Глава 3. Защита электрических сетей напряжением до 1 кВ
Настоящая глава Правил распространяется на защиту электрических сетей до 1 кВ, сооружаемых как внутри, так и вне зданий. Дополнительные требования к защите сетей указанного напряжения, вызванные особенностями различных электроустановок, приведены в других главах Правил.
Аппаратом защиты называется аппарат, автоматически отключающий защищаемую электрическую цепь при ненормальных режимах.
Требования к аппаратам защиты
Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл.
Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса.
Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т.
В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия).
Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.
Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.
Выбор защиты
Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.
Защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии: одно-, двух- и трехфазных — в сетях с глухозаземленной нейтралью; двух- и трехфазных — в сетях с изолированной нейтралью.
Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1. 79 и 7. 139.
В сетях, защищаемых только от токов КЗ (не требующих защиты от перегрузки согласно 3. 10), за исключением протяженных сетей, например сельских, коммунальных, допускается не выполнять расчетной проверки приведенной в 1. 79 и 7. 139 кратности тока КЗ, если обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам проводников, приведенным в таблицах гл. 3, аппараты защиты имели кратность не более:
- 300% для номинального тока плавкой вставки предохранителя;
- 450% для тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку);
- 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки);
- 125% для тока трогания расцепителя автоматического выключателя с регулируемой обратной зависящей от тока характеристикой; если на этом автоматическом выключателе имеется еще отсечка, то ее кратность тока срабатывания не ограничивается.
Наличие аппаратов защиты с завышенными уставками тока не является обоснованием для увеличения сечения проводников сверх указанных в гл.
Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.
Кроме того, должны быть защищены от перегрузки сети внутри помещений:
- осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно-бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах;
- силовые сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях — только в случаях, когда по условиям технологического процесса или по режиму работы сети может возникать длительная перегрузка проводников;
- сети всех видов во взрывоопасных зонах — согласно требованиям 7.3.94.
В сетях, защищаемых от перегрузок (см. 10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 3, аппараты защиты имели кратность не более:
- 80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
- 100% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для кабелей с бумажной изоляцией;
- 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) — для проводников всех марок;
- 100% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией;
- 125% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для кабелей с бумажной изоляцией и изоляцией из вулканизированного полиэтилена.
Длительно допустимая токовая нагрузка проводников ответвлений к короткозамкнутым электродвигателям должна быть не менее:
- 100% номинального тока электродвигателя в невзрывоопасных зонах;
- 125% номинального тока электродвигателя во взрывоопасных зонах.
В случаях, когда требуемая допустимая длительная токовая нагрузка проводника, определенная по 3. 9 и 3. 11, не совпадает с данными таблиц допустимых нагрузок, приведенных в гл. 3, допускается применение проводника ближайшего меньшего сечения, но не менее, чем это требуется по расчетному току.
Места установки аппаратов защиты
Аппараты защиты следует располагать по возможности в доступных для обслуживания местах таким образом, чтобы была исключена возможность их механических повреждений. Установка их должна быть выполнена так, чтобы при оперировании с ними или при их действии были исключены опасность для обслуживающего персонала и возможность повреждения окружающих предметов.
Аппараты защиты с открытыми токоведущими частями должны быть доступны для обслуживания только квалифицированному персоналу.
Аппараты защиты следует устанавливать, как правило, в местах сети, где сечение проводника уменьшается (по направлению к месту потребления электроэнергии) или где это необходимо для обеспечения чувствительности и селективности защиты (см. также 3. 16 и 3. 19).
Аппараты защиты должны устанавливаться непосредственно в местах присоединения защищаемых проводников к питающей линии. Допускается в случаях необходимости принимать длину участка между питающей линией и аппаратом защиты ответвления до 6 м. Проводники на этом участке могут иметь сечение меньше, чем сечение проводников питающей линии, но не менее сечения проводников после аппарата защиты.
Для ответвлений, выполняемых в труднодоступных местах (например, на большой высоте), аппараты защиты допускается устанавливать на расстоянии до 30 м от точки ответвления в удобном для обслуживания месте (например, на вводе в распределительный пункт, в пусковом устройстве электроприемника и др. При этом сечение проводников ответвления должно быть не менее сечения, определяемого расчетным током, но должно обеспечивать не менее 10% пропускной способности защищенного участка питающей линии. Прокладка проводников ответвлений в указанных случаях (при длинах ответвлений до 6 и до 30 м) должна производиться при горючих наружных оболочке или изоляции проводников — в трубах, металлорукавах, или коробах, в остальных случаях, кроме кабельных сооружений, пожароопасных и взрывоопасных зон, — открыто на конструкциях при условии их защиты от возможных механических повреждений.
При защите сетей предохранителями последние должны устанавливаться на всех нормально незаземленных полюсах или фазах. Установка предохранителей в нулевых рабочих проводниках запрещается.
При защите сетей с глухозаземленной нейтралью автоматическими выключателями расцепители их должны устанавливаться во всех нормально незаземленных проводниках (см. также 7. 99).
При защите сетей с изолированной нейтралью в трехпроводных сетях трехфазного тока и двухпроводных сетях однофазного или постоянного тока допускается устанавливать расцепители автоматических выключателей в двух фазах при трехпроводных сетях и в одной фазе (полюсе) при двухпроводных. При этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах (полюсах).
Расцепители в нулевых проводниках допускается устанавливать лишь при условии, что при их срабатывании отключаются от сети одновременно все проводники, находящиеся под напряжением.
Аппараты защиты допускается не устанавливать, если это целесообразно по условиям эксплуатации, в местах:
- ответвления проводников от шин щита к аппаратам, установленным на том же щите; при этом проводники должны выбираться по расчетному току ответвления;
- снижения сечения питающей линии по ее длине и на ответвлениях от нее, если защита предыдущего участка линии защищает участок со сниженным сечением проводников или если незащищенные участки линии или ответвления от нее выполнены проводниками, выбранными с сечением не менее половины сечения проводников защищенного участка линии;
- ответвления от питающей линии к электроприемникам малой мощности, если питающая их линия защищена аппаратом с уставкой не более 25 А для силовых электроприемников и бытовых электроприборов, а для светильников — согласно 6.2.2;
- ответвления от питающей линии проводников цепей измерений, управления и сигнализации, если эти проводники не выходят за пределы соответствующих машин или щита или если эти проводники выходят за их пределы, но электропроводка выполнена в трубах или имеет негорючую оболочку.
Не допускается устанавливать аппараты защиты в местах присоединения к питающей линии таких цепей управления, сигнализации и измерения, отключение которых может повлечь за собой опасные последствия (отключение пожарных насосов, вентиляторов, предотвращающих образование взрывоопасных смесей, некоторых механизмов собственных нужд электростанций и т. Во всех случаях такие цепи должны выполняться проводниками в трубах или иметь негорючую оболочку. Сечение этих цепей должно быть не менее приведенных в 3.
Область применения ЩУН
- Насосные системы промышленного назначения.
- Скважины системы подачи воды.
- Узлы повышенного давления в установках различного предназначения.
- Канализационные насосные станции.
Функциональные особенности в ЩУН
- контроль сетевого напряжения, который необходим для бесперебойной работы насосных агрегатов и системы водоснабжения/канализации;
- автоматическое включение резервного питания;
- контроль уровня воды в скважине (или в другом резервуаре) и остановка насоса при её отсутствии (во избежание поломки мотора);
- защита насосных двигателей от перебоев электропитания и коротких замыканий;
- стабилизация давления и регулировка параметров работы насосных агрегатов;
- дистанционное / удалённое управление скважинными насосами (доступ к которым затруднён или невозможен);
- оптимальное распределение нагрузки между несколькими насосными агрегатами и подключение запасных устройств в случае поломки или аварии основных насосов;
- возможность установки ЩУН вне помещений (специальный корпус).
- индикация на ЖК-панели задаваемых характеристики параметров работы насосной станции.
Преимущества оборудования щитов
- автоматическое переключение питающих вводов – опция АВР;
- возможность кратковременного запуска насоса вручную для сервисного обслуживания;
- автоматический пуск/остановка основного насоса;
- автоматическое включение резервного насоса при неисправности основного агрегата (для многонасосного щита);
- автоматический пуск/остановка дополнительных насосов;
- автоматическое чередование насосов для обеспечения равномерного времени их работы (моточасы).
Предложение от ДИГАМ
- Надежность, практичность и многофункциональность оборудования ДИГАМ, проверенные нашими заказчиками.
- Производство щитов управления насосами по техническому заданию клиента.
- Составление принципиальныхсхем ЩУН исборка оборудования в контролируемых производственных условиях.
- Удобная опция, позволяющая задавать определенную программу, возможна благодаря использованию контроллера от ведущих производителей.
- Большинство моделейЩУНможно переводить с автоматизированного управления на ручное, что необходимо при проведении технического обслуживания, ремонтных работ, для замены изношенных или перегоревших деталей.
- Возможность монтажа, шефмонтажа, пуско-наладки и обучения обслуживающего персонала заказчика специалистами нашей компании.
- Постоянная модернизация оборудования с учетом инновационных технологий.
Как заказать
Все очень просто! Свяжитесь с нами удобным способом: позвоните нашему специалисту, отправьте письмо или запросите обратный звонок.
Подробно изложите свои требования и обсудите с менеджером компании условия сотрудничества. В течение двух дней Вам будет представлен предварительный расчет стоимости проекта.
- Главная
- ИБП
- Онлайн ИБП
- Серия ТРИАТЛОН
- ТРИАТЛОН 160, 160 кВт
CHINT является одним из ведущих мировых лидеров по производству электротехнической продукции — более 100 серий и 10000 тысяч модификаций.
Прежде чем попасть в серийное производство, вся новая продукция проходит жесткие испытания на соответствие заявленным характеристикам в независимой международной лаборатории КЕМА.
Поставки продукции CHINT осуществляются в Россию, страны Азии, США и Европы.
Новинка 2019 — автоматические выключатели серии NEXT прошли все необходимые испытания и поставляются на рынок России.
Автоматические выключатели серии Next предназначены для защиты электрических цепей от токов перегрузки и короткого замыкания. Аппараты серии Next прошли все необходимые и соответствуют требованиям ГОСТ 50030. 2 -2010(МЭК 60947-2:2006).
Автоматические выключатели NXM рассчитаны на токи от 25 до 1600А и имеют 3 класса отключающей способности(от 25кА до 100кА)
Отличительные особенности аппаратов NXM:
- Коммутация токов короткого замыкания до 100кА.
- Широкая линейка типоразмеров.
- Двойная изоляция для безопасного обслуживания.
- Силовые контакты имеют антикоррозионное покрытие.
- Конструкция предусматривает установку до 3 разных аксессуаров в один аппарат.
- Современный дизайн.
Информация на сайте о технических характеристиках, наличии на складе, стоимости и
изображениях товаров не является публичной офертой. Все изображения, размещенные на сайте, зарегистрированы в «Российском авторском обществе». Копирование и использование изображений возможно только с разрешения правообладателя.
Реализация товаров, размещенных в каталоге на сайте, не является дистанционной торговлей и
осуществляется по предварительному согласованию наименования, эксплуатационных и технических
характеристик, наличия и количества на основании договора Оферты и/или договоров, заключенных
в письменной форме.
В заявке укажите свои контактные данные (город, наименование организации, номер телефона) и приложите список продукции, которую необходимо заменить.
Распоряжение ОАО «РЖД» от 28. 2022 N 171/р
«Об утверждении Инструкции по охране труда при выполнении работ по ремонту и обслуживанию перегрузочных машин и механизмов»
(вместе с «ИОТ РЖД-4100612-ЦМ-244-2022. Инструкция
Вы можете заказать документ на e-mail
Ошибка в параметрах страницы, или недостаточно прав для открытия страницы, или закончилась текущая сессия. Уточните запрос или перейдите на главную страницу сайта
Устройства защиты от импульсных перенапряжений (УЗИП) класса I предназначены для защиты низковольтных силовых распределительных систем до 1000 В от импульсных перенапряжений, источниками которых являются:
Существуют две основных схемы подключения УЗИП в низковольтных силовых распределительных системах до 1000 В (Рис.
Схема 1 предназначена для защиты от синфазных (продольных) перенапряжений в цепи провод-земля. УЗИП класса I должны устанавливаться после вводного аппарата защиты от сверхтока следующим образом:
При подключение УЗИП для сети с системой заземления типа ТТ по Схеме 1 (Рис. 4 А) существует вероятность возникновения опасного напряжения на корпусе электрооборудования в случае повреждения одного из УЗИП, например при коротком замыкании. Подключение УЗИП после устройства защитного отключения (УЗО) не решает проблему, так как в этом случае УЗО подвергается воздействию импульсных токов. Подключение УЗИП для сети с системой заземления типа ТT по Схеме 2 (Рис. 4 Б) исключает данную вероятность.
Выбор УЗИП класса I
Система защиты оборудования от импульсных перенапряжений (внутренняя молниезащита или грозозащита) в низковольтных силовых распределительных системах до 1000 В должна обеспечить отвод импульсных токов от защищаемого оборудования без повреждения УЗИП.
Для определения пикового значения импульсного тока протекающего через УЗИП необходимо знать распределение тока при прямом ударе молнии (ПУМ) в пределах электроустановки объекта. Эмпирическая методика расчета распределения тока приведена в ГОСТ Р 51992-2002 (МЭК 61643-1-98), ПРИЛОЖЕНИЕ А. Для более точной оценки распределения тока необходимо иметь результаты измерения сопротивления системы заземления, проверки металлосвязи всех металлических коммуникаций и конструкций, системы электропитания объекта и т. На практике, при отсутствии этих исходных данных и руководствуясь вышеуказанной методикой, принимается что 50 % импульсного тока растекается через систему заземления объекта, а оставшиеся 50 % распределяются равномерно через систему электропитания объекта, металлические конструкции и коммуникации и т.
Рис. Растекания тока молнии в системе электропитания: А) в случае ПУМ в систему молниезащиты объекта; Б) в случае ПУМ в воздушную линию электропередач перед вводом в объект.
Для небольших объектов или для объектов, к которым подведены коммуникации, выполненные из диэлектрических материалов, можно принять, что через УЗИП потечет половина импульсного тока (Рис. 5 А). Предполагая равномерное растекание тока молнии между системой заземления объекта и системой электропитания можно рассчитать пиковые значения импульсных токов, протекающих через УЗИП в сетях с различными типами системы заземления при различных уровнях молниезащиты (Таблица 5).
В случае ПУМ в воздушную линию электропередач непосредственно перед вводом в объект и условии равномерного растекания тока в сторону трансформаторной подстанции и системы электропитания объекта, на вводе в объект будет воздействовать импульсный ток до 25 кA (10/350 мкс) на проводник (Рис. 5 Б). При неравномерном растекания токов это значение может возрасти до 50 кА.
Выбор УЗИП класса I по импульсному току необходимо производить с запасом 20 – 30 % учитывая возможную неравномерность растекания токов по различным проводникам. Особое внимание необходимо уделить выбору УЗИП для защиты нулевого провода, так как через него может протекать ток до 100 кА (10/350 мкс).
УЗИП класса I должны обеспечивать безопасный уровень импульсных перенапряжений для электрооборудования объекта и УЗИП последующих ступеней защиты. В соответствии с ГОСТ Р 50571. 19-2000 для трехфазной сети 220/380 В определен уровень выдерживаемого импульсного перенапряжения на вводе в объект в 6 кВ. УЗИП класса I производства компании HAKEL обеспечивают уровень защиты от 1,3 до 2,5 кВ.
Во время своей работы УЗИП и включенные с ними последовательно защитные устройства должны выдерживать временные перенапряжения (ВПН) UT в течение заданного промежутка времени tТ по ГОСТ Р 50571. 18 вызванные:
— замыканиями на землю в электроустановках выше 1 кВ;
— обрывом нулевого проводника в электрических сетях с системами заземления типа TN, TT;
— замыканиями фазового проводника на землю в электрических сетях с системой заземления типа IT.
Значения ВПН приведены в Таблице.
Для отечественных низковольтных сетей наиболее частым является случай обрыва нулевого проводника в сетях с системами заземления типа TN, TT и замыкание фазного проводника на землю в сетях с системой заземления типа IT. В этом случае на УЗИП будет действовать уже не фазное, а линейное напряжение, которое в √3 раз выше фазного. В случае если линейное напряжение сети выше максимально длительного напряжения УЗИП Uc, то через УЗИП начнет протекать ток короткого замыкания, величина которого стремиться к величине тока короткого замыкания источника питания.
Для защиты УЗИП от тока короткого замыкания, который УЗИП не в состоянии отключить самостоятельно без последствий его воздействия на электроустановку и обеспечения непрерывности подачи электропитания, последовательно с УЗИП включаются дополнительные устройства защиты от короткого замыкания. Предохранители, по сравнению с автоматическими выключателями, имеют более высокую стойкость к импульсным токам, являются более простыми в эксплуатации и надежными по конструкции. Номиналы предохранителей и их характеристики указываются конкретным производителем УЗИП в технической документации.
Для определения необходимости установки дополнительного предохранителя следует сравнить номинальный ток защитного устройства установленного перед УЗИП IF1 с номинальным током дополнительного предохранителя рекомендуемого производителем IF2. Компания HAKEL, в зависимости от типа УЗИП класса I, рекомендует применять предохранители с номинальными токами 100, 250, 315, 500 А и характеристикой gG.
• IF1≥ IF2 – устанавливается дополнительный предохранитель (Рис. 6А),
• IF1≤ IF2 – без дополнительного предохранителя (Рис. 6Б),
Монтаж УЗИП класса I
УЗИП класса I устанавливаются в пределах 0A(B) — 1 зон молниезащиты во вводно-распределительном устройстве (ВРУ), главном распределительном щите (ГРЩ) или отдельном щите рядом с вводом электропитания в объект. Монтаж УЗИП производится на DIN-рейку 35 мм или на монтажную панель.
В качестве отдельного щита ЗАО «Хакель Рос» предлагает щиты собственного производства с установленными УЗИП различных классов — щитки защиты от импульсных перенапряжений низковольтные комплектные — ЩЗИП, ТУ 3434-001-79740390-2007. ЩЗИП, производства ЗАО «Хакель Рос», изготавливаются из комплектующих ведущих мировых производителей, отличаются высоким качеством сборки, соответствуют требованиям электромагнитной совместимости, имеют сертификат соответствия РОСС RU. МЛ02. В00405 требованиям ГОСТ Р 51321. 1-2000. Каждый ЩЗИП изготавливается по индивидуальному проекту, учитывающему все особенности объекта и защищаемого оборудования. Для заказа ЩЗИП необходимо заполнить опросный лист, размещенный на сайте, и направить для согласования в технический отдел ЗАО «Хакель Рос».
Установка УЗИП класса I на вводе в объект предполагает подключение перед счетчиком электроэнергии для его защиты от импульсных перенапряжений и обеспечения бесперебойного снабжения объекта электроэнергией. Данная схема подключения становится особенно актуальной для двухтарифных электронных счетчиков, более чувствительных к импульсным перенапряжением, чем механические. В случае возражений Энергосбыта УЗИП класса I можно разместить в отдельном пломбируемом щите или отсеке ГРЩ. В этом случае применяются только УЗИП класса I на основе разрядников, так как не имеют токов утечки.
При подключении проводников к УЗИП необходимо избегать образования петель из-за воздействия электродинамических сил в момент прохождения импульсных токов, совместной прокладки защищенного и незащищенного участков проводника, защищенного и заземляющего проводников. Варианты прокладки проводников различного назначения приведены на Рис.
При монтаже УЗИП необходимо учитывать, что соединительные проводники между УЗИП и его точкой подключения к сети, а также между УЗИП и землей должны иметь минимальную длину. Это связано с появлением падений напряжения на проводниках, возникающих из-за индуктивности проводников в момент прохождения через них импульсного тока. Возникающие таким образом напряжения суммируются с напряжением защиты Up на УЗИП и приводят к значительному превышению напряжения на защищаемой нагрузке. (Рис. Например, при общей длине соединительных проводников 2 метра, напряжение прикладываемое к защищаемой нагрузке возрастает на 200-250 В в зависимости от сечения проводников.
Uн — уровень напряжения прикладываемого к нагрузке ;
Up – уровень напряжения защиты УЗИП;
U1 – падение напряжения на проводнике между УЗИП и фазным или нейтральным проводником;
U2 – падение напряжения на проводнике между УЗИП и землей.
Для уменьшения уровня напряжения прикладываемого к нагрузке рекомендуется использовать соединительные проводники длиной не более 0,5 м. (Рис. 9 А, Б) а также применять схему подключения типа «V»- соединение (Рис. 9 В), при котором УЗИП включается «последовательно» с нагрузкой.
Применять «V» — соединение для подключения УЗИП возможно как при одинарных, так и при двойных клеммах. Ограничением для этой схемы является сечение присоединяемых проводников для одинарных клемм и значение номинального тока для перемычки между двойными клеммами. Рис.
Для подключения УЗИП класса I к фазным и нулевым проводником необходимо использовать медный провод с минимальным сечением 16 мм2. Соединение с землей можно выполнять проводом с минимальным сечением 16 мм2, однако рекомендуется применять провод с сечением 25 мм2, а в случае воздействия половины тока молнии и с сечением 35 мм2.