Реактивное сопротивление трансформатора

Содержание

Мы привыкли считать, что все магнитные потоки в трансформаторе пронизывают обе обмотки и магнитопровод. Если бы существовал идеальный трансформатор, то это действительно так бы и происходило. К сожалению, в реальности часть магнитного потока преодолевает изоляционное пространство, выходит за пределы обмоток и замыкается в них (см. рис. 1). В результате возникает реактивное сопротивление трансформатора. Такое явление ещё называют рассеиванием магнитных потоков.

В катушках существуют и другие сопротивления, являющиеся причинами потерь мощности. Таковыми являются: внутреннее сопротивление материалов обмоток, и рассеивания, вызванные индуктивными сопротивлениями. Совокупность рассеиваний магнитных потоков называют внутренним сопротивлением или импедансом трансформатора.

Потери реактивных мощностей

Вспомним, как работает идеальный двухобмоточный трансформатор (см. рис. 2). Когда первичная обмотка окажется под переменным напряжением (например, от электрической сети), возникнет магнитный поток, который пронизывает вторичную катушку индуктивности. Под действием магнитных полей происходит возбуждение вторичных обмоток, в витках которых возникает ЭДС. При подключении активной мощности к прибору во вторичной цепи начинает протекать переменный ток с частотой входного тока.

В идеальном трансформаторе образуется прямо пропорциональная связь между напряжениями в обмотках. Их соотношение определяется соотношением числа витков каждой из катушек. Если U1 и U2 – напряжения в первой и второй обмотке соответственно, а w1 и w2 – количество витков обмоток, то справедлива формула: U1 / U2 = w1 / w2.

Другими словами: напряжение в рабочей обмотке во столько раз больше (меньше), во сколько раз количество мотков второй катушки увеличено (уменьшено) по отношению к числу витков, образующих первичную обмотку.

Величину w1 / w2 = k принято называть коэффициентом трансформации. Заметим, что формула, приведённая выше, применима также для автотрансформаторов.

В реальном трансформаторе часть энергии теряется из-за рассеяния магнитных потоков (см. рис. 1). Зоны, где происходит концентрация потоков рассеяния обозначены пунктирными линиями. На рисунке видно, что индуктивность рассеяния охватывает магнитопровод и выходит за пределы обмоток.

Наличие реактивных сопротивлений в совокупности с активным сопротивлением обмоток приводят к нагреванию конструкции. То есть, при расчётах КПД необходимо учитывать импеданс трансформатора.

Обозначим активное сопротивление обмоток символами R1 и R2 соответственно, а реактивное – буквами X1 и X2. Тогда импеданс первичной обмотки можно записать в виде: Z1= R1+jX1. Для рабочей катушки соответственно будем иметь: Z2= R2+jX2, где j – коэффициент, зависящий от типа сердечника.

Реактивное сопротивление можно представить в виде разницы индукционного и ёмкостного показателя: X = RL – RC. Учитывая, что RL = ωL, а RC = 1/ωC, где ω – частота тока, получаем формулу для вычисления реактивного сопротивления: X = ωL – 1/ωC.

Не прибегая к цепочке преобразований, приведём готовую формулу для расчёта полного сопротивления, то есть, для определения импеданса трансформатора:

Суммарное сопротивление трансформатора необходимо знать для определения его КПД. Величины потерь в основном зависят от материала обмоток и конструктивных особенностей трансформаторного железа. Вихревые потоки в монолитных стальных сердечниках значительно больше, чем многосекционных конструкциях магнитопроводов. Поэтому на практике сердечники изготавливаются из тонких пластин трансформаторной стали. С целью повышения удельного сопротивления материала, в железо добавляют кремний, а сами пластины покрывают изоляционным лаком.

Для определения параметров трансформаторов важно найти активное и реактивное сопротивление, провести расчёты потерь холостого хода. Приведённая выше формула не практична для вычисления импеданса по причине сложности измерений величин индукционного и ёмкостного сопротивлений. Поэтому на практике пользуются другими методами для расчёта, основанными на особенностях режимов работы силовых трансформаторов.

Таблица 1. Технические данные масляных двухобмоточных трансформаторов общего назначения класса 6-10 кВ Тип трансформатора

Схема соед. обм. Потери, Вт Uкз, % Iхх, % Сопротивление, мОм
хх кз Хт Zт(1)
1 2 3 4 5 6 7 8 9 10
ТМ-25/10/0,4 Y-Y-0 130 600 4,5 3,2 154 244 287 3110
-40 175 880 4,5 3 88 157 180 1944
-63 240 1280 4,5 2,8 52 102 114 1237
-100 330 1970 4,5 2,6 31,5 65 72 779
-160 510 2650 4,5 2,4 16,6 41,7 45 486
-250 740 3700 4,5 2,3 9,4 27,2 28,7 311
-400 950 5500 4,5 2,1 5,5 17,1 18 195
-630 1310 7600 5,5 2 3,1 13,6 14 128
-1000 2000 12200 6,5 1,4 1,7 8,6 8,8 81
-1600/6/0,4 2750 18000 6,5 1,3 1,0 5,4 5,5 63,5
ТМ-2500/6/0,4 3850 23500 6,5 1 0,64 3,46 3,52 10,56
Модернизированные
ТМ-400/10/0,4 Y-Y-0 900 5500 4,5 1,5 5,5 17,1 18 81
-630 1250 7600 5,5 1,25 3,1 13,6 14 63,5
1000 1900 10500 5,5 1,15 1,7 8,6 8,8 26,4
  1. Указанные в таблице значения сопротивлений приведены к напряжению 0,4 кВ.

Для трансформаторов со вторичным напряжением 0,23 кВ данные таблицы следует уменьшить в 3 раза, а 0,69 кВ – увеличить в 3 раза.

  1. В колонках 7, 8, 9 указаны сопротивления прямой последовательности (для расчетов токов КЗ).

Таблица 2. Технические данные масляных и сухих трансформаторов для комплектных трансформаторных подстанций

Тип трансформатора Схема соед. обм. Потери, Вт Uкз, % Iхх, % Сопротивление, мОм
хх кз Хт Zт(1)
1 2 3 4 5 6 7 8 9 10
ТМЗ-25/10/0,4 Y-Y-0 740 3700 4,5 2,3 9,4 27,2 28,7 311
-400 950 5500 4,5 2,1 5,5 17,1 18 195
ТМЗ (ТНЗ)-630 1310 7600 5,5 1,8 3,1 13,6 14 128
-1000 1900 10800 5,5 1,2 1,7 8,6 8,8 81
-1600 2650 16500 6 1 1 5,4 5,5 63,5
-2500 3750 24000 6 0,8 0,64 3,46 3,52 10,56
ТСЗ-160 700 2700 5,5 4 16,6 41,7 45 486
-250 1000 3800 5,5 3,5 9,4 27,2 28,7 311
-400 1300 5400 5,5 1,8 5,5 17,1 18 195
ТСЗЛ-630 2000 7300 5,5 1,5 3,1 13,6 14 128
-1000 2500 12000 8 1,1 1,7 8,6 8,8 81
-1600 3400 16000 5,5 0,7 1 5,4 5,5 63,5
-2500 4600 20500 6 0,65 0,64 3,46 3,52 10,56

Rт, Xт, Zт – активное, индуктивное и полное сопротивления трансформатора прямой последовательности, предназначены для расчетов токов КЗ.

Zт(1) – сопротивление току однофазного КЗ

Таблица 3. Технические данные сухих трансформаторов общего назначения класса 10 кВ

Тип Sн, кВ·А Номинальное на- пряжение обмоток, В Потери, Вт Uкз, % Iхх, %
ВН НН ХХ КЗ
1 2 3 4 5 6 7 8
ТС-10/0,66 10 380,660 230, 400 36,42 75 (90) 280 4,5 7
ТС-16/0,66 ТСЗ-16/0,66 16 380, 660 220 380 230, 400 230 36, 42 100(125) 400 4,5 5,8
ТС-25/0,66 ТСЗ-25/0,66 25 380, 660 220 380 230, 400 230 36, 42 140(180) 560 4,5 4,8
ТС-40/0,66 ТСЗ-40/0,66 40 380, 660 220 380 230, 4000 230 36, 42 200(250) 800 4,5 4
ТС-63/0,66 ТСЗ-63/0,66 63 380, 660 220 230, 4000 230 280(350) 1050 4,5 3,3
ТС-100/0,66 ТСЗ-100/0,66 100 380, 660 230, 400 390(490) 1450 4,5 2,7
ТС-1600/0,66 ТСЗ-1600/0,66 160 380, 660 230, 400 560(700) 2000 4,5 2,3

В скобках указаны данные для трансформаторов т. ТСЗ.

Режимы работы

Двухобмоточный трансформатор способен работать в одном из трёх режимов:

  • вхолостую;
  • в режиме нагрузки;
  • в состоянии короткого замыкания.

Для проведения расчётов режимов электрических цепей проводимости заменяют нагрузкой, величина которой равна потерям при работе в режиме холостого хода. Вычисления параметров схемы замещения проводят опытным путём, переводя трансформатор в один из возможных режимов: холостого хода, либо в состояние короткого замыкания. Таким способом можно определить:

  • уровень потерь активной мощности при работе на холостом ходу;
  • величины потерь активной мощности в короткозамкнутом приборе;
  • напряжение короткого замыкания;
  • силу тока холостого хода;
  • активное и реактивное сопротивление в короткозамкнутом трансформаторе.

Параметры режима холостого хода

Для перехода в работу на холостом ходу необходимо убрать отсутствует нагрузку на вторичной обмотке, то есть – разомкнуть электрическую цепь. В разомкнутой катушке напряжение отсутствует. Главной составляющей тока в первичной цепи является ток, возникающий на реактивных сопротивлениях. С помощью измерительных приборов довольно просто найти основные параметры переменного тока намагничивания, используя которые можно вычислить потери мощности, умножив силу тока на подаваемое напряжение.

Схема измерений на холостом ходу показана на рисунке 3. На схеме показаны точки для подключения измерительных приборов.

Формула, применяемая для расчётов параметров реактивной проводимости, выглядит так: Вт = Iх%*Sном / 100* Uв ном2 Умножитель 100 в знаменателе применён потому, что величина тока холостого хода Iх обычно выражается в процентах.

Режим короткого замыкания

Для перевода трансформатора на работу в режиме короткого замыкания закорачивают обмотку низшего напряжения. На вторую катушку подают такое напряжение, при котором в каждой обмотке циркулирует номинальный ток. Поскольку подаваемое напряжение существенно ниже номинальных напряжений, то потери активной мощности в проводимости настолько малы, что ими можно пренебречь.

Таким образом, у нас остаются активные мощности в трансформаторе, которые расходуются на нагрев обмоток: ΔPk = 3* I1ном * Rт. Выразив ток I1 ном через напряжение Uка и сопротивление Rт, умножив выражение на 100, получим формулу для вычисления падения напряжения в зонах активного сопротивления (в процентах):

Активное сопротивление двухобмоточного силового трансформатора вычисляем по формуле:

Подставив значение Rт в предыдущую формулу, получим:

Вывод: в короткозамкнутом трансформаторе падение напряжения в зоне активного сопротивления (выраженная в %) прямо пропорционально размеру потерь активной мощности.

Формула для вычисления падения напряжения в зонах реактивных сопротивлений имеет вид:

Величины реактивных сопротивлений в современных трансформаторах гораздо меньше активного. Поэтому можно считать что падение напряжения в зоне реактивного сопротивления Uк р ≈ Uк, поэтому для практических расчётов можно пользоваться формулой: XT = Uk*Uв ном2 / 100*Sном

Рассуждения, приведённые выше, справедливы также для многообмоточных, в том числе и для трёхфазных трансформаторов. Однако вычисления проводятся по каждой обмотке в отдельности, а задача сводится к решению систем уравнений.

Знание коэффициентов мощности, сопротивления рассеивания и других параметров магнитных цепей позволяет делать расчёты для определения величин номинальных нагрузок. Это, в свою очередь, обеспечивает работу трансформатора в промежутке номинальных мощностей.

Расчет сопротивлений трехобмоточного трансформатора с учетом РПН

Трехобмоточный трансформатор типа ТДТН-25000/110

В данной статье речь пойдет о расчете сопротивлений для трехобмоточного трансформатора с учетом регулирования напряжения на высокой стороне ВН (РПН). Данный вопрос очень актуален, в связи с частыми расчетами токов к.з (ТКЗ). Поэтому я и решил написать данную статью, чтобы у многих инженеров при расчете ТКЗ не возникало больше вопросов.

Как известно практически все современные трансформаторы на напряжение свыше 110 кВ идут уже со встроенными регуляторами напряжения РПН на стороне ВН (кроме Sн =2,5 МВА).

Цель РПН – это поддерживать на шинах низшего напряжения трансформатора, номинальное напряжение при эксплуатационных изменениях напряжения на стороне высшего напряжения.

Для лучшего понимания, как нужно рассчитывать сопротивления трехобмоточного трансформатора, которые потом используются в расчете ТКЗ, рассмотрим на примере.

Требуется определить сопротивление трехобмоточного трансформатора типа ТДТН -25000/110 с РПН ±9*1,78. Для расчета нам понадобятся следующие исходные данные:

  • номинальные напряжения: Uвн = 115 кВ, Uсн = 37 кВ, Uнн = 6,3 кВ;
  • напряжение короткого замыкания для обмоток, когда РПН находится в среднем положении, берем из ГОСТ 12965-85: UкВ-С =10,5%, UкВ-Н =17,5%, UкС-Н =6,5%.
  • напряжение короткого замыкания для обмоток, когда РПН находится в крайнем минусовом ответвлении (-∆U*рпн), и в крайнем «плюсовому» ответвлении (+∆U*рпн)), берем из книги [Л1, с.49]:
  • UкminВ-С =9,95%, UкminВ-Н =17,49%, UкminС-Н =6,5% — в крайнем минусовом ответвлении;
  • UкmaxВ-С =10,66%, UкmaxВ-Н =17,9%, UкmaxС-Н =6,5% — в крайнем «плюсовому» ответвлении;

Напряжение короткого замыкания

В основном все исходные данные для расчеты, мы можем найти в ГОСТе, технической документации или на щитке данного трансформатора.

UкВ = 0,5*( UкВ-С + UкВ-Н — UкС-Н); UкC = 0,5*(UкВ-С+UкC-Н-UкB-Н; UкH = 0,5*(UкВ-H+UкC-Н-UкB-C).

Схема трехобмоточного трансформатора

1.1 Определяем напряжение короткого замыкания для каждой обмотки, когда РПН находится в крайнем минусовом положении.

  • UкminВ = 0,5*( UкminВ-С + UкminВ-Н — UкminС-Н) = 0,5*(9,95+17,49-6,5) = 10,47%;
  • UкminC = 0,5*(UкminВ-С+UкminC-Н-UкminB-Н) = 0,5*(9,95+6,5-17,49) = -0,52;
  • UкminH = 0,5*(UкminВ-H+UкminC-Н-UкminB-C) = 0,5*(17,49+6,5-9,95) = 7,02%.

1.2 Определяем напряжение короткого замыкания для каждой обмотки, когда РПН находится в среднем положении.

  • UкВ = 0,5*( UкВ-С + UкВ-Н — UкС-Н) = 0,5*(10,5+17,5-6,5) = 10,75%;
  • UкC = 0,5*(UкВ-С+UкC-Н-UкB-Н) = 0,5*(10,5+6,5-17,5) = -0,25;
  • UкH = 0,5*(UкВ-H+UкC-Н-UкB-C) = 0,5*(17,5+6,5-10,5) = 6,75%.

1.3 Определяем напряжение короткого замыкания для каждой обмотки, когда РПН находится в крайнем плюсовом положении.

  • UкmaxВ = 0,5*( UкmaxВ-С + UкmaxВ-Н — UкmaxС-Н) = 0,5*(10,66+17,9-6,5) = 11,03%;
  • UкmaxC = 0,5*(UкmaxВ-С+UкmaxC-Н-UкmaxB-Н) = 0,5*(10,66+6,5-17,9) = -0,37;
  • UкmaxH = 0,5*(UкmaxВ-H+UкmaxC-Н-UкmaxB-C) = 0,5*(17,9+6,5-10,66) = 6,87%.

2.1 Определяем минимальное значение сопротивлений, когда РПН находится в крайнем минусовом положение (в данном случае номер ответвления 19), в этом случае напряжение на ВН будет равно 96,6 кВ. Данное значение можно взять из ГОСТ 12965-85 или рассчитать самому, (см. статью: «Расчет напряжения при регулировании ответвлений трансформатора с РПН»).

Определяем минимальное значение сопротивлений для трехобмоточного трансформатора

2.2 Определяем среднее значение сопротивлений, когда РПН находится в среднем положении (в данном случае номер ответвления 10 ), в этом случае напряжение на ВН будет равно 115 кВ:

Определяем среднее значение сопротивлений для трехобмоточного трансформатора

2.3 Определяем максимальное значение сопротивлений, когда РПН находится в крайнем плюсовом положение (в данном случае номер ответвления 1), в этом случае напряжение на ВН будет равно 126 кВ:

Определяем максимальное значение сопротивлений для трехобмоточного трансформатора

Как видно из результатов расчетов, сопротивление одного из лучей имеет небольшое отрицательное значение, в этом ошибки нету, для трехобмоточных трансформаторов и автотрансформаторов – это обычное явление и вызвано принятыми в ГОСТ численными значения Uк между разными парами обмоток трансформатора.

3.1 Определяем сопротивление между выводами, когда РПН находится в крайнем минусовом положении:

  • ВН и СН: Zв-с = 39,08-1,94 = 37,14 Ом;
  • ВН и НН: Zв-н = 39,08+26,20 = 65,28 Ом;
  • СН и НН: Zс-н = -1,94+26,20 = 24,26 Ом;

3.2 Определяем сопротивление между выводами, когда РПН находится в среднем положении:

  • ВН и СН: Zв-с = 56,87-1,32 = 55,55 Ом;
  • ВН и НН: Zв-н = 56,87+35,71 = 92,58 Ом;
  • СН и НН: Zс-н = -1,32+35,71 = 34,39 Ом;

3.3 Определяем сопротивление между выводами, когда РПН находится в крайнем плюсовом положении:

  • ВН и СН: Zв-с = 70,04-2,35 = 67,69 Ом;
  • ВН и НН: Zв-н = 70,04+43,63 = 113,67 Ом;
  • СН и НН: Zс-н = -2,35+43,63 = 41,28 Ом;

Если же, что то не понятно по расчету, задавайте свои вопросы в комментариях.

Литература: 1. Расчет токов короткого замыкания для релейной защиты. И.Л.Небрат. 1998 г. 2. ГОСТ 12965-85 – Трансформаторы силовые масляные общего назначения классов напряжения 110 и 150 кВ. 3. Расчет токов короткого замыкания в электросетях 0,4-35 кВ. М.Л.Голубев. 1980 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Мы привыкли считать, что все магнитные потоки в трансформаторе пронизывают обе обмотки и магнитопровод. Если бы существовал идеальный трансформатор, то это действительно так бы и происходило. К сожалению, в реальности часть магнитного потока преодолевает изоляционное пространство, выходит за пределы обмоток и замыкается в них (см. рис. 1). В результате возникает реактивное сопротивление трансформатора. Такое явление ещё называют рассеиванием магнитных потоков.

В катушках существуют и другие сопротивления, являющиеся причинами потерь мощности. Таковыми являются: внутреннее сопротивление материалов обмоток, и рассеивания, вызванные индуктивными сопротивлениями. Совокупность рассеиваний магнитных потоков называют внутренним сопротивлением или импедансом трансформатора.

Потери реактивных мощностей

Вспомним, как работает идеальный двухобмоточный трансформатор (см. рис. 2). Когда первичная обмотка окажется под переменным напряжением (например, от электрической сети), возникнет магнитный поток, который пронизывает вторичную катушку индуктивности. Под действием магнитных полей происходит возбуждение вторичных обмоток, в витках которых возникает ЭДС. При подключении активной мощности к прибору во вторичной цепи начинает протекать переменный ток с частотой входного тока.

В идеальном трансформаторе образуется прямо пропорциональная связь между напряжениями в обмотках. Их соотношение определяется соотношением числа витков каждой из катушек. Если U1 и U2 – напряжения в первой и второй обмотке соответственно, а w1 и w2 – количество витков обмоток, то справедлива формула: U1 / U2 = w1 / w2.

Другими словами: напряжение в рабочей обмотке во столько раз больше (меньше), во сколько раз количество мотков второй катушки увеличено (уменьшено) по отношению к числу витков, образующих первичную обмотку.

Величину w1 / w2 = k принято называть коэффициентом трансформации. Заметим, что формула, приведённая выше, применима также для автотрансформаторов.

В реальном трансформаторе часть энергии теряется из-за рассеяния магнитных потоков (см. рис. 1). Зоны, где происходит концентрация потоков рассеяния обозначены пунктирными линиями. На рисунке видно, что индуктивность рассеяния охватывает магнитопровод и выходит за пределы обмоток.

Наличие реактивных сопротивлений в совокупности с активным сопротивлением обмоток приводят к нагреванию конструкции. То есть, при расчётах КПД необходимо учитывать импеданс трансформатора.

Обозначим активное сопротивление обмоток символами R1 и R2 соответственно, а реактивное – буквами X1 и X2. Тогда импеданс первичной обмотки можно записать в виде: Z1= R1+jX1. Для рабочей катушки соответственно будем иметь: Z2= R2+jX2, где j – коэффициент, зависящий от типа сердечника.

Реактивное сопротивление можно представить в виде разницы индукционного и ёмкостного показателя: X = RL – RC. Учитывая, что RL = ωL, а RC = 1/ωC, где ω – частота тока, получаем формулу для вычисления реактивного сопротивления: X = ωL – 1/ωC.

Не прибегая к цепочке преобразований, приведём готовую формулу для расчёта полного сопротивления, то есть, для определения импеданса трансформатора:

Суммарное сопротивление трансформатора необходимо знать для определения его КПД. Величины потерь в основном зависят от материала обмоток и конструктивных особенностей трансформаторного железа. Вихревые потоки в монолитных стальных сердечниках значительно больше, чем многосекционных конструкциях магнитопроводов. Поэтому на практике сердечники изготавливаются из тонких пластин трансформаторной стали. С целью повышения удельного сопротивления материала, в железо добавляют кремний, а сами пластины покрывают изоляционным лаком.

Для определения параметров трансформаторов важно найти активное и реактивное сопротивление, провести расчёты потерь холостого хода. Приведённая выше формула не практична для вычисления импеданса по причине сложности измерений величин индукционного и ёмкостного сопротивлений. Поэтому на практике пользуются другими методами для расчёта, основанными на особенностях режимов работы силовых трансформаторов.

Приведенные параметры трансформатора

Для теоретического анализа трансформатора не очень удобно использовать реальные значения основных параметров трансформатора. Для этого используют приведённые параметры, которые характеризуют трансформатор в случае равенства числа витков N первичной w1 и вторичной w2 обмоток. Обычно приведение производится к первичной обмотке. Для перевода реальных параметров к приведённым, используется коэффициент трансформации k равный

Приведение количества витков происходит совместно с реальными значениями основных параметров.

К основным параметрам относятся сопротивления обмоток R, их напряжения U и токи I, а также сопротивление намагничивающего контура, характеризующий сердечник трансформатора. Обозначение приведённых величин обычно сопровождается верхним штрихом

Смысл приведения заключается в том, что количество витков не влияет на принцип работы трансформатора, но для анализа удобнее использовать одинаковое число витков.

Режимы работы

Двухобмоточный трансформатор способен работать в одном из трёх режимов:

  • вхолостую;
  • в режиме нагрузки;
  • в состоянии короткого замыкания.

Для проведения расчётов режимов электрических цепей проводимости заменяют нагрузкой, величина которой равна потерям при работе в режиме холостого хода. Вычисления параметров схемы замещения проводят опытным путём, переводя трансформатор в один из возможных режимов: холостого хода, либо в состояние короткого замыкания. Таким способом можно определить:

  • уровень потерь активной мощности при работе на холостом ходу;
  • величины потерь активной мощности в короткозамкнутом приборе;
  • напряжение короткого замыкания;
  • силу тока холостого хода;
  • активное и реактивное сопротивление в короткозамкнутом трансформаторе.

Параметры режима холостого хода

Для перехода в работу на холостом ходу необходимо убрать отсутствует нагрузку на вторичной обмотке, то есть – разомкнуть электрическую цепь. В разомкнутой катушке напряжение отсутствует. Главной составляющей тока в первичной цепи является ток, возникающий на реактивных сопротивлениях. С помощью измерительных приборов довольно просто найти основные параметры переменного тока намагничивания, используя которые можно вычислить потери мощности, умножив силу тока на подаваемое напряжение.

Схема измерений на холостом ходу показана на рисунке 3. На схеме показаны точки для подключения измерительных приборов.

Формула, применяемая для расчётов параметров реактивной проводимости, выглядит так: Вт = Iх%*Sном / 100* Uв ном2 Умножитель 100 в знаменателе применён потому, что величина тока холостого хода Iх обычно выражается в процентах.

Режим короткого замыкания

Для перевода трансформатора на работу в режиме короткого замыкания закорачивают обмотку низшего напряжения. На вторую катушку подают такое напряжение, при котором в каждой обмотке циркулирует номинальный ток. Поскольку подаваемое напряжение существенно ниже номинальных напряжений, то потери активной мощности в проводимости настолько малы, что ими можно пренебречь.

Таким образом, у нас остаются активные мощности в трансформаторе, которые расходуются на нагрев обмоток: ΔPk = 3* I1ном * Rт. Выразив ток I1 ном через напряжение Uка и сопротивление Rт, умножив выражение на 100, получим формулу для вычисления падения напряжения в зонах активного сопротивления (в процентах):

Активное сопротивление двухобмоточного силового трансформатора вычисляем по формуле:

Подставив значение Rт в предыдущую формулу, получим:

Вывод: в короткозамкнутом трансформаторе падение напряжения в зоне активного сопротивления (выраженная в %) прямо пропорционально размеру потерь активной мощности.

Формула для вычисления падения напряжения в зонах реактивных сопротивлений имеет вид:

Величины реактивных сопротивлений в современных трансформаторах гораздо меньше активного. Поэтому можно считать что падение напряжения в зоне реактивного сопротивления Uк р ≈ Uк, поэтому для практических расчётов можно пользоваться формулой: XT = Uk*Uв ном2 / 100*Sном

Рассуждения, приведённые выше, справедливы также для многообмоточных, в том числе и для трёхфазных трансформаторов. Однако вычисления проводятся по каждой обмотке в отдельности, а задача сводится к решению систем уравнений.

Знание коэффициентов мощности, сопротивления рассеивания и других параметров магнитных цепей позволяет делать расчёты для определения величин номинальных нагрузок. Это, в свою очередь, обеспечивает работу трансформатора в промежутке номинальных мощностей.

Сферы применения и особенности

Приведённый трансформатор – не реальный агрегат, а умозрительное понятие. Его ввод связан с необходимостью облегчения расчётов по физическим процессам, протекающим в обычном трансформаторе.

При высоких показателях коэффициента трансформации расчёт характеристик агрегата представляет серьёзную проблему, усложняя расчётные операции и построение векторных диаграмм, отображающих протекание физических процессов.

Если условно принять коэффициент трансформации равным 1, это преобразование позволит существенно упростить математическое описание процессов, протекающих в агрегате.

Подобный метод облегчает расчётные действия, позволяя выполнить:

  • построение схемы замещения,

  • определение опытных параметров указанной схемы,
  • расчёт потерь и КПД агрегата.

Данная методика не означает, что приведённый трансформатор может применяться физически. Это исключительно условное понятие. Но такое умозрительное преобразование позволяет получить необходимые расчётные данные, необходимые для проектирования реальных агрегатов.

Вводя различные нагрузочные параметры при указанной схеме можно получить модель поведения реального трансформатора при режиме от холостого хода до короткого замыкания. Процесс можно алгоритмизировать для использования в расчёте вычислительной техники.

Особенности режима ХХ в трехфазном трансформаторе

На функционирование трехфазного трансформатора в таком режиме влияют отличия в подключении обмоток: первичная катушка в виде треугольника и вторичная в форме звезды. Ток способствует созданию собственного потока.

Трехфазный ток в виде группы однофазных имеет такие особенности: замыкание ТГС магнитного потока происходит в каждой фазе за счет сердечника. Если напряжение будет постепенно увеличиваться, то в изоляции возникнет пробой и электроустановка рано или поздно выйдет из строя.

Если в трансформаторе используется бронестержневая магнитная система, то в нем можно наблюдать развитие похожих процессов.

Особенности режима ХХ в трехфазном трансформаторе

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.

Определение мощности электродвигателя без бирки

При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы, о которых мы расскажем в статье:

  • По диаметру и длине вала
  • По габаритам и крепежным размерам
  • По сопротивлению обмоток
  • По току холостого хода
  • По току в клеммной коробке
  • С помощью индукционного счетчика (для бытовых электродвигателей)

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР

Р, кВт 3000 об. мин 1500 об. мин 1000 об. мин 750 об. мин
D1, мм L1, мм D1, мм L1, мм >D1, мм L1, мм D1, мм L1, мм
1,5 22 50 22 50 24 50 28 60
2,2 24 28 60 32 80
3 24 32 80
4 28 60 28 60 38
5,5 32 80 38
7,5 32 80 38 48 110
11 38 48 110
15 42 110 48 110 55
18,5 55 60 140
22 48 55 60 >140
30 65
37 55 >60 140 65 75
45 75 75
55 65 80 170
75 65 140 75 80 170
90 90
110 70 80 170 90
132 100 210
160 75 90 100 210
200
250 85 170 100 210
315

Проверить мощность по габаритам и крепежным размерам

Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):

От чего зависит магнитный поток взаимоиндукции в режиме ХХ

Магнитный поток взаимоиндукции в трансформаторе зависит от способа размещения обмоток на сердечнике и их конструктивного исполнения.

Важную роль играет коэффициент заполнения окна магнитопровода, который показывает отношение общего пространства, к месту, занятому обмоткой.

Чем ближе данный коэффициент к единице, тем выше будет взаимоиндукция обмоток и меньше потери в трансформаторе.

Трансформатор

Расчет сопротивлений трехобмоточного трансформатора с учетом РПН

Трехобмоточный трансформатор типа ТДТН-25000/110

В данной статье речь пойдет о расчете сопротивлений для трехобмоточного трансформатора с учетом регулирования напряжения на высокой стороне ВН (РПН). Данный вопрос очень актуален, в связи с частыми расчетами токов к.з (ТКЗ). Поэтому я и решил написать данную статью, чтобы у многих инженеров при расчете ТКЗ не возникало больше вопросов.

Как известно практически все современные трансформаторы на напряжение свыше 110 кВ идут уже со встроенными регуляторами напряжения РПН на стороне ВН (кроме Sн =2,5 МВА).

Цель РПН – это поддерживать на шинах низшего напряжения трансформатора, номинальное напряжение при эксплуатационных изменениях напряжения на стороне высшего напряжения.

Для лучшего понимания, как нужно рассчитывать сопротивления трехобмоточного трансформатора, которые потом используются в расчете ТКЗ, рассмотрим на примере.

Требуется определить сопротивление трехобмоточного трансформатора типа ТДТН -25000/110 с РПН ±9*1,78. Для расчета нам понадобятся следующие исходные данные:

  • номинальные напряжения: Uвн = 115 кВ, Uсн = 37 кВ, Uнн = 6,3 кВ;
  • напряжение короткого замыкания для обмоток, когда РПН находится в среднем положении, берем из ГОСТ 12965-85: UкВ-С =10,5%, UкВ-Н =17,5%, UкС-Н =6,5%.
  • напряжение короткого замыкания для обмоток, когда РПН находится в крайнем минусовом ответвлении (-∆U*рпн), и в крайнем «плюсовому» ответвлении (+∆U*рпн)), берем из книги [Л1, с.49]:
  • UкminВ-С =9,95%, UкminВ-Н =17,49%, UкminС-Н =6,5% — в крайнем минусовом ответвлении;
  • UкmaxВ-С =10,66%, UкmaxВ-Н =17,9%, UкmaxС-Н =6,5% — в крайнем «плюсовому» ответвлении;

Напряжение короткого замыкания

В основном все исходные данные для расчеты, мы можем найти в ГОСТе, технической документации или на щитке данного трансформатора.

UкВ = 0,5*( UкВ-С + UкВ-Н — UкС-Н); UкC = 0,5*(UкВ-С+UкC-Н-UкB-Н; UкH = 0,5*(UкВ-H+UкC-Н-UкB-C).

Схема трехобмоточного трансформатора

1.1 Определяем напряжение короткого замыкания для каждой обмотки, когда РПН находится в крайнем минусовом положении.

  • UкminВ = 0,5*( UкminВ-С + UкminВ-Н — UкminС-Н) = 0,5*(9,95+17,49-6,5) = 10,47%;
  • UкminC = 0,5*(UкminВ-С+UкminC-Н-UкminB-Н) = 0,5*(9,95+6,5-17,49) = -0,52;
  • UкminH = 0,5*(UкminВ-H+UкminC-Н-UкminB-C) = 0,5*(17,49+6,5-9,95) = 7,02%.

1.2 Определяем напряжение короткого замыкания для каждой обмотки, когда РПН находится в среднем положении.

  • UкВ = 0,5*( UкВ-С + UкВ-Н — UкС-Н) = 0,5*(10,5+17,5-6,5) = 10,75%;
  • UкC = 0,5*(UкВ-С+UкC-Н-UкB-Н) = 0,5*(10,5+6,5-17,5) = -0,25;
  • UкH = 0,5*(UкВ-H+UкC-Н-UкB-C) = 0,5*(17,5+6,5-10,5) = 6,75%.

1.3 Определяем напряжение короткого замыкания для каждой обмотки, когда РПН находится в крайнем плюсовом положении.

  • UкmaxВ = 0,5*( UкmaxВ-С + UкmaxВ-Н — UкmaxС-Н) = 0,5*(10,66+17,9-6,5) = 11,03%;
  • UкmaxC = 0,5*(UкmaxВ-С+UкmaxC-Н-UкmaxB-Н) = 0,5*(10,66+6,5-17,9) = -0,37;
  • UкmaxH = 0,5*(UкmaxВ-H+UкmaxC-Н-UкmaxB-C) = 0,5*(17,9+6,5-10,66) = 6,87%.

2.1 Определяем минимальное значение сопротивлений, когда РПН находится в крайнем минусовом положение (в данном случае номер ответвления 19), в этом случае напряжение на ВН будет равно 96,6 кВ. Данное значение можно взять из ГОСТ 12965-85 или рассчитать самому, (см. статью: «Расчет напряжения при регулировании ответвлений трансформатора с РПН»).

Определяем минимальное значение сопротивлений для трехобмоточного трансформатора

2.2 Определяем среднее значение сопротивлений, когда РПН находится в среднем положении (в данном случае номер ответвления 10 ), в этом случае напряжение на ВН будет равно 115 кВ:

Определяем среднее значение сопротивлений для трехобмоточного трансформатора

2.3 Определяем максимальное значение сопротивлений, когда РПН находится в крайнем плюсовом положение (в данном случае номер ответвления 1), в этом случае напряжение на ВН будет равно 126 кВ:

Определяем максимальное значение сопротивлений для трехобмоточного трансформатора

Как видно из результатов расчетов, сопротивление одного из лучей имеет небольшое отрицательное значение, в этом ошибки нету, для трехобмоточных трансформаторов и автотрансформаторов – это обычное явление и вызвано принятыми в ГОСТ численными значения Uк между разными парами обмоток трансформатора.

3.1 Определяем сопротивление между выводами, когда РПН находится в крайнем минусовом положении:

  • ВН и СН: Zв-с = 39,08-1,94 = 37,14 Ом;
  • ВН и НН: Zв-н = 39,08+26,20 = 65,28 Ом;
  • СН и НН: Zс-н = -1,94+26,20 = 24,26 Ом;

3.2 Определяем сопротивление между выводами, когда РПН находится в среднем положении:

  • ВН и СН: Zв-с = 56,87-1,32 = 55,55 Ом;
  • ВН и НН: Zв-н = 56,87+35,71 = 92,58 Ом;
  • СН и НН: Zс-н = -1,32+35,71 = 34,39 Ом;

3.3 Определяем сопротивление между выводами, когда РПН находится в крайнем плюсовом положении:

  • ВН и СН: Zв-с = 70,04-2,35 = 67,69 Ом;
  • ВН и НН: Zв-н = 70,04+43,63 = 113,67 Ом;
  • СН и НН: Zс-н = -2,35+43,63 = 41,28 Ом;

Расчет четвертьволнового трансформатора

  • 1. Рассчитать размеры и построить амплитудно-частотную (АЧX) и фазо-частотную (ФЧХ) характеристики согласующего устройства типа четвертьволновой трансформатор.
  • 2. Определить во сколько раз изменится полоса пропускания трансформатора при изменении перепада волновых (характеристических) сопротивлений на 10% в большую и меньшую стороны.
  • 3. На качественном уровне оценить характер реактивного сопротивления трансформатора.

Считать, что подводящая линия идеально согласована по входу, а отводящая по выходу, и потери в них отсутствуют.

Линии передачи работают в одномодовом режиме.

Исходные данные из таблиц 3-5

Относительная диэлектрическая проницаемость среды, заполняющей линию, : 1.5

Тип волновода: коаксиальный

Характерные размеры подводящего волновода, мм: 2/7.6 (d1/D1)

Характерные размеры отводящего волновода, мм: 1,5/3 (d2/D2)

Согласования двух коаксиальных волноводов при помощи четвертьволнового трансформатора

Рисунок 1. Согласования двух коаксиальных волноводов при помощи четвертьволнового трансформатора

амплитудный трансформатор пропускание сопротивление


Если подобрать ZTP так, чтобы его входное сопротивление ZBX=ZB, а это выполняется при (2), то в линии передачи не будет отраженной волны. Поскольку ZB и ZTP являются действительными числами, то четвертьволновый трансформатор может согласовывать лишь чисто активные сопротивления нагрузки ZH

При распространении падающей волны в линии (рис. 2), в первом приближении будут возникать две отраженные волны: одна в месте соединения линии с трансформатором (сечение 1-1), вторая — в месте соединения трансформатора с нагрузкой (сечение 2-2), причем относительный сдвиг по фазе между отраженными волнами в линии равен р, что достигается выбором длины . Выбирая , обеспечиваем равенство амплитуд отраженных волн, что приводит к их компенсации в линии, т.е. к согласованию линии с нагрузкой.

Четвертьволновой трансформатор

Рисунок 2. Четвертьволновой трансформатор

В нашем случае, ZB — волновое сопротивление первого коаксиального волновода, ZH — волновое сопротивление второго коаксиального волновода.

где, R1 — радиус центрального проводника, R2 — внутренний радиус внешнего проводника.

В формулу (2) подставим выражения волновых сопротивлений двух коаксиальных волноводов, найденных при помощи формулы (3)

Так, как наш четвертьволновой трансформатор является также коаксиальным волноводом, то ZTP можно представить как волновое сопротивление, и выразить при помощи формулы (3)

Из формул (4) и (5), видим, что геометрические размеры четвертьволнового трансформатора, должны удовлетворят следующим условиям:

Подставив геометрические размеры двух коаксиальных волноводов,

найдем диаметр центрального проводника и внутренний диаметр четвертьволнового трансформатора:


Рассмотрим отрезок регулярного волновода без потерь, по которому распространяются волны Т-типа. Считаются известным волновое сопротивление ZB и длина отрезка l (рис. 2). Совместим начало отсчета координаты z с левыми зажимами отрезка, на которых определим входные комплексные амплитуды напряжения и тока .Аналогично, на правых зажимах будем считать известными выходные величины и .Данная система представляет собой линейный стационарный четырехполюсник.

Зная матрицу передачи


В нашем случае, волновое сопротивление четырехполюсника равняется сопротивлению трансформатора ZB=ZTP, сопротивление нагрузки сопротивлению второго коаксиального волновода, и


Найдем рабочий диапазон двух волноводов, при помощи следующей формулы:

Для подводящего волновода:

Для отводящего волновода:

Возьмём общую полосу пропускания волноводов

Найдем, среднюю рабочую длину волны:

И, при помощи формул (3) и (4) волновые сопротивления волноводов:


Для нахождения ФЧХ и АЧХ преобразуем выражение (8) к следующему виду

Далее, избавимся от комплексного числа в знаменателя, преумножая знаменатель и числитель сопряженным значением знаменателя


Найдем частотную полосу пропускания

Далее, отделим фазовую и амплитудную составляющие выражения (9) и перепишем как функцию от частоты:

Амплитудно-частотная (АЧX) и фазо-частотная (ФЧХ) характеристики данного выражения представлены ниже

Фазо-частотная характеристика согласующего устройства типа четвертьволновой трансформатор

Рисунок 2. Фазо-частотная характеристика согласующего устройства типа четвертьволновой трансформатор

Амплитудно-частотная характеристика согласующего устройства типа четвертьволновой трансформатор

Рисунок 3. Амплитудно-частотная характеристика согласующего устройства типа четвертьволновой трансформатор

  • 2. Увеличим и уменьшим геометрические размеры подводящего волновода на 10%, и повторим все проделанные вычисления.
  • а) Увеличим диаметры подводящего волновода на 10%

мм мм

Найдем полосу пропускания

Полоса пропускания отводящего волновода не изменится. Найдем общую полосу пропускания

Найдем геометрические размеры трансформатора

Найдем волновые сопротивления волноводов






б) Уменьшим диаметры подводящего волновода на 10%

мм мм

Найдем полосу пропускания

Полоса пропускания отводящего волновода не изменится. Найдем общую полосу пропускания

Найдем геометрические размеры трансформатора

Найдем волновые сопротивления волноводов






3. На фазо-частотная характеристика трансформатора видно, что сопротивление трансформатора при длине волны больше геометрических размеров трансформатора имеет емкостной характер. Когда меньше — имеет индуктивный характер. А когда длина волны совпадает с геометрическими размерами, то чисто активный характер.

Список использованной литературы

  • 1. Пименов Ю.В. Техническая электродинамика. — М.: Радио и связь, 2000. — 536 с.
  • 2. Баскаков С.И. Электродинамика и распространение радиоволн. — М.: Высшая школа, 1992. — 416с

Представляю вашему вниманию таблицу с расчетными формулами для определения основных параметров силовых трансформаторов, а также таблицу коэффициента изменения потерь kн.п. в трансформаторах.

Таблица 1 – Расчетные формулы для определения основных параметров трансформаторов

Сопротивление трансформаторов таблица

Сопротивление трансформаторов таблица

Сопротивление трансформаторов таблица

Сопротивление трансформаторов таблица

Сопротивление трансформаторов таблица

Сопротивление трансформаторов таблица

Исходные данные, которые приводятся в паспорте (шильдике) на трансформатор:

  • Потери холостого хода ∆Рх, кВт;
  • Потери короткого замыкания ∆Pк, кВт;
  • Напряжения короткого замыкания Uк, %;
  • Ток холостого хода Iхх,%.

Таблица 2 – Коэффициент изменения потерь в трансформаторах

Сопротивление трансформаторов таблица

1. Справочная книга электрика. В.И. Григорьева, 2004 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Сопротивление трансформаторов таблица

Основное назначение токоограничивающих реакторов это снижение токов короткого замыкания за.

Сопротивление трансформаторов таблица

В данном примере требуется определить тепловыделение кабелей на напряжение 0,4 кВ, прокладываемых в.

Сопротивление трансформаторов таблица

В этой статье я хотел бы рассказать как изменяется мощность двигателя при схеме соединения обмоток.

Сопротивление трансформаторов таблица

В данной статье речь пойдет о выборе сечения жил контрольных кабелей при питании катушек контакторов и.

Сопротивление трансформаторов таблица

В данной статье я хотел бы рассказать, как ограничивать токи короткого замыкания в сетях напряжением.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных. Политика конфиденциальности.

Двухобмоточный трансформатор можно представить Т-образной схемой замещения (рис. 1,а), где rт и хт— соответственно активное и индуктивное сопротивления обмоток, gт — активная проводимость, обусловленная потерями активной мощности в стали трансформатора, bт — индуктивная проводимость, обусловленная намагничивающим током.

Ток в проводимостях трансформатора очень мал (порядка нескольких процентов от его номинального тока), поэтому при расчетах электросетей районного значения обычно используют Г-образную схему замещения трансформатора, в которой проводимости приключают к зажимам первичной обмотки трансформатора (рис. 1, б) — к обмотке высшего напряжения для понижающих трансформаторов и к обмотке низшего напряжения для повышающих трансформаторов. Применение Г-образной схемы упрощает расчеты электросетей.

Сопротивление трансформаторов таблица

Рис. 1. Схемы замещения двухобмоточного трансформатора: а —Т-образная схема; б — Г-обрааная схема; в — упрощенная Г-образная схема для расчета районных сетей; г — упрощенная схема для расчета местных сетей и для приближенного расчета районных сетей.

Расчет еще более упрощается, если проводимости трансформатора заменить постоянной нагрузкой (рис. 1 , в), равной мощности холостого хода трансформатора:

Здесь ΔРСТ— потери мощности в стали, равные потерям при холостом ходе трансформатора, a ΔQСТ — намагничивающая мощность трансформатора, равная:

где Ix.x% — ток холостого хода трансформатора в процентах от его номинального тока; Sном.тр — номинальная мощность трансформатора.

Для местных сетей n при приближенных расчетах районных сетей обычно учитывают только активное и индуктивное сопротивления трансформаторов (рис. 1,г).

Активное сопротивление обмоток двухобмоточного трансформатора определяют по известным потерям мощности в меди (в обмотках) трансформатора ΔРм квт при его номинальной нагрузке:

В практических расчетах потери мощности в меди (в обмотках) трансформатора при его номинальной нагрузке принимают равными потерям короткого замыкания при номинальном токе трансформатора, т. е. ΔРм ≈ ΔРк.

Зная напряжение короткого замыкания ик% трансформатора, численно равное падению напряжения в его обмотках при номинальной нагрузке, выраженное в процентах от его номинального напряжения, т. е.

можно определить полное сопротивление обмоток трансформатора

а затем и индуктивное сопротивление обмоток трансформатора

Для крупных трансформаторов, имеющих очень небольшое активное сопротивление, обычно определяют индуктивное сопротивление из следующего приближенного условия:

При пользовании расчетными формулами следует учитывать, что сопротивления обмоток трансформатора могут быть определены при номинальном напряжении как его первичной, так и вторичной обмотки. В практических расчетах удобнее определять rт и хт при номинальном напряжении той обмотки, для сети которой ведут расчет.

Сопротивление трансформаторов таблица

Рис. 2 . Схемы трехобмоточного трансформатора и автотрансформатора : а — схема трехобмоточного трансформатора; б — схема автотрансформатора; в — схема замещения трехобмоточного трансформатора и автотрансформатора.

Если обмотка трансформатора имеет регулируемое число витков, то принимают Uт.ном для основного вывода обмотки.

Трехобмоточные трансформаторы (рис. 2 ,а) и автотрансформаторы (рис. 2 ,б) характеризуются значениями потерь мощности ΔРм = ΔРк. и напряжениями короткого замыкания ик% для каждой пары обмоток:

ΔРк. в-с, ΔРк. в-н, ΔРк. с-н

ик.в-с, ℅, ик.в-н, ℅, ик. с-н, ℅,

приведенными к номинальной мощности трансформатора или автотрансформатора. Номинальная мощность последнего равна его проходной мощности. Схема замещения трехобмоточного трансформатора или автотрансформатора изображена на рис. 2 ,в.

Потери мощности и напряжения короткого замыкания, отнесенные к отдельным лучам, эквивалентной звезды схемы замещения, определяют по формулам:

Активное и индуктивное сопротивления лучей эквивалентной звезды схемы замещения определяют по формулам для двухобмоточных трансформаторов, подставляя в них значения потери мощности и напряжения короткого замыкания для соответствующего луча эквивалентной звезды схемы замещения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Двухобмоточный трансформатор можно представить Т-образной схемой замещения (рис. 1,а), где rт и хт— соответственно активное и индуктивное сопротивления обмоток, gт — активная проводимость, обусловленная потерями активной мощности в стали трансформатора, bт — индуктивная проводимость, обусловленная намагничивающим током.

Ток в проводимостях трансформатора очень мал (порядка нескольких процентов от его номинального тока), поэтому при расчетах электросетей районного значения обычно используют Г-образную схему замещения трансформатора, в которой проводимости приключают к зажимам первичной обмотки трансформатора (рис. 1, б) — к обмотке высшего напряжения для понижающих трансформаторов и к обмотке низшего напряжения для повышающих трансформаторов. Применение Г-образной схемы упрощает расчеты электросетей.

Схемы замещения двухобмоточного трансформатора

Рис. 1. Схемы замещения двухобмоточного трансформатора: а —Т-образная схема; б — Г-обрааная схема; в — упрощенная Г-образная схема для расчета районных сетей; г — упрощенная схема для расчета местных сетей и для приближенного расчета районных сетей.

Расчет еще более упрощается, если проводимости трансформатора заменить постоянной нагрузкой (рис. 1, в), равной мощности холостого хода трансформатора:

Здесь ΔРСТ— потери мощности в стали, равные потерям при холостом ходе трансформатора, a ΔQСТ — намагничивающая мощность трансформатора, равная:

где Ix.x% — ток холостого хода трансформатора в процентах от его номинального тока; Sном.тр — номинальная мощность трансформатора.

Для местных сетей n при приближенных расчетах районных сетей обычно учитывают только активное и индуктивное сопротивления трансформаторов (рис. 1,г).

Активное сопротивление обмоток двухобмоточного трансформатора определяют по известным потерям мощности в меди (в обмотках) трансформатора ΔРм квт при его номинальной нагрузке:

откуда

В практических расчетах потери мощности в меди (в обмотках) трансформатора при его номинальной нагрузке принимают равными потерям короткого замыкания при номинальном токе трансформатора, т. е. ΔРм ≈ ΔРк.

Зная напряжение короткого замыкания ик% трансформатора, численно равное падению напряжения в его обмотках при номинальной нагрузке, выраженное в процентах от его номинального напряжения, т. е.

можно определить полное сопротивление обмоток трансформатора

а затем и индуктивное сопротивление обмоток трансформатора

Для крупных трансформаторов, имеющих очень небольшое активное сопротивление, обычно определяют индуктивное сопротивление из следующего приближенного условия:

При пользовании расчетными формулами следует учитывать, что сопротивления обмоток трансформатора могут быть определены при номинальном напряжении как его первичной, так и вторичной обмотки. В практических расчетах удобнее определять rт и хт при номинальном напряжении той обмотки, для сети которой ведут расчет.

Схемы трехобмоточного трансформатора и автотрансформатора

Рис. 2. Схемы трехобмоточного трансформатора и автотрансформатора: а — схема трехобмоточного трансформатора; б — схема автотрансформатора; в — схема замещения трехобмоточного трансформатора и автотрансформатора.

Если обмотка трансформатора имеет регулируемое число витков, то принимают Uт.ном для основного вывода обмотки.

Трехобмоточные трансформаторы (рис. 2,а) и автотрансформаторы (рис. 2,б) характеризуются значениями потерь мощности ΔРм = ΔРк. и напряжениями короткого замыкания ик% для каждой пары обмоток:

ΔРк. в-с, ΔРк. в-н, ΔРк. с-н

и

ик.в-с, ℅, ик.в-н, ℅, ик. с-н, ℅,

приведенными к номинальной мощности трансформатора или автотрансформатора. Номинальная мощность последнего равна его проходной мощности. Схема замещения трехобмоточного трансформатора или автотрансформатора изображена на рис. 2,в.

Потери мощности и напряжения короткого замыкания, отнесенные к отдельным лучам, эквивалентной звезды схемы замещения, определяют по формулам:

и

Активное и индуктивное сопротивления лучей эквивалентной звезды схемы замещения определяют по формулам для двухобмоточных трансформаторов, подставляя в них значения потери мощности и напряжения короткого замыкания для соответствующего луча эквивалентной звезды схемы замещения.

Сопротивление трансформатора при работе во внештатных условиях

Работа цепей переменного часто требует согласования входного и выходного напряжения. В этом случае, в качестве преобразующего элемента, выступает трансформатор. Кроме этого можно выделить ещё ряд направлений использования:

  • посредник между источником электрической энергии и её потребителем;
  • распределение электроэнергии;
  • обеспечение требуемой схемы подключения вентилей в устройствах преобразования для согласования входного и выходного напряжений;
  • создание условий подключения, питания, разделения на ветви, согласования напряжений в различных радио- , электронных приборах;
  • подключение в цепи электроизмерительных приборов при высоком напряжении.

Трансформаторы не применяют для систем с постоянным током, а исключительно только там где электрическая цепь служит для передачи переменного тока.

С точки зрения функциональности различают устройства питания и согласования. Группируют трансформаторы с учётом доминирующей характеристики:

  • по функциональному применению (силовые, специальные);
  • по величине напряжения (низковольтные, высоковольтные, высокопотенциальные);
  • по значению коэффициента трансформации (понижающий, повышающий);
  • с учётом связи между обмотками (обмотки изолированные или связанные);
  • по способу охлаждения (воздушные, масляные);
  • количество фаз в первичной обмотке (однофазные, трёхфазные);
  • геометрические параметры магнитопровода;
  • число обмоток приходящихся на фазу (двух- , трёх- , многообмоточные);
  • особенности конструкции обмоток (концентрические, дисковые).

Физические основы работы

Образующие составные части трансформатора: две катушки, одна из которых играет роль первичной, а другая – вторичной, соединённые сердечником. Обмотки катушек чаще всего изготавливаются из меди. Выбор этого металла связан с её небольшим сопротивлением, по сравнению с другими металлами аналогичного типа.

Сопротивление трансформатора складывается из внутреннего сопротивления обоих обмоток. Его значение не зависит от числа обмоток. На значение сопротивления трансформатор влияет тип трансформатора, его номинальная мощность, напряжение обмоток.

В тот момент, когда переменные ток проходит через первую катушку, он становится источником изменяющего во времени магнитного поля вокруг неё, так как меняет магнитный поток.

За счёт взаимоиндукции переменное магнитное поле первой катушки наводит переменное магнитное поле во второй катушке, которое является источником переменного электрического тока.

Различают несколько основных режимов работы трансформатора:

  • при холостом ходе, когда вторичная обмотка разомкнута. Организация таких условий работы позволяет экспериментально определить коэффициент трансформации, КПД;
  • под нагрузкой, которая соединяется со вторичной обмоткой. Основной режим работы устройства;
  • в режиме короткого замыкания. Позволяет рассчитать потери полезной мощности, происходящие при нагревании проводов.

Короткое замыкание

Чтобы правильно подобрать все элементы электрической цепи с трансформатором, необходимо учесть защиту при работе в аварийном режиме, например, при токе короткого замыкания.

Ток коротко замыкания опасен тем, что под его действием происходит сильное нагревание обмоток трансформатора. Это часто становится причиной выхода из строя прибора. Большое значение тока короткого замыкания связано с малым значением сопротивления трансформатора в данных условиях работы.

Для проведения таких расчётов необходимо знать такие параметры преобразующего устройства:

  • мощность;
  • схему, по которой соединяются обмотки;
  • назначение;
  • вид прибора.

С учётом этих данных из таблиц ГОСТа берутся значения:

  • всех напряжений (короткого замыкания (Uкз) в %, фазного обмоток (Еф), номинального обмоток (Uнн);
  • потерь мощности на короткое замыкание (Рк);
  • номинальной мощности (Sнт);
  • полного сопротивления (Zт).

Крое параметров самого трансформатора, необходимо учесть показатели внешней электролинии: длину, вид, площадь сечения кабелей, индуктивное сопротивление, полное сопротивление петли фаза/ноль.

Подходы к расчёту цепи в аварийном режиме

  1. Вычисляется активное сопротивление трансформатора по формуле:Реактивное сопротивление трансформатора: формулы расчета
  2. Проводится расчёт реактивного сопротивления (индуктивного):Реактивное сопротивление трансформатора: формулы расчета
  3. Рассчитываются для питающей линии оба сопротивления:
    • RК=Rуд.к*l/NК – формула для определения значения активного сопротивления
    • Хк=Худ.к*l/Nк – формула для определения индуктивного сопротивления
  4. Производится расчёт суммы активного сопротивления трансформатора и питающей линии
  5. Вычисляется сумма индуктивного сопротивления трансформатора и питающей линии

На основании всех проведённых вычислений рассчитывается полное сопротивление трансформатора.

Сила тока при коротком замыкании вычисляется по отличающимся формулам для трансформаторов с разными фазами:

По полученным параметрам можно подобрать защитное устройство.

Статья была полезной? Оцени и поделись ей в соц. сетях:

Источник: http://ExpertElektrik.ru/soprotivlenie-transformatora.html

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий