Блог — SMPS Power

▍ Важно!

Прежде чем мы пойдём дальше, вы должны чётко понимать, что 220 В — это не шутки, напряжение вполне способно убить человека (точнее создать ток, который будет смертельным). Хоть источник напряжения будет гальванически развязан с сетью, и потенциальная мощность источника небольшая, вероятность получить поражение электрическим током очень высокая.

Если вы будете проделывать аналогичные опыты, пожалуйста, соблюдайте все меры предосторожности — это очень опасно!

▍ Немного теории

Прежде чем мы перейдём к опытам, надо разобраться с одним важным, на мой взгляд, моментом: действующим значением напряжения.

Необходимо чётко различать действующее значение напряжения (тока), и амплитудное значение напряжения. Обычно, по умолчанию, указывается действующее значение напряжения. На хабре была великолепная статья «Что показывает вольтметр, или математика розетки», которая объясняет что же это такое. Подробно останавливаться на этом не буду, но приведу шикарную иллюстрацию из книги Расовский Э. «Основы электротехники(Электротехника в рисунках и чертежах)» 1952 г. (книжку рекомендую хотя бы полистать, она крутая).

Таким образом, для синусоидального напряжения, действующее значение будет меньше в корень из двух раз амплитудного.

Например, для напряжения 220 В, амплитудное значение (величина от нуля до максимального пика), будет равна:

311 вольт! А если вспомнить, что согласно ГОСТ 29322-2014 у нас в сети 230 В, то получается, что амплитудное значение у нас будет 325 В! Именно поэтому, индикатор, который работает на пределе пробивного напряжения легко пробивается напряжением из розетки, которое на 14 В больше номинала. Кстати, именно поэтому изоляцию и конденсаторы надо подбирать исходя из

значения напряжения.

Теперь ещё интересный факт, если напряжение представляет собой прямоугольный сигнал (меандр), то у него действующее значение напряжения равно амплитудному:

Данная формула справедлива

Что это значит в данных экспериментах: Если напряжение синусоидальное, то его амплитудное значение надо вычислять из показаний вольтметра, умножая на корень из двух. Если напряжение меандр, то показания вольтметра и будут амплитудным значением. Если напряжение хитрой формы, то регистрировать сигнал на осциллографе и смотреть амплитуду уже на нём. В своих экспериментах все этапы контролировались осциллографом.

Надеюсь не утомил теорией.

▍ Блокинг-генератор

На этот источник напряжения я возлагал самые большие надежды, он очень прост, миниатюрен, и требует минимального количества деталей. Единственное, что ему требуется дефицитный трансформатор ТН30-220-400 или необходимо мотать трансформатор самостоятельно. Трансформатор, к счастью, удалось найти на блошином аукционе, где-то в Омске.

Всё началось с комментария radiolok


Но блокинг-генератор с этим вполне справится. Я решил взять за основу трансформатор ТН30-220-400. 4 обмотки по 6. 3В будут в роли первички, 13. 5Вт выходной мощности, железо уже рассчитано на 400Гц.

Ниже в ветке было пояснение:

транзистор Т2 и далее — выкидываем, в качестве Тр1 ставим ТН30-220-400. из 4-х обмоток на 6. 3в три штуки параллелим — это будет основная w2, вторую — на ОС(w1) бывшая первичка станет вторичкой. Питание будет уже 5-6В.

Скажу сразу, что в объединении обмоток смысла не оказалось, это никак не влияет на работу схемы (что логично), а ток ограничивается резистором (R1 на схеме ниже), и он даже в самом худшем случае не будет превышать номинального тока одной обмотки. Но я честно проверил этот вариант, объединял обмотки, потом разъединял (ну надо же проверить гипотезу). Чтобы не путать читателя, я приведу другую, более наглядную схему из той же книги А. Касименко «Электролюминесцентные буквенно-цифровые индикаторы».

Напряжение питания у меня регулируемое. Резистор R1 ограничивает ток, который протекает через обмотку трансформатора и транзистор. Резистор R2 и конденсатор C определяет период работы этого генератора, по следующей формуле (из той же книги):

Таким образом, частота получается:

Если взять резистор R2 = 50к, конденсатор оставить таким же, то в результате мы получим частоту 400 Гц, как нам и нужно. Когда я подбирал транзистор, то не особо морочился, открыл известный сайт и выбрал первый попавшийся на глаза транзистор NPN на 140 МГц, 160 В, 1,5 А — 2SB649AC.

Хочу отметить один момент, что в указанной выше книге используются самодельные трансформаторы, с определёнными параметрами, а не заводские решения. В целом, намотать трансформатор проблем нет, нужно только время и терпение. Однако, у меня нету ни феррита, ни намоточного провода,

, поэтому решил обойтись тем что есть.

Приведу схему трансформатора ТН30-220-400. Обратите внимание на точки в схеме блокинг-генератора из книги, и на точки в схеме трансформатора. Если включить их в противофазе, то работать не будет.

Схема трансформатора.

В качестве обмотки W1 выступала обмотка 3-4, в качестве обмотки W2 — обмотка 5-6. Вторичная обмотка W3, соответственно 1-2. На выходе обмотки я поставил токоограничивающий резистор 1 кОм.

Собираем всю схему на макетке и проводим испытания. Сколько я не бился, с параметрами резистора R2 и конденсатора, дающие 400 Гц, у меня не удалось зажечь ни одного сегмента ЭЛИ, только пробитые единичные точки иногда зажигались. Единственное, что удалось хоть как-то зажечь, была неоновая лампочка.

Слабо светится неоновая лампа.

Видны одиночные импульсы, период между ними в действительности 400 Гц, но очень большой период просто тишины. Как я понял, это определяется индуктивностью обмотки, потому что параметры резистора-конденсатора определяли только периодичность следования импульсов. Провозившись несколько вечеров с этой простенькой схемой, пришёл к номиналам R2 = 10 кОм (как в схеме из книги в данном посте), — это 20 кГц частота, которую выдаёт генератор, и она на пределе частоты пропускной способности трансформатора. При этих номиналах, мне удалось даже зажечь индикаторную лампу ИН-12А.

Осциллограмма полученного сигнала следующая (стоит делитель 1:10).

На самом деле, только об одном блокинг генераторе можно было бы написать отдельную статью, с кучей измерений, осциллограмм и прочего. Но я не получил с него сколь-нибудь вменяемого результата, при всей простоте решения. Скорее всего не подходит трансформатор под данную задачу, возможно я что-то делал не так. В любом случае выходной ток невероятно мал, и напряжение просаживается от любой минимальной нагрузки, даже такой, как один сегмент ИЭЛ.

▍ DC-AC преобразователь на Arduino

В результате этой неудачи, я подумал, что ведь всё равно индикаторами надо как-то управлять и делать это всё, скорее всего, буду с помощью микроконтроллера. Раз это так, то почему бы контроллеру не заниматься генерацией высокого напряжения? Гениально! В отличие от предыдущего решения, на которое я потратил несколько вечеров, на это решение я потратил полчаса, учитывая написание кода.

Для его реализации, я отпаял от трансформатора все провода, взял плату от проекта первичных часов “Стрела” и сделал из них простейший DC-AC преобразователь. По сути, с частотой 800 Гц по очереди подаю на обмотку трансформатора в разном направлении номинальное напряжение. Обращаю внимание, что подаю я на обмотку 6,3 В, а снимаю с обмотки высокого напряжения. Код я выложил на гит, чтобы не загромождать статью.

И это решение заработало сразу, на нём у меня сразу светились все мои индикаторы.

Свечение электронной бумаги, неонки и ЭЛИ.

Действующее значение напряжения (то, которое измеряет вольтметр), даже находится в пределах нормы: около 200 В (учитывая потери в трансформаторе, нормальный результат). Кстати, цифровой и аналоговый вольтметры показывают разные напряжения, для этого пришлось обзавестись стрелочным прибором.

Замеры напряжения, вольтметр показывает 200 В.

А вот осциллограф нам показывает значительно более интересную картину. Оказывается амплитудное значение у нас равно практически 400(!) вольтам!

Такая форма сигнала связана даже не с тем, что трансформатор фильтрует меандр, а скорее потому, что микросхема драйвера L9110S не очень хорошо работает на индуктивную нагрузку в импульсном режиме. Далее я покажу почему это так.

На самом деле, уже на этом этапе можно было бы закончить статью, мол — вот вам решение. Но я понимаю, что не каждый читатель сможет пойти и купить дефицитный накальный трансформатор ТН30-220-400, да и микросхема L9110S не самая подходящая. Поэтому сделаем всё по уму.

▍ Делаем DC-AC преобразователь на Arduino из доступных материалов

Как я уже сказал, накальный трансформатор, не сказать, чтобы прям редкость, но маловероятно, что он есть у вас дома. Да и напряжение 6,3 вольта сегодня достаточно редкое. А вот точно, что у вас есть дома — это трансформатор на 12 В, из какого-нибудь старого блока питания. Например, вот из такого:

В результате для сборки повышающего DC-AC преобразователя нам понадобится:

  • Arduino
  • Драйвер двигателя L298N
  • Блок питания, в идеале регулируемый, но подойдёт и на 12 В
  • Трансформаторный блок питания на 12 В

По теме блоков питания, всё просто, если вы найдёте БП на 9 вольт, то и питать всю схему нужно будет от 9 В.

Проверяем, что блок питания рабочий, и далее разбираем его. Эти адаптеры просто склеивают, и разбирать их надо также как кокос: по периметру, прямо по шву обстукиваем молотком, как появился щель, то вставляем плоскую отвёртку в неё и раскрываем его. Если наловчиться, то можно разбирать, полностью сохраняя корпус.

Вскрытый блок питания.

Блок питания устроен очень просто: трансформатор, на выходе диодный мост и фильтр на одном конденсаторе. Платка с диодным мостом и конденсатором нам более не нужна и смело отпаиваем её.

Далее собираем всё по следующей схеме:

Заливаем прошивку, и всё должно работать сразу из коробки.

Неоновая лампа светится.

Напряжение в данном случае равно 210 В. Поскольку у меня регулируемый блок питания, то это не проблема.

Очень интересно посмотреть осциллограммы работы этого устройства. Обращаю внимание, что амплитудное значение напряжения меандра совпадает с действующим значением.

Осциллограмма холостого хода.

Голубой цвет — это напряжение на входе трансформатора, жёлтое — это на выходе. Видны выбросы при смене фазы «меандр курильщика». Связано с пропускной способностью трансформатора. Но он проходит сразу же при приложении небольшой нагрузки. Пример той же осциллограммы при подключении неоновой лампы.

Осциллограмма под нагрузкой.

Преобразователь вышел достаточно мощный, и даже в состоянии зажечь лампу. Хотя мой блок питания с трудом потянул такую нагрузку, и хорошо так просел по току и напряжению. Но лампа светилась.

Более серьёзная нагрузка.

Любопытно также взглянуть на полученную осциллограмму.

Видна просадка по напряжению.

Очень интересно, как трансформатор справляется с высшими гармониками, вполне без проблем их пропуская. Напомню мою статью «Гармонические колебания», где я подробно рассказывал о том сколько гармоник в меандре. Это говорит о том, что этот трансформатор вполне подойдёт для использования в качестве звукового.

▍ Меандр подходит для ЭЛИ?

Можно ли питать ЭЛИ от переменного напряжения прямоугольной формы? Упомянутая выше книга «Электролюминесцентные буквенно-цифровые индикаторы» даёт следующий ответ:

Возбуждение электролюминофоров прямоугольными импульсами приводит к тому, что за один импульс напряжения происходят две вспышки яркости люминофора. Одна из них соответствует фронту, а вторая спаду возбуждающего импульса (Рис. Плоской части импульса напряжения соответствует затухание первого, а паузе между импульсами — второго пика яркости.

На частоте 400 Гц, частота следования импульсов будет 800 Гц, человеческий глаз будет видеть как ровное свечение.

Но на самом деле, можно сделать и синусоидальное напряжение, генерируя его с помощью ШИМ, даже нашёл неплохую статью по теме. Но нахрапом сделать не удалось, если читатели найдут тему интересной и попросят в комментариях, то я добьюсь, чтобы ардуино давала синусоидальный сигнал 220 В. Это просто требует чуть большего времени.

▍ Полезные ссылки

  • Код и схема моего DC-AC преобразователя на ардуино.
  • Статья: Что показывает вольтметр, или математика розетки.
  • Генерация синусоидального напряжения с помощью ШИМ.

Драйвер

Применение драйвера вместо трансформаторного блока обусловлено особенностями работы светодиода, как неотъемлемого элемента современного осветительного оборудования. Все дело в том, что любой светодиод является нелинейной нагрузкой, электрические параметры которого меняются в зависимости от условий работы.

Рис. Вольт-амперная характеристика светодиода

Как видите, даже при незначительных колебаниях напряжения произойдет существенное изменение силы тока. Особенно явно такие перепады ощущают мощные светодиоды. Также в работе присутствует температурная зависимость, поэтому от нагревания элемента снижается падение напряжения, а ток при этом возрастает. Такой режим работы крайне негативно сказывается на работе светодиода, из-за чего он быстрее выходит со строя. Подключать его напрямую от сетевого выпрямителя нельзя, для чего и применяются драйверы.

Особенность светодиодного драйвера заключается в том, что он выдает одинаковый ток с выходного фильтра, несмотря на размер, подаваемого на вход напряжения. Конструктивно современные драйверы для подключения светодиодов могут выполняться как на транзисторах, так и на базе микросхемы. Второй вариант приобретает все большую популярность за счет лучших характеристик драйвера, более простого управления параметрами работы.

Ниже приведен пример схемы работы драйвера:

Рис. Пример схемы драйвера

Здесь на вход выпрямителя сетевого напряжения VDS1 поступает переменная величина, далее выпрямленное напряжение в драйвере передается через сглаживающий конденсатор C1 и полуплечо R1 — R2 на микросхему BP9022. Последняя генерирует серию импульсов ШИМ и передает ее через трансформатор на выходной выпрямитель D2 и выходной фильтр R3 — C3, применяемый для стабилизации выходных параметров. Благодаря введению дополнительных резисторов в схему питания микросхемы, такой драйвер может регулировать значение мощности на выходе и управлять интенсивностью светового потока.

Электронный трансформатор

Принцип действия электронного трансформатора схож с классическим – при подаче переменного напряжения на первичную обмотку, с его вторички снимается тоже переменное напряжение, но уже другого значения. Отличие заключается в том, что пониженное напряжение имеет совсем другую частоту и форму кривой, так как его искусственно создает генератор импульсов.

Пример схемы электронного трансформатора и принцип действия приведен на рисунке ниже:

Рис. Электронный трансформатор

Как видите, в нем напряжение питания от сети 220 В не подается на обмотки трансформатора, а использует диодный мост в качестве основного преобразователя с переменной электрической величины в постоянную. Затем сигнал подается на выходные транзисторы, выступающие в роли электронного ключа, которые производят генерацию импульсов определенного количества и частоты. Следует отметить, что частота от генератора импульсов может достигать нескольких десятков кГц, но затем подается на импульсный преобразователь, который представлен силовым трансформатором.

Импульсные трансформаторы или, как их еще называют, импульсные БП нашли широкое применение в питании люминесцентных ламп. Однако его расположение по отношению к питаемым приборам освещения должно выполняться в непосредственной близи, чтобы сократить потери, нагрузку в сетевых проводах и нагрев. В сравнении с трансформаторным БП, импульсный имеет ряд весомых преимуществ:

  • Меньшие габариты для такой же мощности, что снижает и стоимость устройства;
  • Обладает лучшими параметрами в регулировке подаваемого напряжения;
  • Отличается более высоким КПД.

Но наряду с преимуществами импульсный блок имеет и некоторые недостатки. У электронного трансформатора куда более сложная схема, что влечет за собой снижение надежности. Если продешевить с моделью трансформатора, то выходной ток выдаст в сеть много импульсных помех, способных повлиять на работу смежного оборудования.

Электронный трансформатор

Самый простой источник питания – трансформатор. В его функции входит повышение или понижение сетевого напряжения.

И у электронного, и у обычного трансформатора на выходе переменный ток, но в чем их отличие? В том, что электронные работают на высокой частоте, значительно превышающей сетевые 50 Гц, а именно десятки килогерц. Это позволило уменьшить их массу и габариты.

Электронные трансформаторы используют для питания галогенных ламп на 12 В или 24 В.

Если подключить такие лампочки непосредственно в электрическую сеть — они сгорят. Но, если галогеновая лампа рассчитана на 220 В, тогда понижающий трансформатор не нужен. Устройство включается напрямую в сеть.

Данный вид преобразователя не подходит для светодиодных ламп и светильников. Но простота и дешевизна устройства позволила широко применять его для подключения галогенных ламп.

При выборе прибора необходимо учесть:

  • напряжение на выходе (должно соответствовать номинальному показателю подключаемого прибора);
  • номинальную мощность (если к источнику питания подключаются параллельно несколько галогенных ламп, суммируется мощность каждой).

Размещают такой электронный преобразователь в непосредственной близости к питаемым лампочкам, чтобы он при этом не перегревался и обеспечивалась естественная вентиляция. При монтаже локальной подсветки допускается его крепление за подвесными потолками, перегородками, в шкафах. Запрещается включать трансформатор без нагрузки, да и большинство моделей при этом просто не запустится.

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача — создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме — импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие — это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе

КПД от 90 до 98%

напряжение питания можно подавать в большом разбросе

при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:

усложненность сборочной схемы

если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования

Проще говоря, блок питания что обычный, что импульсный — это устройство у которого на выходе строго одно напряжение. Его конечно можно «подкрутить», но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

Как переделать трансформатор в БП или зарядное устройство своими руками

Использовать обычный трансформатор в качестве блока питания нельзя, так как на его выходе получается переменное напряжение высоких частот. Кроме того, большинство подобных приборов не может функционировать без минимальных нагрузок, и им нужна доработка. Ниже рассказано, как сделать зарядное устройство из электронного трансформатора своими руками. При этом его не нужно разбирать, достаточно подключить к нему небольшую плату.

Вам это будет интересно Особенности автоматического выключателя

В основе платы лежит диод Шоттки, а также фильтрующий конденсатор. Также для запуска блока питания необходимо подключать к его выходу лампочку. Подбор диода выполняется по имеющимся параметрам выходного напряжения и максимального тока.

Важно! Максимальное обратное напряжение диода должно быть в несколько раз выше, чем напряжение выхода электрического трансформатора. Такая схема прекрасно работает и выдает уже постоянный и сглаженный ток

При желании можно установить более дорогое фильтрующее устройство и несколько конденсаторов. При регулярном пользовании таким БП следует установить его на радиатор

Такая схема прекрасно работает и выдает уже постоянный и сглаженный ток. При желании можно установить более дорогое фильтрующее устройство и несколько конденсаторов. При регулярном пользовании таким БП следует установить его на радиатор.

Модернизация трансформаторного устройства

Теория импульсных блоков питания

В обычных источниках питания изменение напряжения и гальваническая развязка выполнялись на трансформаторе со стальным сердечником, работающим на частоте 50 Гц, полупроводниковым выпрямителем и линейным стабилизатором напряжения.

Однако КПД этой схемы очень низкий (не превышает 50%), большая часть мощности преобразуется в тепло в трансформаторе, диоде и аналоговом стабилизаторе. Большая номинальная выходная мощность требует наличия сетевого трансформатора повышенного размера и большой потери тепла. Этого неудобства можно избежать, увеличив рабочую частоту до нескольких сотен кГц и заменив регулятор напряжения электронным ключом с интеллектуальным управлением. Их задача — преобразовать сетевое напряжение в постоянное, а затем в выпрямленное напряжение, выполняемое быстрым переключением транзисторов. В результате получается высокочастотное прямоугольное напряжение, которое преобразуется импульсным трансформатором и выпрямителем.

Стабилизация выходной мощности достигается изменением ширины импульса при постоянной частоте или включением переключения в определенные периоды времени в зависимости от нагрузки схемы. Наиболее важные преимущества SMPS, сравнимые с обычными блоками питания:

  • малый вес, уменьшенный объем, повышенная эффективность
  • малая емкость фильтрующих конденсаторов для высоких частот переключения
  • отсутствие слышимых помех из-за того, что частота переключения находится за пределами слышимого диапазона
  • простое управление различными выходными напряжениями
  • легко снижать высокое сетевое напряжение

С развитием мощных транзисторов с быстрой коммутацией для высоких частот, стало возможным использовать ИИП, работающие на частотах до 1 МГц. С помощью этого типа резонансных трансформаторов рабочие частоты могут быть увеличены даже до 3 МГц. Тем не менее, эти преимущества уменьшаются из-за нежелательного высокочастотного излучения, а также из-за более низкой скорости реакции на возможные изменения нагрузки.

Эта тенденция привела к разработке новых ферритов Mn-Zn с очень мелкой структурой зерен и материалов с уменьшенными гистерезисными потерями, что позволяет передавать мощность в диапазоне от 1 до 3 МГц. Высокие рабочие частоты приводят к дальнейшему уменьшению размеров ядер и, следовательно, всего блока питания. Новый принцип конструкции в планарной технологии позволяет изготавливать высокочастотные трансформаторы с кардинально уменьшенными размерами (плоские трансформаторы, низкопрофильные трансформаторы). Эта технология оказывает сильное влияние на разработку преобразователей постоянного и переменного тока, а также на производство гибридных импульсных источников питания.

Но вернёмся к теории. Импульсный источник питания работает контролируя среднее напряжение, подаваемое на нагрузку. Это делается путем размыкания и замыкания переключателя (обычно мощного полевого транзистора) на высокой частоте. Система более известна как широтно-импульсная модуляция — ШИМ. Схема ШИМ — самая важная, которая отличает этот тип блока питания, поэтому стоит вспомнить хотя бы само название.

На приведенной диаграмме показаны идеи, лежащие в основе работы ШИМ, и ее довольно просто понять: V = напряжение, T = период, t (вкл. ) = длительность импульса. Среднее напряжение приложенное к нагрузке, можно объяснить следующей формулой:

Vo (av) = (t (on) / T) x Vi

Импульсы следуют друг за другом быстро (это порядка многих кГц, то есть тысячи раз в секунду), и для того, чтобы нагрузка не видела внезапных импульсов, необходимы конденсаторы, обеспечивающие относительно постоянный уровень напряжения. Уменьшение времени t (on) вызывает уменьшение среднего значения выходного напряжения Vo (av) и наоборот — увеличение длительности высокого вольтажного состояния t (on) увеличивает выходное напряжение Vo (av).

Частота, с которой работает ШИМ, обычно находится в диапазоне от 30 кГц до 150 кГц, но может быть намного выше.

Проверка конструкции

Перед первым включением БП нужно проверить. В первую очередь проверяется монтаж, например, могли остаться следы от пайки, несмытый флюс. Какой-либо компонент, установленный на плате, может оказаться неисправным.

Если с монтажом все в порядке, можно приступать ко второй стадии проверки с помощью лампочки. В качестве лампочки можно использовать любую лампу накаливания. Для этого подключаем изготовленный нами источник питания последовательно с лампочкой, как показано на рисунке ниже.

Если лампочка не светится, значит, в цепи БП есть обрыв. Нужно проверить дорожки платы, дроссель, диодный мост.

Лампочка постоянно горит. В блоке питания короткое замыкание. Причина может быть в пробое конденсаторов, транзисторов. Нужно также проверить дорожки печатной платы, выходные цепи трансформатора.

Если лампочка вспыхнула и погасла, значит, БП исправен, конденсаторы зарядились.

Драйвер

Для подключения мощных светодиодов, используемых в точечных светильниках, в прожекторах, уличных фонарях, используют драйвер.

Это устройство является источником постоянного стабилизированного тока. При подключении к нему нагрузки напряжение может меняться, но сила тока будет иметь четко определённую величину.

Почему же для подключения светодиодов применяют драйвер, а не блок питания?

Одной из характеристик светодиодов является падение напряжения. Если в характеристиках полупроводникового прибора имеется запись – 300 миллиампер и 3. 3 вольт, это означает, что номинальный ток для устройства составляет 300 мА, а падение напряжения – 3. 3 В. И если питать его стабилизированным током такой величины, то будет служить долго и светить ярко.

Из графика вольтамперной характеристики видно, что даже незначительное увеличение напряжения, приведёт к ощутимому возрастанию тока. И это не прямо пропорциональная зависимость, а приближенная к квадратичной.

Можно было бы предположить, что, выставив точное напряжение один раз, удастся навсегда установить значение номинального тока, необходимого для работы LED-источника света. Но у каждого экземпляра уникальные параметры и свойства, и при соединении нескольких штук параллельно или последовательно результат будет непредсказуемым.

Кроме того, на них оказывает влияние температура окружающей среды. Дело в том, что у светодиодов отрицательный температурный коэффициент напряжения (ТКН). Это значит, что при нагреве падение на светодиоде уменьшается, а ток повышается, если приложено стабилизированное, неизменяющееся напряжение. У драйверов выходное напряжение изменяется в зависимости от нагрузки и её состояния, и происходит стабилизация тока.

Поэтому, если при подключении светодиода использовать обычный БП на 12V постоянки, то светильник работать будет, но срок сократится

Чтобы правильно выбрать драйвер, нужно принять во внимание его основные технические характеристики:

  • номинальный ток на выходе;
  • максимальную мощность;
  • минимальную мощность.

Иногда параметры для устройства указываются в другом виде. Например, технические характеристики драйвера 18-34В 650 мА (20 Вт):

  • входное напряжение 85-277 В,
  • выходное напряжение 18-34 В,
  • выходной ток 650 мА.

То есть он подходит для светодиодной матрицы с характеристиками: мощность – 20 Вт, напряжение – 18-34 В, рабочий ток – 650-700 мА или для 6-10 светодиодов, мощностью 2 Вт.

LED-светильники подключаются к драйверу последовательно, так как в этом случае через все элементы будет течь один и тот же ток. Если их подключить параллельно, то может оказаться, что какой-то из элементов будет перегружен, в то время как другой будет работать не на полную мощность.

Чтобы не превысить максимально допустимую нагрузку преобразователя, не рекомендуется увеличивать количество светодиодов в цепи.

Выбор драйвера осуществляется по току, который потребляют светодиоды. Например, диоду с мощностью 1 Вт нужны 300 – 350 мА.

У этого вида источников питания имеет такие недостатки, как:

  • узкая специализация на светодиодах;
  • возможность использования только для определённого количества LED источников.

То есть, для каждого устройства осуществляется подбор определенного количества светодиодов. Если в процессе работы, один из них выйдет из строя, то цепь разорвется и драйвер уйдет в защиту (или сгорит), так как последние не работают в режиме холостого хода.

В заключение отметим, что несмотря на то что драйвер, блок питания и электронный трансформатор служат для подключения низковольтных потребителей, это совершенно разные устройства, отличающиеся друг от друга по назначению

Важно понимать, в каких случаях каждый из них применяется. Ведь только правильно подобранный источник питания сможет создать оптимальные условия эксплуатации для вашего оборудования

Материалы по теме:

  • Чем отличается постоянный ток от переменного
  • Преимущество электронных балластов
  • Как выбрать блок питания для светодиодной ленты

В чем отличия драйвера от блока питания

Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

Драйвер — это устройство похожее на блок питания.

Однако, как только в него подключаешь нагрузку, он заставляет стабилизироваться на одном уровне не напряжение, а ток!

Светодиоды «питаются» электрическим током. Также у них есть такая характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

Более того, светодиод — это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику — вольтамперной характеристике.

Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

Причем зависимость не прямо пропорциональная.

Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут «кушать» разный ток.

Мало того, эти параметры еще способны меняться при изменении окружающей температуры.

А температурный диапазон работы светодиодных светильников очень большой. Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте. Поэтому, если вы такие светильники подключите от обычного импульсного блока питания, а не от драйвера, то режим их работы будет абсолютно не предсказуем.

Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково — выгоранием светодиода.

Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

Поэтому каждому светильнику после запуска, нужно дать время, чтобы он вышел на свой рабочий режим и световой поток стабилизировался. Его изменение должно быть не более 10% от начального.

Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный. Если вам нужно соединить несколько светодиодов, то подключаются они последовательно. Это необходимо, чтобы через все элементы, несмотря на их разные ВАХ (вольт-амперные характеристики), протекал один и тот же ток.

А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

Безусловно и у драйверов есть свои неоспоримые недостатки:

во-первых они рассчитаны только на определенный ток и мощность

А это значит, что для каждого драйвера каждый раз придется подбирать определенное количество светодиодов. Если один из них случайно выйдет из строя в процессе работы, то драйвер весь ток запустит на оставшиеся.

Что приведет к их перегреву и последующему выгоранию. То есть потеря одного светодиода влечет за собой поломку всей цепочки.

Бывают и универсальные модели драйверов, для них не важно количество светодиодов, главное чтобы их общая мощность не превышала допустимую. Но они гораздо дороже

узкоспециализированность на светодиодах

Простые блоки питания можно использовать для разных нужд, везде где необходимы 12В и более, например для систем видеонаблюдения.

Основное же предназначение драйверов — это светодиоды.

А есть бездрайверные заводские светильники? Есть. Не так давно на рынке появилось немало таких Led светильников и прожекторов.

Однако энергоэффективность у них не очень высокая, на уровне обычных люминесцентных ламп. И как он поведет себя при возможных перепадах параметров в наших сетях, большой вопрос.

Алгоритм работы ИБП

Принцип действия ИБП прост: напряжение на входе выпрямляется и преобразуется в электронные высокочастотные импульсы. На выходе электроцепь формирует сигнал ООС, которым осуществляется регулировка импульсов.

Преимущества использования импульсного БП очевидны:

  • небольшие размеры и вес;
  • малое энергопотребление;
  • простота в сборке;
  • низкие энергопотери;
  • высокий КПД;
  • наличие защиты;
  • низкая цена на комплектующие.

К минусам применения ИБП относят наличие электромагнитных помех ввиду их работы на импульсах высокой частоты.

В персональных стационарных компьютерах, как правило, применяют ИБП с силовым трансформатором. Для работы силовой прибор использует свойства и принципы электромагнитной индукции. Это дает возможность передавать ток без существенных потерь на большие расстояния.

Схема трансформаторного блока питания шуруповёрта

Напоследок сделаем своими руками трансформаторный блок питания для шуруповёрта 12, 14 или 18 В. Такой источник, конечно, будет достаточно громоздким, но прелесть конструкции заключается в её простоте. С повторением схемы справится и начинающий радиотехник, имеющий лишь общие знания по электротехнике.

Для этого самодельного блока питания понадобится трансформатор, способный выдать необходимый нам ток при напряжении 12–13 В (для 12-вольтового инструмента), 14–16 В (для 14-вольтового) или 18–20 В для 18-вольтового инструмента. Ещё придётся найти 4 мощных выпрямительных диода и несколько электролитических конденсаторов.

Если у нас шуруповёрт на 12 вольт, потребляющий ток до 10 А (большинство бытовых), то можно взять унифицированный анодно-накальный трансформатор ТАН-138-127/220-50 (ТАН-138 220-50), имеющий 2 обмотки по 6,3 В при токе 10 А. Весит он, правда, более 6 кг.

Ещё один вариант — накальный трансформатор ТН-61-127/220-50 (ТН-61 220-50). Он сможет обеспечить ток 8 А при напряжении 12,6 В (две обмотки) или 18,9 В (3 обмотки). Весит он хоть и поменьше, но тоже немало — 3 кг.

Если мы обладаем соответствующими знаниями и навыками, то для изготовления БП можно использовать любой разборный сетевой трансформатор мощностью 200–250 Вт. Разбираем, сматываем все вторичные обмотки, оставив лишь сетевую, и вместо них наматываем одну вторичную на нужные напряжение и ток.

Если в нашем распоряжении есть трансформатор с тороидальным сердечником, то лучше предпочесть его. Перематывать сложнее, но, во-первых, его не нужно разбирать, значит, не будет проблем с гудением после сборки. Во-вторых, габариты такого трансформатора при той же мощности намного меньше.

Какие нужны диоды? Подойдут любые выпрямительные, выдерживающие ток 10–20 А и обратное напряжение не ниже 30–40 В. Конденсаторы электролитические на напряжение не ниже 25 В (для 12-вольтового блока питания) и один бумажный неполярный с ёмкостью 1 мкФ на рабочее напряжение не ниже 400 В. Впрочем, без последнего можно обойтись. А теперь взглянем на схему.

Сетевое напряжение поступает на трансформатор Tr1, понижается до необходимой величины, выпрямляется диодным мостом VD1–VD4 и по проводам подаётся на инструмент, в рукоять или отсек, из которого удалены неисправные аккумуляторы, установлены конденсаторы С3–С5. Они являются накопителями энергии и обеспечивают высокий пусковой ток во время включения шуруповёрта.

Конденсатор С1, включённый параллельно сетевой обмотке трансформатора, уменьшает реактивную составляющую индуктивной нагрузки (трансформатора) и несколько увеличивает КПД устройства. Как указывалось выше, без него можно обойтись. Собирая прибор, не забываем установить диоды на радиаторы, электрически не соединённые друг с другом. Если радиатор общий (к примеру, металлический корпус или шасси блока питания), то диоды на него устанавливаем через слюдяные изолирующие прокладки.

Вот мы и выяснили, как запитать аккумуляторный шуруповёрт от сети. Теперь сможем подобрать подходящий для этих целей блок питания или изготовить его самостоятельно.

Спасибо, помогло!29Не помогло2

Как переделать аккумуляторный шуруповерт на 12 или 18В в сетевой своими руками

Как сделать самодельный регулируемый блок питания – подборка схем

Как защитить блок питания от КЗ и перегрузок

Как восстановить аккумулятор шуруповерта своими руками

Как отремонтировать блок питания компьютера своими руками

Сравнение линейного и импульсного лабораторных блоков питания

С вами интернет-магазин Electronoff! Если поискать в интернете стабилизаторы напряжения, или лабораторные блоки питания, что практически одно и то же, то можно найти два варианта — линейные и импульсные. Сегодня мы разберем, чем же они различаются, функционально и в рабочем плане, расскажем принципы их работы.

Сильно вдаваться в подробности не будем, но основную информацию попробуем рассказать.

Начнем с линейных стабилизаторов.

Их яркими примерами есть популярные микросхемы серии L78xx. Грубо говоря, такие стабилизаторы работают как обычный резистор – всю “лишнюю” энергию, которая не идет в нагрузку, они гасят на себе. Например, возьмем светодиод. Ему нужно 3 вольта, а на входе у нас 12 вольт. Линейный стабилизатор опустит напряжение до 3-х вольт, а оставшиеся 9 вольт, скажем так, “съест” — превратит их в нагрев себя же.

  • Возьмем ток через светодиод равным , или .
  • Из рассчета рассеиваемой мощности, , при входном напряжении вольт стабилизатор рассеет 2*0.1 = 0.2 Вт, а при входных вольтах уже , то есть в раз больше.
  • При условии, что сам светодиод потребляет , эффективность во втором случае получается ну совсем никакая.

Но не стоит думать, что эти стабилизаторы совсем уж плохие. У них присутствует несколько существенных преимуществ.

Первое — дешевизна и надежностьСделать нормально работающий стабилизатор можно буквально из трех деталей, причем две будут необязательнымиВторое — отсутствие пульсаций и помех на выходеПри правильной компоновке на выходе получается ровная линия напряжения при любой нагрузке. А это очень важно для чувствительных к разным наводкам и пульсациям схем на электронных компонентах

К тому же, промышленные блоки питания минимизируют разницу напряжений при помощи трансформаторов с несколькими обмотками. Таким образом всегда работают в оптимальном режиме.

А вот импульсные лабораторные бп немного сложнее. В них не происходит “съедания” лишнего напряжения, они его преобразуют. Образно говоря, это регулируемый трансформаторчик, который подчиняется “трансформаторным” законам сохранения энергии — если на входе было большое напряжение и маленький ток, то на выходе можем получить, скажем, маленькое напряжение и большой ток (больше, чем входной).

В теории такой стабилизатор может иметь КПД, близкое к 100% (но потреи всегда есть — в магнитопроводе, прит нагреве радиодеталей), и производители стремятся быть как можно ближе к этому значению. С помощью импульсного метода можно делать небольшие, но при этом очень мощные источники питания.

Звучит хорошо, но на практике всё не так радужно.

Импульсные стабилизаторы значительно сложнее в плане схемотехники и производства. В их составе должна быть специализированная микросхема, которая подключается к преобразующему трансформатору или катушке. К ним нужна дополнительная обвязка, и все это дело использует для преобразования большую переменную частоту (поскольку преобразование может происходить только с переменным током (или же импульсным, откуда и название)).

А следовательно возникают следующие возможные проблемы:

  • Пульсации на выходе. Так как напряжение преобразуется импульсами, эти импульсы могут сохраняться и на выходе стабилизатора, просачиваясь в нагрузку. Особенно неприятно это чувствовать на усилителях звука и других чувствительных схемах — датчиках, сенсорах, таймерах и так далее.
    Пульсации создают помехи не только на частоте преобразования, но и на гармониках этой частоты. К тому же, если основная частота или ее гармоники попадают в звуковой диапазон, то блок питания будет издавать противное пищание, изводящее нашу и без того хрупкую нервную систему.
  • Помимо этого, куча электроники делает всю схему более хрупкой и “капризной”.
    В качественных промышленных импульсных источниках питания, конечно, пульсации сведены к минимуму, а также предусмотрены всевозможные защиты и настройки, чтобы ничего не ломалось. А вот самостоятельно сделать такой блок без определенного багажа знаний проблематично.

✓ Линейный стабилизатор “в лоб съедает” всю лишнюю энергию, более простой, дешевый и надежный, но значительно менее эффективный. Эффективность тем меньше, чем больше разница между входным и выходным напряжением.

✓ Импульсный стабилизатор (преобразует начальное напряжение в требуемое, сохраняя всю (ну, в идеале, всю) энергию, то есть значительно более эффективный — ему практически безразлична разница между входным и выходным напряжением. Но при этом он значительно более сложный в разработке, наладке и производстве, а из-за этого и более дорогой.

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий