Водородные топливные элементы принцип работы и устройство

Поток электронов и ионов поддерживает баланс заряда и вещества в электролите. Образующаяся в результате реакции вода частично разбавляет электролит. В любом топливном элементе часть энергии химической реакции превращается в тепло. Поток электронов во внешней цепи представляет собой постоянный ток, который используется для совершения работы. Большинство реакций в топливных элементах обеспечивают ЭДС около 1 В. Размыкание цепи или прекращение движения ионов останавливает работу топливного элемента.

ТОПЛИВНЫЙ ЭЛЕМЕНТ, электрохимический генератор, устройство, обеспечивающее прямое преобразование химической энергии в электрическую. Хотя то же самое происходит в электрических аккумуляторах, топливные элементы имеют два важных отличия: 1) они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника; 2) химический состав электролита в процессе работы не изменяется, т.е. топливный элемент не нуждается в перезарядке. См. также БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ.

Таблица 5: Преимущества и недостатки различных систем топливных элементов.
Разработки и улучшения в сфере топливных элементов происходят постепенно, малый показатель удельной мощности не позволяет быть прямым конкурентом электрическим батареям.

1. Топливный элемент с мембраной обмена протонов (МОПТЭ)

Топливный элемент чувствителен к низким температурам, ведь это может привести к образованию льда. Это вынуждает добавлять в конструкцию нагревательные элементы, которые увеличивают конечную стоимость. Запуск в холодную погоду занимает больше времени, а производительность заметно ниже. Избыточное теплообразование также может привести к повреждению ячейки. Системы контроля температуры и подачи кислорода потребляют около 30% генерируемой электроэнергии.

2. Щелочной топливный элемент (ЩТЭ)

3. Твердооксидный топливный элемент (ТОТЭ)

4. Топливный элемент с прямым окислением метанола (ПОМТЭ)

На рисунке 2 показан топливный элемент от Toshiba, а на рисунке 3 – процесс его дозаправки метанолом чистотой 99.5%.

Рисунок 2: Микротопливный элемент. Этот прототип микротопливного элемента способен обеспечивать 300 мВт непрерывной мощности.

Рисунок 3: Топливный элемент Toshiba с заправочным картриджем. Картридж емкостью 10 мл содержит метанол чистотой 99,5%.

Также такие элементы интересны для использования в военной и рекреационной сферах. На рисунке 4 показан портативный топливный элемент кампании SFC (Smart Fuel Cell), поставляемый с различными мощностными характеристиками — от 600 до 2160 Вт*ч в день.

Рисунок 4: Портативный топливный элемент потребительского сегмента. Топливный элемент преобразует водород и кислород в электричество с единственным побочным продуктом — чистой водой. Топливные элементы могут использоваться в помещении в качестве генератора электроэнергии.

В таблице 5 описаны сферы применения, преимущества и ограничения обычных топливных элементов. Таблица включает в себя не рассмотренные выше технологии на основе фосфорной кислоты (ФКТЭ) и на основе расплава карбоната (РКТЭ).

Таблица 5: Преимущества и недостатки различных систем топливных элементов.
Разработки и улучшения в сфере топливных элементов происходят постепенно, малый показатель удельной мощности не позволяет быть прямым конкурентом электрическим батареям.

Рисунок 6: Диапазон мощности портативного топливного элемента. Высокое внутреннее сопротивление приводит к быстрому падению напряжения при подключении нагрузки. Диапазон мощности ограничен значениями от 300 до 800 мА.

Топливные элементы лучше всего работают при нагрузке 30%, более высокие значения снижают эффективность. Это вкупе с плохой чувствительностью дросселя ограничивают эффективное использование топливных элементов сферой вспомогательного электропитания и зарядных устройств. Роль автономного источника питания, изначально предназначаемая топливным элементам, пока что остается непокоренной ими.

5. Парадокс топливной ячейки

Пик популярности топливных элементов пришелся на 1990-е годы, когда ученые и инженеры были увлечены идеей о экологически чистом и неиссякаемом топливе — водороде. Предсказывалось, что каждый автомобиль и домохозяйство вскоре будут работать на топливных элементах. Акции профильных компаний взлетели до небес, но вскоре индустрия уперлась в грань — была достигнута предельная производительность, а высокие производственные затраты и ограниченный срок службы весьма ограничивали применение топливных элементов.

Ожидалось, что топливные элементы окажут на мир такое же влияние, как оказали микропроцессорные технологии в 1970-е годы. Этот экологически чистый и неисчерпаемый источник энергии должен был решить проблему ископаемого топлива с его ограниченными запасами и экологическими проблемами. С 1999 по 2001 год более 2000 компаний активно взялись за разработку топливных элементов, четырем крупнейшим из них удалось привлечь инвестиции в размере 4 миллиардов долларов. Но что пошло не так?

Топливные элементы вырабатывают электроэнергию за счет химической реакции газообразного водорода и кислорода. Каждый отдельный топливный элемент в блоке осуществляет превращение химической энергии топлива в электричество в процессе электрохимической реакции, в которой водород используется со стороны анода и кислород на стороне катода. Единственным побочным продуктом реакции является обычная вода.

Тойота готовится к созданию водородных топливных элементов нового поколения

  • В научно-исследовательском центре Тойота был изобретен инновационный метод наблюдения за поведением наночастиц.
  • Разработка позволит в ближайшем будущем создать более эффективные блоки водородных топливных элементов нового поколения.

«Тойота Мотор Корпорэйшн» и Японский центр тонкой керамики (JFCC) совместно разработали новую методику наблюдения за поведением наночастиц платины в процессе химической реакции, происходящей в топливных элементах. Новая методика позволила исследователям, в частности, отследить процессы, приводящие к снижению химической активности платинового каталитизатора, входящего в состав блока топливных элементов.

Топливные элементы вырабатывают электроэнергию за счет химической реакции газообразного водорода и кислорода. Каждый отдельный топливный элемент в блоке осуществляет превращение химической энергии топлива в электричество в процессе электрохимической реакции, в которой водород используется со стороны анода и кислород на стороне катода. Единственным побочным продуктом реакции является обычная вода.

В процессе реакции молекулы водорода разделяются на электроны и катионы водорода на стороне анода. На платиновом катализаторе анода молекулярный водород теряет электроны. Поток электронов движется к катоду кислорода, вырабатывая электроэнергию для питания электродвигателя. Между тем, катионы водорода проводятся через полимерную мембрану на сторону катода, где при соединении с кислородом образуется вода. Для этой реакции в качестве катализатора также используется платина

Обычный способ наблюдения за поведением наночастиц платины заключается в сравнении размеров частиц в фиксированной точке до и после реакции. С помощью этого традиционного метода было обнаружено, что наночастицы платины после реакции укрупняются, а их химическая активность снижается. Однако причины этого снижения оставались предположительными из-за невозможности наблюдать за процессами, приводящими к укрупнению, в режиме реального времени.

2. Твердополимерные метанольные топливные элементы.

Обычных аккумуляторов и батарей становится явно недостаточно для питания последних достижений электронной индустрии в течение сколько-нибудь существенного времени. А без надежных и емких батарей теряется весь смысл мобильности и беспроводности. Так что компьютерная индустрия все активнее и активнее трудится над проблемой альтернативных источников питания. И наиболее перспективным, на сегодняшний день, направлением здесь являются топливные элементы.

Сам термин «топливный элемент» (Fuel Cell) появился позднее — он был предложен в 1889 году Людвигом Мондом и Чарльзом Лангером, пытавшимися создать устройство для выработки электричества из воздуха и угольного газа.

При обычном горении в кислороде протекает окисление органического топлива, и химическая энергия топлива неэффективно переходит в тепловую энергию. Но оказалось возможным реакцию окисления, например водорода с кислородом, провести в среде электролита и при наличии электродов получить электрический ток. Например, подавая водород к электроду, находящемуся в щелочной среде, получим электроны:

2H2 + 4OH- → 4H2O + 4e-

которые, проходя по внешней цепи, поступают на противоположный электрод, к которому поступает кислород и где проходит реакция: 4e- + O2 + 2H2O → 4OH-

Видно, что результирующая реакция 2H2 + O2 → H2O — такая же, что и при обычном горении, но в топливном элементе, или иначе — в электрохимическом генераторе, получается электрический ток с большой эффективностью и частично тепло. Отметим, что в топливных элементах в качестве горючего могут также применяться уголь, окись углерода, спирты, гидразин, другие органические вещества, а в качестве окислителей — воздух, перекись водорода, хлор, бром, азотная кислота и т.д.

Развитие топливных элементов энергично продолжалось как за рубежом, так и в России, а далее и в СССР. Среди ученых, сделавших большой вклад в изучение топливных элементов, отметим В. Жако, П. Яблочкова, Ф. Бэкона, Э. Бауэра, Э. Юсти, К. Кордеша. В середине прошлого столетия начался новый штурм проблем топливных элемент. Частично это объясняется появлением новых идей, материалов и технологий в результате оборонных исследований.

Одним из ученых, сделавших крупный шаг в развитие топливных элементов, был П. М. Спиридонов. Водород-кислородные элементы Спиридонова давали плотность тока 30 мА/см2, что для того времени считалось большим достижением. В сороковые годы О. Давтян создал установку для электрохимического сжигания генераторного газа, получаемого газификацией углей. С каждого кубометра объема элемента Давтян получил 5 кВт мощности.

В последующие годы время одиночек прошло. Топливными элементами заинтересовались создатели космических аппаратов. С середины 60-ых миллионы долларов вкладывались в исследования топливных элементов. Работа тысяч ученых и инженеров позволила выйти на новый уровень, и в 1965г. топливные элементы был испытан в США на космическом корабле «Джемини-5», а в дальнейшем — на кораблях «Аполлон» для полетов на Луну и по программе «Шатл».

В СССР топливные элементы разрабатывали в НПО «Квант», тоже для использования в космосе. В те годы уже появились новые материалы — твердополимерные электролиты на основе ионообменных мембран, новые типы катализаторов, электродов. И все-таки рабочая плотность тока была небольшой — в пределах 100-200 мА/см2, а содержание платины на электродах — несколько г/см2. Существовало много проблем, связанных с долговечностью, стабильностью, безопасностью.

В качестве окислителя в топливных элементах применяется кислород. Причем, поскольку кислорода вполне достаточно в воздухе, то волноваться о подаче окислителя не надо. Что касается топлива, то им является водород. Итак, в топливном элементе протекает реакция:

2H2 + O2 → 2H2O + электричество + тепло.

Рис.1. Принцип действия топливного элемента

И тут мы приходим именно к тому устройству, разработкой которого со страшной силой занимаются практически все крупнейшие производители электроники — метаноловому топливному элементу (рисунок 2).

Рис.2. Принцип действия топливного элемента на метаноле

Рис. 3. Метанольный топливный элемент

Самый заманчивый вариант — использовать в качестве топлива этиловый спирт, благо производство и распространение алкогольных напитков любого состава и крепости хорошо налажено по всему земному шару. Однако эффективность этаноловых топливных элементов, к сожалению, еще ниже, чем у метаноловых.

Как уже отмечалось за много лет разработок в области топливных элементов, построены различные типы топливных элементов. Топливные элементы классифицируются по электролиту и виду топлива.

1. Твердополимерные водород-кислородные электролитные.

2. Твердополимерные метанольные топливные элементы.

3. Элементы на щелочном электролите.

4. Фосфорно-кислотные топливные элементы.

5. Топливные элементы на расплавленных карбонатах.

6. Твердооксидные топливные элементы.

В идеале КПД топливных элементов очень высок, но в реальных условиях имеются потери, связанные с неравновесными процессами, такими как: омические потери вследствие удельной проводимости электролита и электродов, активационная и концентрационная поляризация, диффузионные потери. Вследствие этого часть энергии, вырабатываемой в топливных элементах, превращается в тепловую. Усилия специалистов направлены на уменьшение указанных потерь.

При конструировании топливных элементов большое внимание уделяют системе теплоотвода, так как при высоких плотностях тока (до 1А/см2) происходит саморазогрев системы. Для охлаждения применяют циркулирующую в топливном элементе по специальным каналам воду, а при небольших мощностях — обдув воздухом.

Не отстает от Toshiba и другая японская компания — Fujitsu. В 2004-м году она тоже представила элемент, действующий на 30% водном растворе метанола. Этот топливный элемент работал на одной заправке в 300мл на протяжении 10 часов и при этом выдавал мощность 15 Вт.

Casio разрабатывает топливный элемент, в котором метанол сперва перерабатывается в смесь газообразных H2 и CO2 в миниатюрном топливном преобразователе, а потом уже подается в топливный элемент. Во время демонстрации прототип Casio обеспечивал энергией ноутбук в течение 20 часов.

Компания Samsung тоже отметилась на ниве топливных элементов — в 2004-м году она демонстрировала свой прототип мощностью 12 Вт, предназначенный для питания ноутбука. Вообще же, Samsung предполагает применять топливные элементы, в первую очередь, в смартфонах четвертого поколения.

В общем, топливные элементы уже практически вышли на рынок мобильной электроники. Производителям осталось решить последние технические задачи перед тем, как начать массовый выпуск.

Вторая важная проблема, требующая решения — это цена. Ведь в качестве катализатора в большинстве топливных элементов применяется очень дорогая платина. Опять же, некоторые из производителей пытаются по максимуму использовать уже хорошо отработанные кремниевые технологии.

Топливные элементы идут на смену традиционным гальваническим элементам и аккумуляторам

Топливные элементы идут на смену традиционным гальваническим элементам и аккумуляторам

Схема базового топливного элемента

Таким образом, несмотря на то что производители электроники добились значительных успехов, заставляя свои устройства обходиться меньшими запасами энергии, одной из главных причин недовольства потребителей по-прежнему остается малый срок службы источников питания, особенно в портативных устройствах. При этом функциональность мобильных устройств в последние годы растет просто взрывными темпами и приближается к функциональности обычных, стационарных решений.

Что такое «топливный элемент»

Дальнейшие исследования выявили преимущества такого необычного элемента перед простыми химическими источниками тока (гальваническими элементами и аккумуляторами). Дело в том, что топливные элементы обладали в 5-10 раз большей энергоемкостью. К тому же во время реакции не происходило изменений материала электродов и электролита. Топливный элемент теоретически может работать неограниченно долго — необходимо лишь регулярно подавать исходные газовые компоненты.

Всплеск развития топливных элементов пришелся на середину прошлого столетия, когда специалисты НАСА обратились к ним в связи с возникшей потребностью в компактных электрогенераторах для использования во время космических полетов. В частности, космические корабли Apollo и Gemini были оснащены подобными источниками энергии.

Как это работает

— они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника;

— химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке).

где H2 — двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H+ — ионизированный водород (протон); е- — электрон.

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны — нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка).

Ноутбук Portege M100 с топливным элементом DMFC

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

Суммарная реакция в топливном элементе записывается так:

В своей работе топливные элементы используют водородное топливо и кислород из воздуха. Водород может подаваться непосредственно или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта — метанола. В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

По отдельности топливные элементы создают электродвижущую силу около 1 В каждый. Чтобы увеличить напряжение, элементы соединяют последовательно. Если требуется выдать больший ток, наборы каскадных элементов соединяют параллельно.

Технология Mobion и другие

Стоит также отметить, что в конце прошлого года топливные элементы Mobion получили сертификаты безопасности от Underwriter’s Laboratories и CSA International. Иными словами, это означает, что MTI MicroFuel Cells теперь может поставлять свои топливные элементы Mobion для военных и промышленных предприятий.

Принцип действия топливных элементов был открыт еще в 1839 г. английским ученым Уильямом Робертом Грове, который обнаружил, что процесс электролиза обратим, то есть водород и кислород можно объединить в молекулы воды без горения, но с выделением тепла и электричества.

Принцип действия топливных элементов был открыт еще в 1839 г. английским ученым Уильямом Робертом Грове, который обнаружил, что процесс электролиза обратим, то есть водород и кислород можно объединить в молекулы воды без горения, но с выделением тепла и электричества.

Топливные элементы (ТЭ) – это электрохимические устройства, использующие водород, моноксид углерода либо газообразные органические топлива и кислород воздуха для производства электрической и тепловой энергии.Процесс производства электроэнергии в топливных элементах значительно более эффективен, чем в тепловых машинах. Кроме того, в ТЭ нет движущихся частей и минимизирована роль сжигания топлива, что делает процесс бесшумным и экологически чистым.

Сложились три основных направления использования топливных элементов:

1) стационарная энергетика: энергетические установки для централизованного и распределенного электро- и теплоснабжения, источники бесперебойного питания;
2) транспортная энергетика: энергетические установки транспортных средств, вспомогательные силовые установки;
3) портативная энергетика: источники тока в мобильных устройствах, зарядные устройства, питание разнообразных вспомогательных устройств т.п.

Таким образом, эксплуатация ТЭ на жидком топливе неизбежно связана с очисткой либо переработкой продуктов реакции.

В своей работе топливные элементы используют водородное топливо и кислород из воздуха. Водород может подаваться непосредственно или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта — метанола. В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Топливные элементы идут на смену традиционным гальваническим элементам и аккумуляторам

Схема базового топливного элемента

Таким образом, несмотря на то что производители электроники добились значительных успехов, заставляя свои устройства обходиться меньшими запасами энергии, одной из главных причин недовольства потребителей по-прежнему остается малый срок службы источников питания, особенно в портативных устройствах. При этом функциональность мобильных устройств в последние годы растет просто взрывными темпами и приближается к функциональности обычных, стационарных решений.

Что такое «топливный элемент»

Дальнейшие исследования выявили преимущества такого необычного элемента перед простыми химическими источниками тока (гальваническими элементами и аккумуляторами). Дело в том, что топливные элементы обладали в 5-10 раз большей энергоемкостью. К тому же во время реакции не происходило изменений материала электродов и электролита. Топливный элемент теоретически может работать неограниченно долго — необходимо лишь регулярно подавать исходные газовые компоненты.

Всплеск развития топливных элементов пришелся на середину прошлого столетия, когда специалисты НАСА обратились к ним в связи с возникшей потребностью в компактных электрогенераторах для использования во время космических полетов. В частности, космические корабли Apollo и Gemini были оснащены подобными источниками энергии.

Как это работает

— они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника;

— химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке).

где H2 — двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H+ — ионизированный водород (протон); е- — электрон.

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны — нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка).

Ноутбук Portege M100 с топливным элементом DMFC

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

Суммарная реакция в топливном элементе записывается так:

В своей работе топливные элементы используют водородное топливо и кислород из воздуха. Водород может подаваться непосредственно или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта — метанола. В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

По отдельности топливные элементы создают электродвижущую силу около 1 В каждый. Чтобы увеличить напряжение, элементы соединяют последовательно. Если требуется выдать больший ток, наборы каскадных элементов соединяют параллельно.

Технология Mobion и другие

Стоит также отметить, что в конце прошлого года топливные элементы Mobion получили сертификаты безопасности от Underwriter’s Laboratories и CSA International. Иными словами, это означает, что MTI MicroFuel Cells теперь может поставлять свои топливные элементы Mobion для военных и промышленных предприятий.

В отличие от современных нефтяных источников энергии, водород не даёт никаких вредных выбросов в атмосферу и является самым экологически чистым. Поскольку в самих топливных элементах нет движущихся частей, их отличает надёжность, долговечность и простота эксплуатации. КПД топливных элементов уже сейчас составляет 50-70%, что намного больше, чем 10-15% у ДВС. Это очень важные преимущества перед современными двигателями. Рассмотрим принцип работы водородных топливных элементов.

Донсков А.В. 1 , Попов А.В. 2

1 Студент; 2 Асистент, Волжский политехнический институт (филиал) ВолгГТУ

ПРИМЕНЕНИЕ ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ

Рассмотрены современные проблемы применимости водородных топливных элементов на транспорте.

Топливные элементы, водород, транспорт.

Donskov A.V. 1 , , Popov A.V. 2

1 Student, 2 Assistant,

Volzhsky Polytechnical Institute (branch) VSTU

THE USE OF HYDROGEN FUEL CELLS FOR ROAD TRANSPORT

Modern problems of applicability of fuel cells in transport.

Fuel cells, hydrogen, transport.

За последние 50-60 лет по оценкам экспертов выбросы CO2 в атмосферу возросли, в 4-5раз и составляют величину равную 20 х 10 12 м 3 /год. Основная проблема заключается в том, что основные имеющиеся на планете источники энергии ограничены. По некоторым подсчетам газа и нефти и хватит не более чем на 100 лет, угля – примерно на 360-400 лет, ядерного топлива – немногим более чем на 1000лет.

Поэтому в последнее время наиболее остро стоит вопрос о переходе к новым источникам энергии, в основе которой должна быть заложена экологическая составляющая. Большие надежды возлагаются на водородную энергетику: использование водорода, как одного из основных видов энергоносителя, а топливных элементов, как генераторов электроэнергии. Такой вид энергетики предполагает резкое сокращение добычи и потребления ископаемых видов топлива.

В отличие от современных нефтяных источников энергии, водород не даёт никаких вредных выбросов в атмосферу и является самым экологически чистым. Поскольку в самих топливных элементах нет движущихся частей, их отличает надёжность, долговечность и простота эксплуатации. КПД топливных элементов уже сейчас составляет 50-70%, что намного больше, чем 10-15% у ДВС. Это очень важные преимущества перед современными двигателями. Рассмотрим принцип работы водородных топливных элементов.

Химические реакции в топливном элементе идут на пористых электродах (аноде и катоде), активированных катализатором (обычно на основе платины или других металлов платиновой группы), по следующей схеме. Водород поступает на анод топливного элемента, где его атомы разлагаются на электроны и протоны:

Электроны поступают во внешнюю цепь, создавая электрический ток. Протоны, в свою очередь, проходят сквозь протонообменную мембрану на катодную сторону, где с ними соединяется кислород и электроны из внешней электрической цепи с образованием воды:

4H+ + 4e- + O2 = 2H2O

Рисунок 1 – Устройство водородного топливного элемента

Если в мембране присутствует вода, она собирается вблизи кислотных групп и образует гидратную область с линейным размером порядка 1 нм. Именно в этой области и образуются различные гидратированные формы протона, способные свободно перемещаться. Гидрофобная же часть полимера содержит алифатические, ароматические, фторированные или нефторированные фрагменты и образует прочный каркас, обеспечивающий механическую прочность мембраны.

1. Багоцкий В.С., Скундин А.М. Химические источники тока. – М:Энергоиздат, 1981.-360с.

Химические процессы в топливном элементе

Химические процессы в топливном элементе

Схема устройства топливного элемента с протонно-обменной мембраной:
1 — анод;
2 — протонно-обменная мембрана (РЕМ);
3 — катализатор (красный);
4 — катод

Протонно-обменная мембрана топливного элемента (PEMFC) использует одну из самых простых реакций любого топливного элемента.

Отдельная ячейка топливного элемента

Автомобиль на топливных элементах, использует силовую установку, расположенную под полом автомобиля

Концептуальный автомобиль Hy Wire компании General Motors имеет силовую установку на топливных элементах

Большие исследования по разработке и созданию автомобилей на топливных элементах проводит компания General Motors.

Шасси автомобиля Hy Wire

Конструкция «безопасного» топливного бака для сжиженного водорода:
1 — заправочное устройство;
2 — наружный бак;
3 — опоры;
4 — датчик уровня;
5 — внутренний бак;
6 — заправочная линия;
7 — изоляция и вакуум;
8 — нагреватель;
9 — крепежная коробка

Проблеме использования водорода в качестве топлива для автомобилей уделяет много внимания компания BMW. Совместно с фирмой Magna Steyer, известной своими работами по использованию сжиженного водорода в космических исследованиях, BMW разработала топливный бак для сжиженного водорода, который может использоваться на автомобилях.

Испытания подтвердили безопасность использования топливного бака с жидким водородом

Компания провела серию испытаний на безопасность конструкции по стандартным методикам и подтвердила ее надежность.
В 2002 г. на автосалоне во Франкфурте-на-Майне (Германия) был показан автомобиль Mini Cooper Hydrogen, который использует в качестве топлива сжиженный водород. Топливный бак этого автомобиля занимает такое же место, как и обычный бензобак. Водород в этом автомобиле используется не для топливных элементов, а в качестве топлива для ДВС.

Первый в мире серийный автомобиль с топливным элементом вместо аккумуляторной батареи

В 2003 г. фирма BMW объявила о выпуске первого серийного автомобиля с топливным элементом BMW 750 hL. Батарея топливных элементов используется вместо традиционного аккумулятора. Этот автомобиль имеет 12-цилиндровый двигатель внутреннего сгорания, работающий на водороде, а топливный элемент служит альтернативой обычному аккумулятору, обеспечивая возможность работы кондиционера и других потребителей электроэнергии при длительных стоянках автомобиля с неработающим двигателем.

Заправка водородом производится роботом, водитель не участвует в этом процессе

Состоит из двух электродов: анод и катод, изготовленные из угольной пластины покрытой платиной. На аноде поданный водород распадается с потерей электрона, на катоде поданный кислород соединяется с пришедшим протоном.

Как работают автомобили на топливных элементах?

Топливный элемент использует водород подаваемый извне для выработки электроэнергии.

Состоит из двух электродов: анод и катод, изготовленные из угольной пластины покрытой платиной. На аноде поданный водород распадается с потерей электрона, на катоде поданный кислород соединяется с пришедшим протоном.

Основным преимуществом водородных двигателей является их способность работать при относительно низких температурах (что сокращает время запуска). Ячейки изготовлены из графита покрытого канавками, которые позволяют легко проходить реагентам при сохранении электрического контакта с электролитом.

Топливный элемент образовывает ионы водорода имеющие высокое содержание энергии. Однако низкая плотность водорода представляет технические трудности проектирования систем хранения водорода на машине. При комнатной температуре и обычном давлении для хранения эквивалентного количества энергии, содержащегося в типичном бензобаке потребуется бак с водородом объемом более чем в 800 раз больше обычного бака.

Однако были разработаны три основных решения для хранения водорода:

  • сжатие – газ хранится в баллонах при атмосферном давлении до 7000 раз;
  • криогенные системы – это сохранить газ при низкой температуре, необходимой для сжижения водорода (-253 C);
  • металл гидриды – специальные металлические сплавы поглощающие водород под давлением.

Один из подходов, который позволяет избежать проблемы хранения водорода в машине является генерация газа по требованию.

1. Водород в природе. Строение атома и молекулы. Изотопия и изомерия. Физические, термодинамические, теплофизические и теплотехнические свойства.
2. Сжижение и хранение жидкого водорода.
3. Изомерия водорода. Проблема пара и орто-воды.
4. Водород в твердом состоянии.
5. Проблема металлического водорода.

II. Водород: общие сведения.

1. Водород в природе. Строение атома и молекулы. Изотопия и изомерия. Физические, термодинамические, теплофизические и теплотехнические свойства.
2. Сжижение и хранение жидкого водорода.
3. Изомерия водорода. Проблема пара и орто-воды.
4. Водород в твердом состоянии.
5. Проблема металлического водорода.

III. Химия водорода

V. Электрохимические генераторы и топливные элементы.

VI. Детекторы и сенсоры водорода

Особенности и основные типы газовых сенсоров. Физические принципы детектирования водорода: полупроводниковые сенсоры и МДП-структуры, сенсоры теплопроводности. Химические принципы детектирования: каталитические и электрохимические сенсоры. Сенсорные системы на основе твердых электролитов. Основные характеристики сенсоров – быстродействие, селективность, время жизни и пути управления ими. Конструкционные особенности сенсоров.

VII. Перспективы использования водорода как электроносителя

VIII. Водородное материаловедение

Источники
http://www.krugosvet.ru/enc/nauka_i_tehnika/tehnologiya_i_promyshlennost/TOPLIVNI_ELEMENT.html
http://best-energy.com.ua/support/battery/bu-210
http://www.toyota.ru/news_and_events/2015/technological-research
http://electrik.info/main/news/599-chto-takoe-toplivnye-elementy.html
http://www.itweek.ru/themes/detail.php?ID=69708
http://www.inenergy.education/articles/bazovaya-informatsiya/chto-takoe-toplivnyy-element/
http://www.itweek.ru/themes/detail.php?ID=69708
http://research-journal.org/technical/primenenie-vodorodnyx-toplivnyx-elementov-na-avtomobilnom-transporte/
http://wiki.zr.ru/%D0%A2%D0%BE%D0%BF%D0%BB%D0%B8%D0%B2%D0%BD%D1%8B%D0%B5_%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D1%8B
http://beelead.com/avtomobili-toplivnyih-elementah/
http://www.chem.msu.ru/rus/teaching/education-program/spec-tech/9.html

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий