем больше производительность,” объясняет Девид.

“Работая не с лопатоками мы устраняем многие из традиционных движушихся механических частей турбины, что позволит существенно сократить расходы на производство ветровой энергии и эксплуатационные расходы,” говорит соучредитель. Он рассчитывает добиться снижения на 53% в расходов по строительным процессом по сравнению с обычной ветровой турбиной. Кроме того, “сокращение и отсутствие лопастей также будет способствовать транспортировке и упростит работы по техническому обслуживанию,”.

Преимущества

В дополнение к снижению затрат, эта технология имеет и другие полезные функции, по сравнению с другими моделями. Суриол объясняет, что вихрь может генерировать энергию в широком диапазоне скоростей ветра, “выше, чем у обычных ветровых турбин.” В частности, устройство стартует от скорости ветра в один метр в секунду “, меньше, чем требуется по традиционной турбины” объясняет он. При нескольких лопастях турбины начинают работу с трех метров в секунду.

Цилиндрическая форма структуры также исключает необходимость ориентировки ветровой турбины в направлении ветрового потока. Тем не менее, в тех же условиях, энергия, вырабатываемая Vortex будет на 30 % ниже, чем от традиционной ветровой турбины.
Кроме того, его конструкция делает турбину менее ранящим природный ландшафт и отсутствие лопастей делает его менее опасным для птиц. Нова турбина не производит шум, уменьшая воздействие на окружающую среду еще больше.

К пьезоэлектрическому генератору

В среднесрочной и долгосрочной перспективе, исследователи Vortex работают над альтернативой электромагнитной индукции для того, чтобы генерировать электричество из вихревых колебаний. Эта альтернатива будет основываться на пьезоэлектричестве.

Это явление, обнаруженное в 1880 году братьями Пьером и Жаком Кюри, происходит в некоторых кристаллах, таких как кварц, которые не имеют центра симметрии. При сжатии их масса поляризована и генерирует электрический потенциал.

С момента своего открытия, пьезоэлектричество (от греческого piezein, “крутить или сжать”) служил для многих целей, начиная от проектирования гидролокаторов подводных лодок и механизма зажигалки и часов, до усилителей и микрофонов гитар. Пьезоэлектричество также используется для приложений сбора энергии, но не для получения большого количества энергии.

Источники
Источник — http://manbw.ru/analitycs/wind-stations.html
Источник — http://vencon.ua/articles/printsip-raboty-vetrogeneratora
Источник — http://alterair.ua/articles/vetrogeneratoryi/
Источник — http://tcip.ru/blog/wind/printsip-dejstviya-i-raboty-vetrogeneratora.html
Источник — http://uaenergy.com.ua/post/32527/vetrovye-elektrostancii-princip-raboty-preimuschestva-i-nedostatki
Источник — http://madenergy.ru/stati/princip-raboty-dvigatelej-vetryanoj-ehlektrostancii.html
Источник — http://ukrelektrik.com/publ/kak_rabotaet_vetrjanaja_ehlektrostancija/1-1-0-1767
Источник — http://www.powercity.ru/articles/preimushhestva-vetrogeneratorov-i-vetrjanyh-elektrostancij/
Источник — http://www.terraelectronica.ru/news/5557
Источник — http://clever-energy.ru/%D1%83%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%BE-%D0%B8-%D0%BF%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF-%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D1%8B-%D0%B1%D0%B5%D0%B7%D0%BB%D0%BE%D0%BF%D0%B0%D1%81/2016/

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий