Аварийные режимы работы асинхронного двигателя — Авто Портал

Содержание

Глоссарий специалиста

Селективность — согласование работы установленных последовательно защитных аппаратов, таким образом, чтобы в случае перегрузки или короткого замыкания (к. ) отключалась только та часть установки, где возникла неисправность.

Полная селективность — обеспечивается в случае, когда при последовательном соединении двух автоматических выключателей оборудование со стороны нагрузки (потребителя) осуществляет защиту без срабатывания устройства со стороны питания.

Частичная селективность — отличается от полной тем, что оборудование со стороны нагрузки осуществляет защиту без срабатывания устройства со стороны питания лишь до определённого уровня сверхтока Is (предельный ток селективности).

Зона перегрузки — диапазон значений тока, в котором за срабатывание отвечает тепловой расцепитель (биметаллическая пластина). Представляет собой обратнозависимую характеристику.

Зона короткого замыкания — диапазон значений тока, в котором за срабатывание отвечает электромагнитный расцепитель. Обеспечивает практически мгновенное срабатывание.

Рис. Зона перегрузки и зона короткого замыкания

Полная селективность между модульными автоматическими выключателями

Как правило, специалисты решают задачу согласования рабочих характеристик модульных автоматических выключателей со стороны питания и нагрузки, используя токовый метод. Он основан на выборе аппаратов защиты с разными уставками по току, причём более высокие значения должно иметь оборудование на стороне питания. Для подбора автоматических выключателей используются таблицы селективности и специальное программное обеспечение. Но даже такая тщательная проработка схемы позволяет добиться лишь частичной координации рабочих характеристик модульных автоматических выключателей. Полная селективность обеспечивается только в распределительных боксах, где расчётные токи к. небольшие, что на самом деле редкость. Как правило, даже в квартирных щитах достигается лишь частичная селективность. Рассмотрим такой пример – в электрическом шкафу установлены автоматические выключатели с характеристикой С. Номинальный ток вводного аппарата — 32А, устройства на отходящей линии – 16А. Нижняя граница зоны срабатывания вводного автомата  5In=5·32=160А. Она же является и верхней границей срабатывания для нижестоящего автомата. 1Очевидно, что в данном случае полная селективность не обеспечивается.

Часто задача согласованной работы автоматических выключателей со стороны нагрузки и питания во всём диапазоне сверхтоков остаётся нерешённой, что приводит к авариям. «Не так давно в одном крупном банке из-за чайника, случайно включённого в розетку «чистых» сетей 1, и отсутствия полной селективности в распределительных шкафах были обесточены все компьютеры на этаже, что привело к потере полугодового отчёта», — рассказывает Алексей Азаров, начальник отдела электрических сетей и систем компании «ЭкоПрог».

До недавнего времени полную селективность можно было реализовать, установив в качестве вводного устройства в распределительном щите вместо модульного автоматического выключателя аппарат в литом корпусе. Для указанного оборудования возможны такие способы координации рабочих характеристик, как временной, энергетический и зонный2. Но данное решение не всегда целесообразно, так как оно приводит к таким последствиям, как:

  • удорожание проекта;
  • увеличение занимаемых распределительными шкафами площадей – аппараты в литом корпусе и воздушные автоматические выключатели по своим габаритам значительно превосходят модульное оборудование;
  • сложности в установке и эксплуатации (аппараты в литом корпусе оснащаются электронными расцепителями, которые нуждаются в настройке).

«Заменить модульные автоматические выключатели на аппараты защиты другого типа для инженера означает пожертвовать компактностью и единообразием технических решений, а это не всегда возможно, — утверждает Павел Томашёв, инженер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации. — Специально для того, чтобы решить проблему обеспечения полной координации между модульными аппаратами защиты, наша компания разработала новый селективный автоматический выключатель серии S750DR. Данное устройство – новинка для нашей страны. Оно представляет решение для достижения согласованности рабочих характеристик, при котором невозможно одновременное отключение вышестоящего и нижестоящего аппаратов. В данном модульном автоматическом выключателе реализован дополнительный токовый путь, благодаря которому обеспечивается задержка срабатывания по времени. Линейка автоматических выключателей S750DR включает в себя аппараты от 0,5 до 63А».

Селективный модульный автоматический выключатель обеспечивает координацию рабочих характеристик аппаратов защиты независимо от напряжения сети. Такой аппарат защиты не требует дополнительного питания для замыкания/размыкания контактов и для выполнения защитной функции, поскольку устройство является электромеханическим.

Принцип действия селективного модульного автоматического выключателя

Рис. Схема внутреннего устройства селективного автоматического выключателя

Рассмотрим схему внутреннего устройства селективного модульного автоматического выключателя, представленную на рис. На иллюстрации видны два токовых пути. Один из них — основной, состоит из тех же элементов, что и в обычном автоматическом выключателе: электромагнитной катушки (мгновенный расцепитель), биметаллической пластины (расцепитель перегрузки) и блока основных контактов. Второй — токовый путь, реализованный в аппаратах S750DR, получил название дополнительного. Он состоит из изолирующих контактов, селективного биметалла и резистора.

Ознакомимся с принципом действия селективного модульного автоматического выключателя на практике. В системе, где в качестве вводного устройства используется селективный модульный автоматический выключатель, а в качестве нижестоящего аппарата – обычный автомат, короткое замыкание может произойти в линии нагрузки или между вводным и отходящим устройствами.

Короткое замыкание в линии нагрузки

В момент аварии сработают расцепители аппарата со стороны нагрузки и основного токового пути автоматического выключателя со стороны питания. Однако при этом ток продолжит протекать по дополнительному контуру вводного устройства. Так как аппарат со стороны нагрузки сработал (например, время срабатывания автомата S200 от АББ около 5-8 мс) и отключил повреждённый участок цепи, пружина снова замкнёт блок контактов в основном пути селективного автоматического выключателя. Таким образом, обеспечивается непрерывное протекание тока и бесперебойность питания нагрузок.

Короткое замыкание между вводным и отходящим аппаратами защиты

В момент аварии так же, как и в предыдущем варианте, размыкаются контакты селективного аппарата. Далее, поскольку авария не устранена, селективный биметалл с небольшой задержкой по времени размыкает контакты в дополнительном токовом пути и блокирует пружину. Разомкнутыми остаются и основной, и вторичный контур, что и обеспечивает защиту от к.

Токоограничивающая селективность

В селективных автоматических выключателях реализована токоограничивающая селективность. Она обеспечивается за счёт конструктивных особенностей аппарата: резистора сопротивлением 0,5 Ом и способности устройства быстро размыкать контакты в случае появления к. (примерно за 1 мс), что приводит к возникновению между ними дуги, которая также представляет собой сопротивление. При этом осуществляется резервная защита автоматического выключателя со стороны нагрузки, что позволяет минимизировать воздействие аварии на всю установку и сети питания.

Благодаря токоограничивающей селективности можно выбирать нижестоящий автоматический выключатель с предельной отключающей способностью ниже, чем ожидаемый ток короткого замыкания. «В случае аварии вышестоящий селективный аппарат ограничит сверхтоки введением сопротивления дуги в цепь к. Устройство снизит протекающий ток и поможет нижестоящему модульному устройству отключить повреждение, – поясняет Павел Томашёв (АББ). — Таким образом, за счёт дополнительного токоограничения вышестоящего аппарата серии S750DR отключающая способность нижестоящего автоматического выключателя увеличивается».

Рис. Поддержка следующих за S 750 DRавтоматических выключателей при коротком замыкании

Как показано на рис. 3, независимо от номинального тока аппарата S 750 DR при коротком замыкании значительно снижаются ток к. и удельная пропускаемая энергия.

Инженеры-проектировщики систем электроснабжения уже успели оценить новую разработку. По словам специалистов, серия S750DR значительно упрощает процесс разработки технической документации, так как отпадает необходимость в использовании таблиц селективности и специальных программ подбора оборудования. Удобна новая разработка и с точки зрения эксплуатации – аппарат оснащён встроенной блокировочной панелью. Она позволяет фиксировать положение рычага управления, что исключает возможность доступа посторонних лиц к управлению устройством. Блокировка не влияет на защитные свойства аппарата: расцепитель сработает и предотвратит неполадки в сети, несмотря на фиксацию рычага во включённом положении.

Проектирование селективной установки — задача сложная и трудоёмкая. Подходить к её выполнению нужно ответственно: любая ошибка чревата авариями, которые могут повлечь за собой тяжёлые последствия для персонала и оборудования. Именно поэтому селективность должна обеспечиваться на разных уровнях. Современное оборудование позволяет добиться полной координации работы электрических аппаратов.

1 «Чистыми» сетями называют сети электроснабжения компьютеров и другой офисной техники, чувствительной к скачкам напряжения.

2 Подробнее о различных технологиях обеспечения селективности в сетях электроснабжения можно прочитать по ссылке.

Понятие и теория

Из учебника физики известно, что любое вещество состоит из молекул, а те, в свою очередь, из атомов. На внешней орбите некоторых атомов есть электроны, которые имеют слабую связь с ядром.

Если приложить к этим электронам некоторую силу, они могут оторваться и переместиться. Таким свойством обладают металлы и некоторые другие элементы при особых условиях.

Самыми распространенными металлами, используемые в электротехнике, являются алюминий и медь. Именно из них делают провода для электропроводки.

Но, чтобы получить электрический ток, мало просто оторвать электроны, их еще необходимо сгруппировать и направить, придав им упорядоченное движение.

Для этого существуют различные генераторы постоянного и переменного тока, или источники тока в виде батарей и аккумуляторов.

Различие между батареей и аккумулятором заключается в способности аккумулятора снова заряжаться, пополняя растраченную энергию.

Ток бывает двух видов:

  • переменный;
  • постоянный.

На самом деле существует еще ряд других видов, но поскольку в быту мы сталкиваемся в основным с этими двумя, они и будут разобраны.

Электрическим током называется упорядоченное движение заряженных частиц по замкнутому кругу. Для примера возьмем цепь постоянного тока, состоящую из батарейки, проводов, выключателя и лампочки. Провода служат для соединения всех используемых элементов.

Допустим, у нас получилась такая схема: плюс батареи соединен через провод с одним выводом выключателя, второй вывод выключателя через провод соединен с одним контактом лампочки, а второй контакт лампочки, опять же через провод соединен с минусом батареи. Если выключатель включен, то по собранной цепи будет течь ток, и лампочка загорится, если выключателем разорвать цепь, то лампочка потухнет.

В последнем случае хотя по цепи не идет ток, напряжение присутствует. Оно будет равно напряжению батарейки и определить его можно будет с помощью вольтметра. С одной стороны выключателя будет идти положительный потенциал, по другую его сторону – отрицательный. Положение изменится, если выключатель включить. Теперь плюс и минус будут располагаться по разным сторонам лампочки.

Почему произошло такое изменение? Когда выключатель выключен, то электроны от плюса батарейки, дойдя до выключателя остановились, потому что контакты у него разомкнуты. Следовательно, на другом контакте выключателя этих электрон нет.

Раньше считали, что переносчиками заряда служат положительно заряженные частицы, в некоторых случаях так и есть, но все же основными переносчиками являются электроны, а они имеют отрицательный заряд. Но чтобы не путаться в старых и новых схемах на батарейках ставят знак + на минусовом контакте, и приборы работают по такому же принципу.

Разность между количеством электронов на двух контактах и будет напряжением.

Теперь поговорим о лампочке. Основным ее элементом является нить накаливания. Нить изготавливается из тугоплавкого и имеющего большое сопротивление материала, обычно это вольфрам. Этот материал с трудом пропускает часть электронов поэтому, пройдя через нить лампы, электронов будет гораздо меньше, чем их накопилось до нити.

Кроме того, электроны, прошедшие через лампочку, быстро уносятся к минусу батареи, вот почему теперь напряжение будет наблюдаться на контактах лампочки, а не на выключателе. А что произойдет, если лампочку убрать из схемы?

Варианты защиты от КЗ

В качестве защиты от возникновения короткого замыкания можно использовать:

Автоматы можно устанавливать только на всю систему, а не на отдельные фазы и цепь нуля. В противном случае во время замыкания выйдет из строя нулевой автомат, а вся электросеть окажется под напряжением, т. фазный автомат будет включен. По этой же причине не рекомендуется устанавливать провод меньшего сечения, чем может позволить автомат.

Что происходит при возникновении короткого замыкания

Лампочка, в приведенной выше цепи, считается полезной нагрузкой для источника питания – батарейки. В чем польза лампочки? Она преобразует электрическую энергию в световую.

Если ее убрать, а выключатель напрямую соединить с минусом батарейки и включить его, то электроны мощным потоком устремятся к другой клемме батарейки. Результатом будет разряд батарейки. Вся ее энергия будет расходована напрасно. Возможно, она даже выйдет из строя. В любом случае больше ею воспользоваться не удастся.

Но, кроме напрасно истраченной энергии существует еще один большой минус. Как уже говорилось, лампочка имеет нить накала из вольфрама. Что происходит при прохождении через нее тока?

Так как сопротивление нити большое, то есть электронам, образно говоря, нужно протискиваться через узкие каналы, то они, ударяясь об атомы вольфрама, отдают часть энергии ему. Это приводит к тому, что вольфрам начинает нагреваться и нагревается до такой температуры, что от него начинает исходить свет.

Любой материал обладает сопротивлением электрическому току, будь то провода или выключатель. Поэтому когда лампочку убирают, то нагрузкой становятся провода и выключатель. Они хоть и не так быстро и горячо будут нагреваться, но все же нагрев будет происходить.

Важно. Из этого можно сделать вывод, чем опасно короткое замыкание: происходит ненужный нагрев проводников и напрасно тратится электрическая энергия.

В чем опасность короткого замыкания

Рассмотренный пример с батарейкой — это всего лишь миниатюра, показывающая наглядно, к чему приводит короткое замыкание. Емкость и напряжение батарейки невелико, поэтому и последствия от короткого замыкания незначительны – испорченная батарейка.

В быту же чаще всего говорят о коротком замыкании, связанном с домашней сетью, в которой напряжение составляет минимум 220 В. Мощность трансформатора, от которого подается питание на дом, составляет сотни тысяч или миллионы Ватт. Конечно, сопротивление проводов ограничивает этот ток, но не очень сильно.

В советское время линии электропередач состояли из натянутых на опорах проводов. При сильном ветре, если провода были недостаточно натянуты, их перехлестывало. Слышался сильный треск, гул, летели искры. Зрелище не для слабонервных. Иногда провода припаивались друг к другу, обгорали и падали на землю.

Если падал фазный провод, идущий от подстанции, то он создавал огромную опасность для окружающих. Гибли и люди, и животные. К счастью, сегодня все меньше остается таких линий, но в частном секторе, на дачах, в деревнях еще можно встретить такую опасность.

Что касается квартир и частных домов то здесь кроется другая опасность. Как уже было рассмотрено, короткое замыкание – это создание цепи без нагрузки.

При этом высвобождается огромная энергия, которая очень быстро разогревает провода. В месте замыкания могут возникать искры в виде раскаленного металла. Попадая на горючее вещество, они его воспламеняют.

При возникновении короткого замыкания главная опасность заключается в вероятности возгорания и пожара.

Опасно! При тушении водой такого пожара под напряжением приведет к поражению электрическим током.

Поэтому, чтобы защититься от таких неприятностей, в каждом доме обязательно должна быть защита от короткого замыкания.

Защита от короткого замыкания

Для того чтобы понять, как защищаться от короткого замыкания, необходимо повторить, что такое короткое замыкание? Итак, короткое замыкание – это замкнутая цепь, по которой проходит ток большой мощности.

Поэтому защита должна реагировать именно на большой ток. В любом шкафу учета, кроме счетчика стоят автоматические выключатели. Вот они и реагируют на большой ток. Причем автомат реагирует на два разных тока:

  • ток короткого замыкания;
  • ток перегрузки.

Признаком короткого замыкания является лавинообразный скачек тока, именно на него должен реагировать первый защитник. Из чего состоит защита и как она работает? Известно, что если по проводу проходит ток, то вокруг него образуется электромагнитное поле. Это свойство используется в автомате.

Из толстого медного провода делается катушка – соленоид, внутри которой располагается сердечник. Сердечник, в свою очередь, соединен с расцепителем – устройством, которое разъединяет цепь.

Число витков рассчитывается так, чтобы при достижении определенного тока она смогла сдвинуть сердечник и через него расцепить цепь. После устранения неисправности механизм устанавливается в первоначальное положение с помощью рукоятки на автомате.

Провода, проведенные в помещении, способны пропускать ток определенной силы, при превышении этого значения они начнут нагреваться, так как обладают сопротивлением. Это может привести к их нагреву до такой степени, что изоляция, находящаяся на них, начнет плавиться. Это может вызвать пожар или короткое замыкание. Чтобы этого избежать, в автомате предусмотрена другая защита – тепловая.

Она представляет собой биметаллическую пластину, через которую проходит ток питания. Когда ток начинает нагревать провода, он также греет и эту пластину.

Пластина, в свою очередь, понемногу начинает менять свою форму до тех пор, пока не разомкнет расцепитель, прекратив подачу тока.

Биметалл – два соединенных разных металла, у которых скорость расширения при нагревании разная. Поэтому когда пластина нагревается, она меняет свою форму, изгибаясь в одну или другую сторону.

Включить автомат можно будет после того, как пластина остынет и вернется в первоначальное положение.

Виды коротких замыканий в быту и в электроэнергетике

По сути можно разделить виды коротких замыканий на два типа: бытовые и промышленные.

В быту где чаще встречается сеть с глухозаземленной нейтралью (3 фазы, ноль и заземление), здесь можно отметить такие виды КЗ:

  • однофазные;
  • двухфазные;
  • трехфазные.

В первом случае фазный провод замкнут на ноль или землю. Во втором, то же самое, или на другую фазу, или также на ноль. При трехфазном замыкаются все три фазы между собой.

Для ознакомления в энергетике согласно ГОСТ 52735-2007 можно встретить такие виды КЗ:

  • – 3-х фазное, обозначается К(З): замыкание между всеми тремя фазами;
  • – 2-х фазное, обозначаетсяК(2): замыкание между двух фаз;
  • – 2-х фазное с землей, обозначается К(1,1): замыкание между двумя фазами и одновременно на землю;
  • – 1-но фазное на землю, обозначается К(1): замыкание одной из фаз на землю или заземленные части оборудования;
  • – двойное КЗ на землю, обозначается К(1+1): это такое КЗ когда две разные фазы замыкаются на землю при этом не замыкаясь между собой.

Зачем нужно знать значения тока КЗ и сопротивления петли “Фаза-ноль”?

Я уже много чего рассказал в статье. Но какой нам толк от знания этих параметров электросети?

Знание тока КЗ (или сопротивления петли “Фаза-ноль”) и мощности нагрузки позволяет нам правильно и оптимально (по соотношениям безопасность/функциональность/надежность/цена) выбрать основные элементы энергосистемы – аппараты защиты и сечение кабелей. Далее немного подробнее.

Безопасность

Об этом я уже говорил, но повторю. Электрические сети должны быть безопасными на всех участках и во всех режимах. Для этого, кроме изоляции, применяют автоматические выключатели и устройства, управляемые дифференциальным током (УЗО). Вкупе с защитным заземлением, эти устройства защищают оборудование от КЗ и перегрузок, а человека – от опасности прямого или косвенного прикосновения.

Функциональность

Зная ток КЗ, можно выдать заключение о необходимости установки стабилизатора, или замены кабельной линии на новую. Кроме того, можно сделать вывод о селективности – можно ли её обеспечить хотя бы частично?

Надежность

В случае высокого тока КЗ необходимо применить выключатели с высокой отключающей способностью для надежного функционирования в момент КЗ. Кроме того, должны быть предъявлены высокие требования к качеству монтажа и комплектующих.

Цена

Тут понятно – выполнение предыдущих пунктов значительно влияет на цену всей электросети.

Высокий ток КЗ – это хорошо или плохо?

Как я показал на графике ранее, чем дальше место замыкания от источника питания, тем меньше будет ток короткого замыкания, поскольку сопротивление линии будет больше. Высокий ток КЗ обычно бывает в тех местах электросети, которые расположены наиболее близко к подстанции, а кабельные линии имеют большое сечение проводов. В питающих сетях с напряжением 0,4 кВ относительно высокими считаются токи КЗ более 6кА, а токи КЗ выше 15 кА практически не встречаются. Итак, что мы имеем:

Минусы низкого тока КЗ

  • большое падение напряжения при достаточно мощной нагрузке;
  • как правило, низкое напряжение на электроприборах. При этом стабилизатор поможет не всегда;
  • нестабильность напряжения на электроприборах в зависимости от времени суток или времени года. По нормам на напряжение и его допуски я провёл расследование;
  • высокое (вплоть до бесконечности) время срабатывания автоматических выключателей при КЗ на землю (работает только тепловой расцепитель);
  • необходимость установки автоматических выключателей с характеристикой отключения “В” с целью более вероятного срабатывания электромагнитного расцепителя при КЗ. Этот спорный вопрос обсуждается в моей статье на Дзене Зачем ставить автоматы с характеристикой “В”;
  • обязательная установка УЗО – при этом, кроме своих “основных” обязанностей (отключение питания при высоком токе утечки, а также для защиты человека при прямом и косвенном прикосновении), УЗО выполняет функцию защиты от КЗ на землю (ПУЭ 1.7.59, 7.1.72).

Плюсы низкого тока КЗ

  • можно устанавливать дешевые автоматические выключатели с низкой номинальной наибольшей отключающей способностью (Icn = 4500 А);
  • сравнительно легко можно обеспечить селективность между вводным и нижестоящим автоматами. Но нужен расчет и измерение точного значения тока КЗ,
  • низкий пусковой ток электродвигателей и другой инерционной нагрузки. Статья Что такое пусковой ток, как его измерить и посчитать.

Минусы высокого тока КЗ

  • невозможность обеспечить селективность между вышестоящими и нижестоящими автоматами. Выход – установка рубильника либо селективного по времени автоматического выключателя;
  • необходимость установки АВ с высокой номинальной наибольшей отключающей способностью (Icn = 6000, 10000 А и т.д.). Отключающая способность должна быть выше, чем ток КЗ в начале защищаемого участка (ПУЭ п. 3.1.3);
  • большие негативные последствия при возникновении КЗ.

Плюсы высокого тока КЗ

  • легко гарантировать стабильное напряжение на нагрузке и вообще качество электроэнергии;
  • имеется перспектива подключения новых потребителей и увеличения нагрузки;
  • гарантированное отключение линии при КЗ.

Селективность автоматических выключателей и УЗО – отдельная большая тема, в планах есть.

Резюмируя плюсы и минусы, можно сказать, что значение тока КЗ – палка о двух концах. В бытовом секторе ток КЗ часто бывает низким, и его стараются увеличить, прокладывая новые линии с высоким сечением проводов и устанавливая новые трансформаторные подстанции. В серьезной энергетике наоборот, применяют методы по уменьшению тока КЗ.

В цепи постоянного тока

В домашних условиях постоянный ток для бытовых нужд не используется. В основном это относится к электрооборудованию. Для защиты могут быть использованы плавкие предохранители, автоматы или схемы защиты.

Без специальной подготовки и знаний в такие устройства лучше самому не лезть, а отвезти в мастерскую или вызвать специалиста. Но стоит отметить, что принцип замыкания в постоянной цепи ничем не отличается от замыкания в переменном токе.

Последствия могут быть похожими: возникновение пожара или в редких случаях и неблагоприятных условиях — поражение человека постоянным током.

В каких случаях КЗ работает на благо?

На высоковольтных подстанция к силовым трансформаторам подключают устройство под названием короткозамыкатель. По конструкции это заземляющий нож который в любой момент готов намеренно «закоротить» одну из фаз на землю.

При повреждении внутри трансформатора или на его ошиновке происходит срабатывание короткозамыкателя. Когда он включается происходит короткое замыкание, что приводит к появлению больших токов и отключению питающей линии с противоположного конца.

Еще один из примеров в энергетике «плавка гололеда на линиях электропередач». На воздушных линиях электропередач для защиты линии от гололедообразования во обледенений применяют плавку гололеда. Подключаются они одним концом к самому проводу, а другим к земле.

По принципу КЗ работает электросварка, но в отличие от обычного короткого замыкания, ток в сварке регулируется.

Преднамеренное КЗ

В электротехнике есть прибор, называется варистор. Он часто используется в электрооборудовании для защиты аппаратуры от перенапряжения.

Действует по принципу рассмотренного выше короткозамыкателя. Некоторые специально устанавливают его в осветительную цепь для предотвращения перегорания ламп во время больших скачков напряжения или аварий в сети. При их срабатывании домашняя сеть переходит в режим КЗ и автоматы отключают защищаемую цепь.

Все рассмотренные примеры использования короткого замыкания – это вынужденная мера, указывающая на аварийную ситуацию. Поэтому прежде чем включать автоматы после их срабатывания, необходимо убедиться в нормализации питающей сети.

Как предотвратить короткое замыкание

На этот вопрос есть короткий ответ: чтобы не произошло короткое замыкание, соблюдайте правила эксплуатации электрических приборов. Конкретные рекомендации ниже помогут предупредить короткое замыкание.

Следите за состоянием проводки

Аварии обычно происходят в старых зданиях, проводка которых прокладывалась десятки лет назад. Сечение кабеля старой проводки часто не соответствует мощности и силе тока, необходимым для работы современных электроприборов: кондиционеров, стиральных машин, микроволновых печей, электрочайников и так далее. Это приводит к нагреву кабеля и риску короткого замыкания.

Старую проводку нужно своевременно менять. Сечение кабеля новой проводки должно соответствовать потребляемой мощности и силе тока в сети. Эти параметры устанавливаются поставщиком электроэнергии, а посмотреть их можно в договоре на подключение здания к электросети. Выбрать нужное сечение кабеля поможет таблица.

Таблица для выбора сечения кабеля по мощности и силе тока

Используйте подходящие автоматические предохранители

Рекомендация в первую очередь касается бытовых потребителей: владельцев квартир, домов, дач. Использование вместо предохранителей так называемых «жучков», а также установка неподходящих автоматических выключателей повышает риск нагрева кабеля и короткого замыкания.

Пример: поставщик электроэнергии согласовал установку «автомата» 16А. Этот предохранитель рассчитан на разрешенную потребляемую мощность и силу тока. Он срабатывает, когда сила тока превышает 16 ампер и защищает сеть от аварии. Если установить в эту сеть «автомат» 40А или «жучок», потребитель не будет страдать от частых срабатываний предохранителя. Но сеть останется незащищенной от ненормативных нагрузок. Это повышает риск повреждения кабеля и короткого замыкания.

«Жучком» называют самодельный или самостоятельно модифицированный предохранитель. Обычно это предохранитель, в котором вместо плавкой вставки используется толстая проволока.

Предохранитель с «жучком»

Проверяйте работоспособность кабеля

Перед монтажом проводки проверяйте кабель на целостность изоляции и отсутствие короткого замыкания. Кабель с ленточной броней надо проверять на замыкание на броню. Это проще всего сделать с помощью мегаомметра.

Мегаомметр поможет выявить короткое замыкание

Не эксплуатируйте электросети без заземления или зануления

Заземление и зануление само по себе не предупреждает короткое замыкание. Но благодаря этой защите при коротком замыкании сила тока мгновенно уменьшается до безопасного для человека и оборудования уровня.

В многоквартирных и частных домах заземление реализовано так, чтобы при коротком замыкании срабатывали автоматы защиты. Поэтому бытовым потребителям достаточно использовать надежные предохранители, как описано выше.

Учитывайте схему электропроводки в здании и на участке во время ремонта

Во время ремонта или земляных работ на участке важно не повредить проводку. Поэтому при сверлении или штроблении стен важно проверить участок с помощью тестера скрытой проводки. А перед выполнением земляных работ важно изучить схему проводки на участке.

Полезное КЗ

Ток, возникающий по причине подобного явления, может принести не только разрушение, но и пользу. Существует ряд оборудования, функционирующего в условиях повышенного значения тока. Классическим примером таких устройств является электродуговая сварка. Ее работа обусловлена соединением сварочного электрода и контура заземления.

При существенных перегрузках функционирование таких аппаратов кратковременно. Его обеспечивает сварочный трансформатор большой мощности. В месте, где происходит соприкосновение 2 электродов происходит выработка тока довольно значительной силы. Это приводит к выделению большого количества тепловой энергии, которой достаточно для плавления металла в области соприкосновения. Таким процессом обеспечена работа сварки. Шов получается аккуратным, долговечным и прочным.

Преднамеренное использование

Короткое замыкание лишь в некоторых случаях оправдывает себя, а именно:

  • Для обесточивания участка цепи, на которой человек попал под воздействие опасного напряжения. Если индивид попадает под опасный потенциал, а в цепи нет УЗО, и автоматический выключатель находится далеко от места происшествия, то для спасения человека выполняется искусственное КЗ, отключающее линию;
  • При отключении цепей высоковольтных участков от источника напряжения с помощью короткозамыкателей. Короткозамыкатель – это коммутационный аппарат, имеющий мощную контактную часть, которая конструктивно рассчитана и предназначена для создания искусственного короткого замыкания в сетях электроснабжения;
  • В сварочных аппаратах. Конструкция этих устройств рассчитана на технологическое создание электрической дуги. За счёт низкого напряжения (практически безопасного) и электрического соединения с землёй через сварочный электрод, который плавится, выполняется сваривание металлических поверхностей.

Преднамеренное короткое замыкание с помощью короткозамыкателя.

Электрическая энергия и возникающее в сетях короткое замыкание – это опасный процесс, который может привести к ужасным последствиям с человеческими жертвами. Однако, если правильно рассчитать и установить токоограничивающие аппараты, а также своевременно проверять их работоспособность, то его можно контролировать. Быстрое реагирование качественной защитной аппаратуры на режим КЗ предотвратит крупные аварии.

Как измерить ток короткого замыкания?

Для измерения тока КЗ в продаже есть много профессиональных приборов различных производителей, по цене от 10 тыс. рублей. Все они прекрасно справляются со своей задачей.

Замечательно, что есть и бытовое исполнение на ДИН-рейку – например, ВРТ-М02 от фирмы Меандр. Прибор имеет размеры автоматического выключателя, имеет необходимые настройки и индикацию напряжения. При понижении тока КЗ ниже порога срабатывает индикация. Хочу себе такой.

Что делать, если измеренный ток КЗ слишком низкий?

Допустим, мы измерили прибором и получили значение тока КЗ в розетке (как правило, измерение проводят в самой удалённой точке). Как понять, что этот ток – слишком низкий? Это оценивается по критерию гарантированного срабатывания электромагнитного расцепителя автоматического выключателя в измеренной цепи. Логично, что для этого ток КЗ должен быть больше, чем верхний предел диапазона расцепления. Напоминаю, для характеристики “В” разброс 3…5 In, для “С” – 5…10 In, для “D” – 10…20 In. Чтобы сказать точнее, обратимся в ПУЭ (п. 139):

139. В электроустановках до 1 кВ с глухозаземленной нейтралью в целях обеспечения автоматического отключения аварийного участка проводимость нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или нулевой защитный проводник возникал ток КЗ, превышающий не менее чем в 4 раза номинальный ток плавкой вставки ближайшего предохранителя и не менее чем в 6 раз ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику. При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (без выдержки времени), следует руководствоваться требованиями, касающимися кратности тока КЗ и приведенными в 1.

Как я понял, в первой части 7. 139 говорится только о тепловом расцепителе – его номинальный ток должен быть по крайней мере в 6 раз меньше тока КЗ. Во второй части этого пункта, а также в п. 79 говорится о максимальном времени отключения при КЗ (0,4 с), которое должно быть обеспечено только электромагнитным расцепителем. При этом четко не указано о выборе АВ с учетом его характеристики отключения.

Из-за этой расплывчатости формулировки пользуются правилом, изложенным в ПТЭЭП (проверка срабатывания защиты при системе питания с заземленной нейтралью, п. 4), где говорится о том, что при замыкании на нулевой защитный проводник ток КЗ должен быть не менее “1,1 верхнего значения тока срабатывания мгновенно действующего расцепителя”.

То есть, для автомата В10 ток КЗ  в конце линии, которую он защищает, должен быть не менее 10х5х1,1 = 55 А. Если же установлен автомат С25, ток КЗ должен быть не менее 25х10х1,1 = 275 А.

Если же ток КЗ меньше, допустимое время срабатывания отнюдь не гарантируется. Что же делать? Тут два выхода:

  • увеличивать ток КЗ, для этого нужны затраты на прокладку новой питающей линии (по крайней мере, её самого слабого звена),
  • уменьшать номинал автомата (например, 25 А на 16) и букву характеристики отключения (с “С” на “В”) в ущерб максимальной мощности нагрузки.

Чем определяется напряжение и ток при коротком замыкании?

Выше я сказал, что КЗ может произойти в любой точке линии. Давайте разбираться, как будет зависеть ток и напряжение в зависимости от места КЗ.

Короткое замыкание – это физическое явление. Ток короткого замыкания – это параметр питающей электросети, измеряемый в амперах или килоамперах (кА).

Немецкий физик Ом со школьных лет учит нас, что напряжение и ток определяются через сопротивление цепи:

Ток короткого замыкания, как и любой ток, тоже рассчитывается по закону Ома и зависит от напряжения и сопротивления на данном участке цепи. Поскольку сопротивление проводов в реальной жизни – это не только то, что показывает мультиметр, но и индуктивная составляющая, закон Ома для тока КЗ запишем в более общем виде:

В числителе U – номинальное напряжение в сети (напряжение холостого хода на выходе трансформатора на ТП). Число, которое получается при расчетах в знаменателе – полное сопротивление цепи Z, от которого и зависит ток КЗ. Рассмотрим схему однофазного питания квартиры и реальный случай КЗ с замкнувшим феном:

Замыкание в конце питающей линии (ток КЗ минимальный)

В схеме обозначены полные сопротивления различных участков питающей сети:

  • Z1 – внутреннее сопротивление трансформатора на подстанции с учетом пересчитанного сопротивления высоковольтной части,
  • Z2 – кабельная линия от ТП к распределительному пункту (РП) многоквартирного дома,
  • Z3 – кабельная линия от РП до квартирного щитка,
  • Z4 – кабель от щитка до розетки в одной из комнат,
  • Z5 – переноска от розетки до замкнувшего фена.

Фен сгорел и устроил короткое замыкание

Вот как может выглядеть график уровня напряжения на разных участках – от клемм трансформатора на подстанции до замкнувшей вилки фена:

Понижение напряжения до нуля в результате КЗ в конце линии

Падение напряжения сопровождается выделением тепла на всех участках питающей линии. На мощных участках с большим сечением проводов доля “квартирного” тока КЗ ничтожна, поэтому там падение небольшое (участки с сопротивлением Z1, Z2).

Статья про падение напряжения. Расчет в низковольтных цепях и в цепях постоянного тока, без учета реактивной составляющей.

В связи с понижением напряжения в результате КЗ можно отметить, что это будет заметно на параллельных нагрузках, подключенных например к тому же РП. При КЗ или сильной перегрузке у одного из потребителей лампочки в соседних домах и подъездах станут гореть тусклее. Бывало?

А вот как может выглядеть изменение тока КЗ от источника до места замыкания:

Уменьшение тока при удалении от источника электроэнергии

Типичное значение тока КЗ на клеммах трансформатора мощностью до 1000 кВА, которые применяются для питания городских потребителей – порядка 10 кА. А вот в розетках наших квартир ток КЗ может составлять значение порядка 1000 А. В частном секторе и сельских районах значение тока КЗ может быть гораздо меньше – до 100 А.

Трансформатор на подстанции 10000/0,4 кВ мощностью 1000 кВА с глухозаземленной нейтралью вторичной обмотки. Примерно от таких питаются наши “районы, кварталы, жилые массивы”.

В чем опасность?

Последствия короткого замыкания могут быть следующими:

Многих людей интересует вопрос о том, как посчитать, чему равна сила тока при коротком замыкании. Для этого необходимо воспользоваться законом Ома: сила тока в цепи прямо пропорциональна напряжению на ее концах и обратно пропорциональна полному сопротивлению цепи.

Вычисление КЗ осуществляется по формуле: I= U/R (I — сила тока, U — напряжение, R — сопротивление).

Макеты модульки ABB

Делаю мелкую заметку, потому что давно пора ей появиться: задрался я одно и тоже в комментариях рассказывать. И сразу предупреждаю: я сам учусь (и рад делать это всю жизнь, познавая мир), поэтому я пока не разобрался глубоко в том, как это всё работает. Но я достаточно понял, чтобы объяснить себе и всем на пальцах, почему в некоторых случаях автоматы будут срабатывать одновременно при коротком замыкании, а не друг за другом. Наука, область расчётов и само свойство того, чтобы при нештатных ситуациях отрубился только нижестоящий автомат в щите, называется селективность. Можно говорить «селективность соблюдается», а можно «рассчитать селективность», а можно «селективный автомат».

То, что я хочу пояснить, на самом деле просто и тупо. Но почему-то много народа на этом моменте спотыкается. Нас интересует, почему в варианте щита «вводной автомат на 50А и автомат в щите на 16А» не всегда будет вырубаться только мелкий автомат на 16А (например при замыкании в розетке), а часто ещё и весь вводной автомат. Вокруг этого тоже ходится всякая мистика, как вокруг УЗО. На форумах тоже дерутся на тему «А у меня вот стоит 50А на вводе и всё хорошо работает» или «А у меня стоит 32А на вводе и тоже сначала первым 16А выбивает, это потому что у меня ИЭК» или «А у меня и 50А выбивает и 10А выбивает одновременно и я затрахался производителей подбирать, чтобы не выбивало; поставил в квартирном щите ещё один автомат на 40А на ввод — так теперь все три выбивает». А ещё из-за этого народ начинает мыслить в немного не ту сторону. Например хочет поставить на ввод автомат категории отключения D (тут можно вспомнить про эти буквы), шоб не выбивало. И не понимает, что такой автомат вообще не сможет вырубить вводной кабель щита, если что-то случится.

А на самом деле всё крутится вокруг одной простой штуки: ТОК КОРОТКОГО ЗАМЫКАНИЯ. Вот именно из-за него у нас то соблюдается селективность, а то нет, и то все автоматы в цепочке срабатывают, а то только групповой. А то и групповой может не сработать, если он неверно выбран. Попробуем разобраться? Для тех, кто интересуется ещё плотнее, я нашёл АББшный справочник по селективности. Вот он: ABB_SelectivityGuide. pdf (3. 5 Мб).

Вспоминаем простую физику из средней школы. Если кто помнит, там были всякие скучные задачки вида «В цепи с питанием 12 вольт находятся три сопротивления номиналами по 10, 3 и 8 ом. Рассчитайте ток в цепи и напряжение на каждом из сопротивлений». Все эти задачки были скучны, потому что они абстрактны. Вообще, абстрактное обучение — это жопа. Считается, что оно должно развивать широту и ассоциативность мышления, но на деле оно их убивает: нахрен запоминать что-то, если не понимаешь зачем запоминать? А вот когда тебе поясняют на примере, а потом говорят «действуй по тому же принципу», то обучение идёт в сто раз легче и интересней.

Так вот давайте попробуем сообразить, чего у нас будет в цепи, если случится короткое замыкание. Сначала надо понять, а вообще что для нас эта «цепь» и какая она. И вот тут-то и лежит самое интересное, про которое все и забывают. То что цепь питания нашей розетки начинается от силовой подстанции (ТП — трансформаторная подстанция или некоторый вид дур)! Вот как это всё может выглядеть:

Схема питания розетки от подстанции

Если это всё сообразить, то сразу же уже отметается куча идиотов, которые, например, заставляют ставить два автомата в вводном щитке дачного дома: один до счётчика, а другой — после. И поясняют это как «ну так при замыкании ток до счётчика не дойдёт, его этот автомат, который после счётчика стоит, и отключит и дальше не пустит». Это всё — полный бред и маразм. Вот как пойдёт ток: от подстанции, по кабелю, который питает дом, через щитовую дома, через этажный стояк, через этажный щиток, вводной автомат там, через кабель до квартирного щита, через его провода, через автомат в нём, через кабель розетки — и до самой розетки и до места замыкания.

Путь тока короткого замыкания (от подстанции)

Вот мы и получили нашу задачку из физики. Ведь кабели имеют внутреннее сопротивление, а подстанция способна выдать очень большой ток (представляете — мощный трансформатор в ней, который питает несколько домов, замкнуть накоротко). И вот этот вот ток течёт по всем кабелям и проводам, и ограничивается только внутренним сопротивлением этих кабелей.

Что нам там физика говорит про последовательное соединение? Она говорит, что общее сопротивление цепи будет равно сумме отдельных сопротивлений, а ток… а вот ток будет ОДИНАКОВЫЙ на всех участках этой цепи! То есть, получаем вот чего: ток, который потечёт от подстанции до розетки (через все щиты и автоматы в них) будет зависеть от:

  • Мощности подстанции: чем она больше, тем меньше сопротивление самих обмоток трансформатора и больше ТКЗ.
  • Сечения питающих кабелей: чем больше сечение кабеля (а оно зависит от того тока, который мы будем по нему гонять), тем меньше его сопротивление и опять же больше ТКЗ.
  • Длины кабелей. Чем она больше — тем больше сопротивление кабелей и меньше ТКЗ.

Есть определённые методы, как всё это подсчитать. И в некоторых случаях (для всяких офисов и промышленных фигней) этот ТКЗ ОБЯЗАТЕЛЬНО надо считать. Этот момент я не изучал и хочу как-нибудь взять урок у камрада Alexiy. В любом случае для этого расчёта надо или докопаться до главного инженера здания, который должен поднять проект этого здания и вытащить оттуда данные. А если ему лень, не может или этого нет — то надо поднимать все данные на кабели, на модель трансформатора в подстанции — и считать всё самому.

Величина ТКЗ и отключающая способность.

Сначала потрепемся про этот момент. Вот все знают, что на автомате в квадратике есть некоторые цифры. Обычно это «6000» или «4500» для бюджетных серий. Это число тока замыкания в амперах (тот самый наш ТКЗ), который автомат сможет нормально и штатно отключить много-много раз. Представляете, как интересно и круто: маленький автомат в 17,5 мм шириной может погасить адскую плазму с током до 6000 ампер!

Причём оказывается, есть номинальная отключающая способность и предельная. Ток номинальной отключающей способности автомат должен отключить три раза за минуту и при этом должен и дальше работать как обычно. А в предельной — три раза за минуту выключить и дальше работать не обязан. Это знание меня навело на интересную мысль: в некоторых форумах про ИЭКовские и аналогичные китайские автоматы писали то, что они три раза замыкание отключают и потом ломаются. Так вот не мухлюет ли кто-то там с этими параметрами и не выдаёт ли предельную способность за номинальную?

Возвращаемся к ТКЗ. Так вот в некоторых случаях может быть вот какое западло. Например, снимаем мы помещение на каком-нибудь старом заводе. Подстанция там мощная, потому что рассчитана на кучу адских станков. Положим, нам выделили автомат на 50А. НО линия у нас длинная (например, метров 100 от щитовой цеха), и вместо кабеля сечением в 10. 16 квадратов мы должны заложить кабель сечением на 35 квадратов, чтобы из-за длинной линии у нас не было потерь напряжения (эти сечения взяты от балды для примера).

И из-за этого может получиться так, что благодаря большому сечению кабеля мы получим большой ТКЗ. И иногда может ДАЖЕ не хватить обычной модульки: она просто не пройдёт по отключающей способности. То есть, обычный автомат на 50А просто ВЗОРВЁТСЯ при замыкании, а не отключит ввод. В этом случае нам понадобятся автоматы с большей отключающей способностью. Например, есть автоматы серии S200P, у которых она 10 кА (или дифавтоматы серии DS202C тоже на 10 кА) или серии S800 (10. 25 кА). А в некоторых случаях вообще понадобится ставить автомат в литом корпусе (20. 100 или выше кА), например TMax и TMax XT.

Тут тоже есть хитрая задумка производителей: например кабель из нашего примера на 35 квадратов вы просто не сможете запихать в обычную модульку на 6 кА. И вот не надо жилы кабеля для этого спиливать! Лучше задумайтесь, почему оно туда не лезет: может быть это сделано не просто так? Поэтому, когда мы собирали щит в СИТИ, то хоть нам и нужен был вводной автомат на 40А, но кабель у нас приходил туда на 70 квадратов. И вот поэтому для перестраховки (потому что данные про ТКЗ так и не удалось не из кого вынуть) был поставлен автомат с большой отключающей способностью. Во как!

Почему не всегда соблюдается селективность при замыкании?

Ну а теперь возвращаемся к нашей цепочке автоматов. Пущай у нас будет вводной автомат на 63А (поставим ПОБОЛЬШЕ, хехе, ШОП НЕ ВЫБИВАЛО) и автомат на розетку на 16А. Применим наши знания о том, что ТКЗ зависит от всех-всех цепей, начиная от подстанции и то что в момент замыкания ТКЗ будет ВЕЗДЕ одинаковый (цепь же последовательная!).

Ещё раз. За счёт того, что у нас последовательная цепь, ТКЗ в момент замыкания ВЕЗДЕ одинаковый: и в трансформаторе подстанции, и в проводах стояка, и в проводах к розетке.

Что получается? Я точно не знаю, какие ТКЗ бывают в каких домах, но знаю что в некоторых при КЗ рубится и автомат на 16А и ввод на 63А, а в некоторых — нет. Поэтому возьмём значение от балды так, чтобы пример сошёлся. Пусть ТКЗ будет равен в 600А. Это значит что 600А пошло через наш вводной автомат на 63А и через автомат на розетку на 16А.

Значения тока короткого замыкания и автоматы

Внимание, щас будет фокус! В последовательной цепи ток везде одинаковый. Это значит что в одну и ту же секунду 600А прошло через автомат на 16А. И он вообще прям гарантированно обязан отключить линию (даже если это будет D16, то при токах 160. 320А он сработает). И в тот же самый момент времени те же 600А идут через вводной автомат на 63А. C63 сработает в диапазоне 315. 630А, а наш ток в 600А в эти пределы попадает. И поэтому вводной автомат на 63А тоже совершенно честно ОБЯЗАН сработать.

Причём если воткнуть групповые автоматы категории B, то ничего может и не измениться: ток-то всё равно течёт одновременно через всю цепь из двух автоматов, и всё. Максимум на что мы можем рассчитывать — это на то, что Bшный автомат успеет сработать быстрее, разомкнуть цепь, и вводной автомат не успеет досработать. А может и успеет.

Вот так и работает эта фишка. Просто? Да до ужаса просто и логично. Но понять это тяжело было даже мне. Точнее, мне было тяжело объяснить другим. Повторю ещё раз: в некоторых случаях ТКЗ настолько большой, что его хватает на то, чтобы сработали оба автомата. Соберём выводы и разные варианты:

  • Вводной автомат мы обязаны выбирать по выделенной мощности и по сечению вводного кабеля. Поставить его ПОБОЛЬШЕ мы не сможем: не выдержит вводной кабель.
  • Заменить категорию вводного автомата (например воткнуть D) мы, может быть, и не сможем: есть риск что такой автомат при настоящем замыкании ввода просто не выключится — не хватит величины ТКЗ для этого.
  • Если стояк гнилой, провода слабые и подстанция старая (или просто линия очень длинная), то в некотором случае ТКЗ может быть вообще очень низким (да хоть 100-150 А), и его просто не хватит, чтобы сработал автомат категории C. И тогда надо ставить автоматы категории B, чтобы они могли сработать. Или дали такую надежду =)

С тем, как всё это проектировать, учитывать и рассчитывать, я пока не разобрался, как уже писал. Существуют специальные программы, которые могут построить кривые срабатывания каждого конкретного автомата и наложить их друг на друга. Если эти кривые перекрываются друг с другом — то автоматы могут сработать одновременно. А если не пересекаются — то с селективностью всё будет хорошо. А ещё в каталогах модульки есть специальные таблицы, в которых показано при каком ТКЗ какие автоматы могут быть селективными друг с другом. Вот на примере ниже я взял автомат на C63А (красная кривая), на B16 (синяя кривая), C16 (розовая пунктирная кривая).

Программа ABB Curves для построения кривых

И вроде как по этим графикам видно, что при ТКЗ до ~500-600А (шкала там логарифмическая) селективность будет. А при ТКЗ в 1 кА — вообще ни фига не будет. Вот как-то так это можно прикинуть. Этому я ещё хочу поучиться.

Что делать?

А ничего! Есть два варианта: один сложный, а второй — дорогой, но брутальный. Сложный вариант — это поднять докуму и рассчитать ТКЗ на линии. И после этого посмотреть, чего такого можно воткнуть на ввод так, чтобы и выделенную мощность не превысить, и селективность получить. Или же просто купить на ввод автомат серии ABB S750DR. Они заморочились и специально разработали хитрую серию автоматов, которая имеет задержку срабатывания, чтобы дать время отрубиться обычной модульке.

Автоматы эти имеют размеры в 1,5 раза больше обычных (вот ссылка на пост с фотографиями) и им надо оставить побольше свободного места сверху и снизу рейки. Но зато если взять такой автомат на 16А и обычный автомат на 16А, то при глухом КЗ (два гвоздя в розетку) первым всё равно сработает обычный. А если коротнуть линию на самом S750DR — то он и сработает.

Селективный автомат ABB S750 DR и обычная модулька

Основное западло, которое случается — это селективность на трёхфазном вводе с вводным автоматом на 25А — те самые 15 кВт трёхфазной мощности. ХРЕН вы его с обычной модулькой заселективите. Тут поможет ТОЛЬКО S750DR, и больше ничего. И вам надо решить, что лучше: бегать на улицу при КЗ, или поставить S750DR, но бояться что его могут с уличного щита спереть.

У меня сложилась вот какая методика:

  • Однофазные щиты я собираю на УЗОшках и автоматах категории B всегда. На большом номинале вводного автомата это может дать попытку изобрести селективность по методу «B может быть успеет сработать раньше C», а на хилом стояке (ведь однофазный ввод бывает в старых домах с газом и гнилыми стояками) автомат категории C вообще может не сработать.
  • Трёхфазные щиты я собираю почти всегда на дифавтоматах (в кризис я родил бюджетную схему, но дифы рулят), и использую их категории С, потому что на трёх фазах линия чаще всего новая, ТКЗ для C10..C16 хватит, а при таком номинале вводного автомата категория B всё равно ни фига не поможет. Да и дифы и двухполюсные автоматы категории C проще достать, чем дифы категории B.
  • Я стараюсь плодить как можно меньше цепочек из автоматов. В том числе и поэтому я не дублирую вводной автомат в квартирном щите, а ставлю там только рубильник, оставляя такую цепочку: вводной автомат в щите на столбе или в этажном щите и сразу групповые автоматы отходящих линий. А всякие уроды-сбытовики с «поставим автомат до счётчика и после счётчика» всё портят!

И помните, что цепочка «На лестнице 63А, в квартире 50А» почти не поможет. Только если вам повезёт, и ТКЗ будет на границе срабатываний этих двух автоматов. Вот такие пироги!

Временная селективность

Этот вид селективности обеспечивается благодаря разному времени срабатывания аппаратов защиты.

Время срабатывания ближайшего к защитному оборудованию аппарата защиты № 1 настраивается на значение 0,02 с. На следующем этапе защиты отключение неисправности в цепи обеспечивается настройкой времени срабатывания аппарата 0,5 с. На последнем этапе выбирается время срабатывания выключателя — 1 секунда. Защита № 3 будет резервировать 2 нижестоящие защиты № 1 и № 2.

Токовая селективность

У всех защит № 1, № 2 и № 3 выдержка по времени срабатывания минимальна: 0,02 с, однако значения срабатывания по току (уставки) отличаются: 200, 300 и 400 А соответственно. При возникновении в защищаемой сети короткого замыкания ток будет резко возрастать и вызывать срабатывание защит. Если защита № 1 не сработает, то ее будет резервировать следующая защита № 2.

Время-токовая селективность

Еще одним способом настройки защиты электроустановок до 1 кВ является согласование время-токовых характеристик применяемых автоматических выключателей.

Так, например, можно добиться избирательности срабатывания защиты, подобрав время-токовую характеристику выключателя В таким образом, чтобы она располагалась на определенном расстоянии ниже характеристики выключателя А. Эта зона определяется опытно-расчетным путем с учетом погрешностей срабатывания защит расцепителей. С учетом этой зоны строятся таблицы селективности.

Сегодня производители предоставляют своим клиентам уже готовые таблицы селективности, при помощи которых можно с уверенностью выбирать гарантированно селективные связки автоматических выключателей.

Выбирая аппараты защиты с учетом требований селективности защиты, вы повышаете не только надежность электроустановки, но и упрощаете работу по поиску поврежденного участка. Создать селективную защиту, применяя аппараты разных производителей, проблематично, поэтому следует устанавливать защитные аппараты одного производителя, дополнительно пользуясь специальными таблицами селективности.

Ошибка в параметрах страницы, или недостаточно прав для открытия страницы, или закончилась текущая сессия. Уточните запрос или перейдите на главную страницу сайта

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий