Что это такое и когда помогает

Содержание

Какие есть техники заземления?

Существует три вида техник заземления: умственные, физические и успокаивающие. Выбери, что подходит тебе, и используй при необходимости.

Умственные техники

Умственные техники помогут тебе перефокусировать и структурировать свои мысли.

  • 5-4-3-2-1Техника состоит в следующем: нужно назвать некоторое количество предметов, опираясь на свои ощущения: пять вещей, которые можно увидеть; четыре вещи, которые можно потрогать; три вещи, которые можно услышать; две вещи, которые можно почувствовать; и одну вещь, которую можно попробовать.
  • Игра АлфавитВыбери категорию (например: еда) и придумай предмет для каждой буквы в алфавите (например: ананас, банан, виноград и т.д.).
  • Сосредоточься на умственном заданииВыполни сложную умственную задачу или вычисление. Например:Повтори таблицу умножения (3 x 2 — это…, 3 x 3 — это… и т.д.).Скажи алфавит задом наперед.Считай несколько сложных сумм (19 x 21 = …).
  • ОбразностьВизуализируй то, что помешает тебе сосредоточиться на нежелательных мыслях или чувствах.
  • Используй привязную фразуОпиши, кто ты, сколько тебе лет, дату сегодня, время, где ты сейчас.Например: меня зовут Анна, мне 57 лет. Сегодня понедельник, 9 мая, 10 утра, я сижу за кухонным столом.Можно продолжать добавлять детали, пока не станет лучше: мой чай теплый, я слышу ветер на улице, у меня сегодня выходной.

Физические техники

Известно, что любая физическая деятельность поможет тебе почувствовать связь со своим телом.

  • ДышиОбрати внимание на свое дыхание: вдох делай через нос, а выдох — через рот. Положи руки на живот. Наблюдай, как руки двигаются вверх и вниз, когда ты дышишь.
  • Коснись “заземленного” объектаПопробуй носить с собой маленькие предметы в кармане. Перебирай их, когда чувствуешь себя перегруженным или раздраженным.
  • Утопи пятки в землюСосредоточься и перенеси вес на пятки. Напомни, что ты физически связан с землей. Топай ногами, если это помогает. Также можно попробовать это босиком на мягком коврике.
  • Напряги и отпустиПопробуй сжать и отпустить кулаки. Ты тоже можешь напрячь все тело и сосредоточиться на том, чтобы медленно отпускать его, от лба, челюсти, плеч — вплоть до пальцев ног.
  • Коснись или держи объектыКасайся или держи различные объекты вокруг себя. Подумай, что они ощущают. Или попробуй ухватиться за стул как можно сильнее.
  • Наклоны и растяжкиВытяни руки и ноги.Попробуй пошевелить пальцами рук или ног.

Успокаивающие техники

Такие техники помогают почувствовать себя расслабленными и в безопасности.

  • Счастливое местоПодумай о месте, где можно расслабиться, чувствовать себя в безопасности и быть счастливым. Это может быть реальностью или фантазией.
  • Планируй что-нибудь приятноеПодумай о любимом деле, которое тебя порадует, например: ванна с пеной, вздремнуть под любимым одеялом или вкусная еду.
  • АффирмацииПовторяй утверждение или запиши его.
  • Доброта к себеПодбадривай себя, можешь повторять про себя или записать. Например: “Я имею значение”, “Мне тяжело, но я переживу это”.

А как поддержать наших защитников и родственников тех, кто сейчас воюет, читай в материале.

Что является заземляющим контуром

Чтобы понять, что такое контурный заземлитель – следует представить его как систему, состоящую из металлических стержней, связывающих их полос и набора медных соединительных проводников. Такая сборная конструкция обеспечивает надежный контакт токопроводящего корпуса электроустановки с фактической землей (почвой).

При выяснении вопроса о том, что является заземляющими контурами, следует понимать, что основной их компонент – это одиночный электрод подходящего размера и сечения, забиваемый в грунт на определенную глубину. Для создания распределенной контурной системы согласно действующим техническим требованиям должна использоваться группа штырей, соединенных между собой металлическими полосами.

Как это работает

Чтобы всем было понятно, для чего нужны контуры заземления – рассмотрим принцип действия составной конструкции. Защитный заземляющий контур работает следующим образом:

  • За счет качественного монтажа заземляющих жил и хорошего контакта с грунтом металлическая распределенная система обеспечивает идеальные условия для стекания аварийных токов в землю.
  • Благодаря этому опасный для человека потенциал, появившийся на корпусе электрооборудования во внештатном режиме (при нарушении изоляции фазного провода, например), резко снижается.
  • Надежное стекание тока в землю обеспечивается низким переходным сопротивлением заземлителя, который является частью защитного контура.

Появление значительных по величине аварийных токов приводит к срабатыванию установленных в питающих цепях устройств защиты (как автоматов, так и предохранителей).

В результате питающая сеть полностью отключается, предотвращая возможные негативные последствия. При подключении контура заземления основное внимание уделяется созданию условий, обеспечивающих эффективный контакт как штырей, так и полос с грунтом.

Из чего состоит заземление

В состав заземляющей системы согласно ее определению (смотрите ПУЭ) входят такие обязательные элементы, как:

  • Сам ЗК, обустраиваемый на основе металлических уголков площадью поперечного сечения не менее 100 мм квадратных или отдельных штырей диаметром порядка 20 мм.
  • Комплект специальных проводников (медных шин), позволяющих в жилых домах заземлять электрические приборы.

Обратите внимание: Иногда как отдельный элемент рассматривается заземляющий спуск, обустраиваемый вдоль стены здания (в устройствах защиты от молний, например).

В зависимости от своего расположения относительно здания защитные конструкции могут быть внешними и внутренними. Рассмотрим как нужно обустраивать каждый из представленных видов контуров, чтобы добиться наилучших результатов.

Внешний контур

При обустройстве наружного контура заземления необходимо учитывать качество и состав грунта в месте расположения его элементов. Хозяева самостоятельно отстроенного дома обычно знают, на какой почве он стоит, и сразу могут определить, как она влияет на проводимость. В противном случае потребуется помощь специалистов по геодезии.

При самостоятельном проведении работ важно знать, что грунты бывают:

  • чисто глинистыми;
  • суглинистыми;
  • торфяными;
  • черноземными;
  • гравийными и скалистыми.

В реальных условиях в пределах домашнего участка чаще всего встречаются первые два класса почв или их разновидности (суглинок пластичный, глинистые сланцы и подобные им). Для различных типов грунтов их удельные сопротивления имеют следующие значения:

  • Глина пластичная и мягкий торф – 20-30 Ом·/метр.
  • Для суглинка с содержанием золы и пепла, а также простой садовой земли этот показатель составляет 30-40 Ом/метр.
  • Черноземные земли и глинистые сланцы, а также глина полутвердая имеют сопротивление, близкое к значениям 50-60 Ом/метр.

С точки зрения организации внешнего контура заземления эти почвы – самые подходящие, поскольку в них сопротивление растеканию имеет небольшую величину.

Грунты с большими значениями сопротивлений представлены такими видами, как:

  • Полутвердый суглинок, иногда определяемый как смесь глины и песка, а также так называемая «влажная супесь», имеющая средний показатель 100-150 Ом/·метр.
  • Содержащий глину гравий и влажный песок – 300-500 Ом/·метр.

А такие «жесткие» грунты, как скала, гравий и сухой песок совершенно неспособны обеспечить надежное заземление. В этих условиях принимаются специальные меры, позволяющие понизить сопротивление заземляющих контуров в месте расположения штырей.

Дополнительная информация: Они чаще всего сводятся к искусственному изменению состава почвы. Как пример – добавление в нее раствора поваренной соли.

Еще один вариант, позволяющий найти выход из сложившейся ситуации – обустройство глубинных заземлителей, достающих до слоев более «легкого» состава. Но этот подход к тому, как обустроить наружное заземление, достаточно трудоемок и обойдется недешево.

Контур заземления внутри объекта

При расчете элементов внутреннего контура заземления необходимо учитывать, что смонтированная внутри здания токопроводящая полоса должна охватывать периметр каждого из имеющихся в нем помещений. К открыто проложенной вдоль стен и вблизи от пола заземляющей шине подсоединяются все установленные в них электроустановки и приборы.

Обратите внимание: В небольших по размеру помещениях (в жилых квартирах или частных домах) вместо ЗК монтируется типовой щиток со специальной планкой. Ее принято называть главной заземляющей шиной (ГЗШ).

В этих условиях особое внимание уделяется таким составляющим, как заземляющие проводники (соединители, предназначенные для подключения бытовых приборов и ванны непосредственно к заземлению).

Отдельный контакт щитка (планка заземления) соединяется либо с обустроенным в пределах строения внутренним контуром, либо посредством длинного медного проводника – с внешней системой заземления (как это изображено на первом фото данной статьи). Прямо от него медные шины в виде проводников отводятся в сторону различных защищаемых электроустановок и приборов. Нередко вместо полноценного щитка применяется отдельная контактная планка «PE», оборудованная непосредственно на входе в частный дом (рейка ГЗШ приведена на фото ниже).

Техника монтажных работ

Грамотный подход к обустройству ЗК состоит в правильности выбора места под него, а также в соблюдении требований действующих нормативов в части проведения основных монтажных работ.

Выбор места под ЗК

Перед устройством контура заземления важно подобрать место для размещения его элементов. Желательно – неподалеку от дома (его обычно рассчитывают устанавливать на удаление не более 2-х метров, что позволит выиграть на длине проводников). Дополнительная информация: При выборе участка под заземление в первую очередь следует учесть, чтобы эта площадка располагалась на контролируемой хозяином территории.

Для этих целей подойдут такие зоны, как:

  • участок огорода (кроме грядок с картофелем);
  • палисадник или клумба;
  • парковая зона, непосредственно примыкающая к дому.

Если грунт на прилегающей к строению местности имеет высокое удельное сопротивление – допускается установка системы штырей КЗ на более удаленной дистанции.

Обратите внимание: В этом случае придется смириться с излишними расходами на приобретение медных шин.

В любом из рассмотренных случаев при выборе места под ЗК следует предусмотреть все возможные варианты его использования в будущем (пусть даже и в очень отдаленной перспективе). Это позволит избежать ненужных издержек на перенос конструкции в ситуации, когда в данной зоне потребуется разбить детскую площадку, например.

Монтаж контура заземления

В зависимости от выбранной площадки (ее формы и размеров) при монтаже ЗК могут применяться различные схемы. Штыри в нем могут располагаться как в линию, так и в виде треугольника.

Важно! Независимо от используемой схемы, количество вертикально вбиваемых заземлителей должно быть не менее трех штук.

В том случае, когда выбрана треугольная конструкция, порядок обустройства ЗК выглядит следующим образом:

  • Сначала на этом месте размечается площадка соответствующей конфигурации со сторонами примерно 2,5-3 метра.
  • Затем вырывается котлован с размерами чуть большими, чем это обозначено разметкой.
  • Вырытый в земле приямок должен повторять форму равнобедренного треугольника и иметь глубину не менее полуметра (при ширине порядка 50-70 см.).
  • После этого по углам треугольного котлована с небольшим отступлением от стенок вбиваются три стальных штыря (отрезка арматуры) на глубину не менее 2-х метров.
  • И, в завершении все они соединятся между собой стальными полосами (делается это посредством сварки, которой в данной ситуации следует отдать предпочтение).

В результате должна получиться конструкция, похожая на приведенную ниже.

Сечения проводов заземления от контура не должно быть менее 12-16 мм квадратных.

Для экономии сил и времени вырывать приямок под штыри можно не полностью. Достаточно будет выбрать землю только из канавок, в которые укладываются затем стальные соединительные полосы. На заключительной стадии сварных работ уже готовый заземлитель присыпается составом с низким удельным сопротивлением (золой или пеплом, например). Со временем содержащиеся в добавках соли растворятся в земле, что обеспечивает снижение сопротивления растеканию аварийного тока.

Параметры заземлителей (вертикальное расположение)

При проведении расчетов контуров заземления вертикального типа необходимо руководствоваться следующей формулой:

Приведенные в ней величины расшифровываются, как указано ниже:

R0 – величина расчетного сопротивления одиночного электрода в Омах.

Рэкв – значение удельного сопротивления почвы, уже рассмотренное ранее в главе о наружном ЗК.

L – длина отдельного электрода, входящего в состав системы заземления.

D – диаметр или соответствующий сечению размер штыря.

Т – расчетное расстояние от условного центра каждого из электродов до земной поверхности.

Для того чтобы получить требуемое значение сопротивления R0 (согласно ПУЭ оно не должно превышать 30 Ом) следует подбирать входящие в формулу переменные величины.

Обратите внимание: В случае если из-за особенностей грунта в данной местности установка вертикальных стержней невозможна – расчет величины сопротивления производится по формуле для горизонтальных заземлителей.

Перед тем как рассчитать ЗК следует учитывать, что для монтажа горизонтальной конструкции потребуется намного больше усилий и затрат по времени (а также значительных расходов медного материала). Кроме того, обустроенное таким способом заземление очень чувствительно к погодным условиям.

Именно поэтому считается, что лучше потратиться на обустройство вертикальных стержней, чем пытаться преодолеть недостатки горизонтальных заземляющих систем.

Тестирование

По завершении монтажных работ необходимо протестировать контур заземления на нормируемые показатели. Для испытания потребуются точные измерительные приборы, не всегда имеющиеся в распоряжении пользователя.

Проверка контура заземления

В отсутствие требуемого оборудования следует воспользоваться простейшими способами, один из которых описан ниже (он подходит только для частного дома).

Во-первых, нужно взять достаточно мощную нагрузку (такую как утюг, например, с потреблением порядка 2-4 кВт). Во-вторых, необходим специальный переходник с обычной розеткой на одном из концов (второй из них выполняется в виде двух отдельных проводов). Далее, один из них следует оформить в виде изолированного одиночного контакта, а на конце второй сделать толстую петлю.

После этого необходимо подсоединить полученную петлю к свободной колодке на заземляющей шине в щитке. Одиночный изолированный контакт следует воткнуть в фазную клемму розетки, ближайшей к нему (нарушать порядок подключения концов переходника к фазе и земле ни в коем случае нельзя). После всех этих манипуляций нагревательный прибор окажется включенным в питающую цепь через сопротивление самодельного контура заземления. Затем нужно измерить напряжение в сети посредством мультиметра при включенном утюге и без него.

Небольшая разница в показаниях двух описанных измерений означает, что изготовленный заземлитель вполне работоспособен. Если же они отличаются очень намного – контур придется доработать (увеличить количество штырей, например).

О том, как проверить наличие правильного заземления мультиметром, мы рассказывали в соответствующей статье!

Видео по теме

Для того чтобы в совершенстве освоить процесс обустройства систем заземления специалисты советуют ознакомиться с примерами расчета ЗК, которые в большом количестве представлены в Интернете. Помимо информационных сайтов рекомендуется просмотреть видео по теме,представленные ниже:

После ознакомления с этими материалами будет понятно, как произвести расчет посредством онлайн калькулятора, а также как изготовить и проверить защитное сооружение.

Классификация систем заземления

Общепринятая классификация систем заземления осуществляется по следующим основным признакам:

  • Состояние нейтрали электросети (заземленное или изолированное).
  • Способ ее прокладки от подстанции с понижающим трансформатором до конечной электроустановки потребителя.
  • Особенности подключения нагрузки к нейтральной жиле.

Основным документом, согласно которому производится классификация этих систем, являются ПУЭ (правила устройства электроустановок). В них подробно рассматриваются характерные признаки, согласно которым принято различать действующие защитные системы. Для их обозначения применяются английские буквенные символы T, N, I, C и S, которые расшифровываются как «заземление», «нейтраль», «изолированное», «общая» и «раздельная».

Обратите внимание: По данной маркировке удается определить, какой способ защиты источника тока применен в данной системе и какие схемы защитного заземления оборудования могут быть использованы на потребительской стороне.

При обустройстве действующих линий энергоснабжения в России традиционно применяются следующие основные системы:

  • TN-C, из обозначения которой следует, что на всем протяжении трассы нулевой рабочий N и защитный PE проводники объединены в общую шину PEN (C – это «common»).
  • TN-S, означающая раздельную прокладку упоминавшихся выше проводников («Select»).
  • TN-C-S, из названия которой следует, что на части трассы проводники PE и N объединены, а начиная с какого-то места они прокладываются раздельно.

На практике также встречаются редко используемые системы TT и IT, применяемые только в исключительных случаях. Такой уникальный способ построения заземляющей структуры как система с изолированным нулем, например, востребован при электроснабжении сооружений, где необходимо обеспечить высокий уровень безопасности. В частности, это касается электрооборудования, устанавливаемого на горнодобывающих шахтных предприятиях. Объясняется это тем, что при подземных работах нередки случаи скопления взрывоопасных газов, а система IT, особенностью которой является пониженное искрообразование, в этом случае является самой безопасной.

Требования к заземлению электроустановок до 1000 Вольт

Заземление оборудования – это комплекс технических мероприятий, позволяющих получить надежное электрическое соединение между защищаемыми корпусами электроустановок и землей. Оно организуется с целью защиты оперативного персонала и работающих на оборудовании людей от случайного токового удара.

В соответствии с требованиями ГОСТ 12. 030-81 защитное заземление электроустановки следует выполнять:

  • при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех случаях;
  • при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.

Важно! При правильно обустроенной системе заземления попавший на корпус станка, например, опасный потенциал не причинит прикоснувшемуся к нему человеку никакого вреда.

Объясняется это тем, что, при пробое изоляции основная часть токового заряда стечет по заземляющей шине в защитный контур, сопротивление которого на порядок ниже, чем тот же показатель для тела человека.

Естественные заземлители

Согласно правилам ПУЭ, корпуса технологического оборудования и других приборов должны подключаться к естественным или искусственным заземлителям (ИЗУ). При реализации первого из этих способов традиционно используются следующие подсобные элементы:

  • металлические каркасы проложенных в земле конструкций, имеющие прямой контакт с ней;
  • металлические кожуха кабелей, прокладываемых непосредственно в грунте;
  • обычные металлические трубы (за исключением газовых и нефтепроводов);
  • рельсы железнодорожных путей.

Обратите внимание: Использование готовых конструкций существенно упрощает решение проблемы заземления, упрощая этот процесс.

Кроме того, их использование при организации эффективного заземления позволяет несколько снизить затраты на его обустройство.

Важность сопротивления стеканию току

Основное требование к заземлениям до 1000 Вольт – их способность создать надежную цепочку для стекания аварийных токовых зарядов в грунт. Ее оценивают величиной сопротивления, которое приходится преодолевать токам замыкания на землю.

Согласно нормативным документам (ПУЭ, в частности) сопротивление заземления (сопротивление растеканию электрического тока) должно быть:

  • в частных домах с напряжением питания 220 и 380 Вольт, должно составлять не более 30-ти Ом.
  • для промышленного оборудования (трансформаторов подстанций, в частности, или генераторов и сварочных аппаратов) не должен превышать 4-х Ом.
  • в отношении источника тока (генератора или трансформатора) не более 2, 4 и 8 Ом соответственно, при междуфазных напряжениях 660, 380 и 220 В трехфазного источника питания или 380, 220 и 127 В однофазного источника питания.

Чтобы достигнуть нормируемых ПУЭ значений сопротивления, потребуется принять специальные меры. Обычно они сводятся к следующим типовым процедурам:

  • увеличение площади соприкосновения составляющих устройств заземления с грунтом;
  • повышение качества контактов в местах сочленения отдельных элементов и медных соединительных шин;
  • улучшение проводимости самой почвы (за счет постоянного увлажнения или добавления соляного раствора, например).

Теми же требованиями предписывается периодически (не реже одного раза в 6 лет) проверять сопротивление заземляющего контура на соответствие его величины утвержденным нормам.

Работа заземления при нарушении защитной изоляции токоведущих частей

Самая распространенная неисправность, встречающаяся при эксплуатации электрооборудования – замыкание фазы на металлический корпус из-за разрушения защитной изоляции.

Дополнительная информация: В современных бытовых приборах, оснащенных импульсными источниками питания с вилкой евро стандарта, опасный потенциал может постоянно присутствовать на металлическом корпусе.

В зависимости от того, какие защитные меры приняты при работе с оборудованием, возможны следующие степени безопасности пользователя:

  • Самый опасный вариант – когда металлический корпус прибора не заземлен, а УЗО совсем не установлено. Попадание фазы на проводящие ток части никак не проявляется, кроме как ощутимый удар при случайном прикосновении.
  • В отсутствие УЗО корпус подключен к контуру установленного заземления, а ток утечки по цепи стекания очень велик. В этом случае прибор сработает мгновенно и отключает питающую линию или отдельную ее цепочку.
  • При наличии УЗО корпус не заземлен, что обнаруживается только при протекании тока утечки, который вызовет срабатывание устройства защиты. За время порядка 200-300 миллисекунд прикоснувшийся к прибору человек ощутит лишь легкий удар током.
  • И, наконец, самый безопасный вариант предполагает заземление корпуса и одновременную установку в данную ветку отдельного УЗО.

О первом случае, связанном с отсутствием специальных защитных средств, нечего и говорить, а вот второй вариант не совсем безопасен. Это объясняется тем, что при большом сопротивлении переходов и значительных номиналах предохранителей остаточный потенциал на корпусе прибора очень опасен для работающего человека. Так, при сопротивлении заземляющей конструкции в 4 Ома и предохранителе номиналом 25 Ампер он может достигнуть 100 Вольт.

Важно! В последнем случае два защитных устройства дополняют друг друга и нивелируют возможные неполадки в одном из них.

При попадании фазы на корпус, а через него – на заземляющий проводник ток благополучно стекает в землю. Одновременно с этим УЗО мгновенно реагирует на утечку и отключает линию и электроустановку, исключая возможность поражения работающего на ней персонала.

Помимо этого, если ток утечки существенно превышает порог срабатывания установленного в цепи предохранителя – может сработать и сам защитный элемент, дублируя действие УЗО. Какой из этих двух приборов отключит цепь первым – зависит от их быстродействия и величины тока стекания на землю (при этом не исключается их одновременное срабатывание).

Защита станков и электрооборудования в цехах

В соответствие с действующими правилами ПУЭ различные виды заземлений в электроустановках до 1000 Вольт отличают по принадлежности их к той или иной системе. А по типу заземляемых устройств различают следующие варианты:

  • Защита типового станочного оборудования.
  • Заземление электродвигателей и сварочных аппаратов.
  • Защита передвижных установок и эксплуатируемых электроприборов.

В этом разделе рассматривается первый пункт из перечня, касающийся станков и другого оборудования, устанавливаемого в заводских цехах.

Хорошо известно, что при работе на станочном оборудовании риск случайного попадания фазы на корпус достаточно велик. Чтобы правильно заземлить станок в цеху – потребуется разобраться со следующими моментами:

  • Где проложен заземляющий контур в рабочей зоне.
  • Какой толщины должна выбираться шина, применяемая для соединения корпуса станка с защитным контуром.
  • В каком месте накладывается стационарное заземление.
  • Какие заграждающие приспособления допускается использовать для ограничения доступа к опасным частям оборудования.

Рассмотрением всех этих вопросов должен заниматься цеховой электрик, который знаком с расположением элементов заземляющего хозяйства и полностью владеет информацией по порядку подсоединения корпуса станка к ЗУ. Он должен знать, в частности, что для заземления электрооборудования в его конструкции предусмотрена специальная точка, к которой подсоединяется заземляющая шина.

Правила заземления электродвигателя

Согласно действующим нормативам электродвигатели также подлежат обязательному защитному заземлению.

Обратите внимание: Исключением из этого требования является ситуация, когда корпус электродвигателя располагается на металлическом пьедестале, непосредственно связанном с грунтом.

Во всех остальных случаях его обязательно нужно будет соединить специальной медной жилой с заземляющим контуром (фото ниже).

В ПУЭ особо отмечается, что такое соединение должен иметь каждый электродвигатель, независимо от их количества в данном электрохозяйстве.

Последовательное подключение нескольких агрегатов в заземляющую цепочку категорически запрещено (в этом случае при обрыве линии в одном месте заземления лишаются все двигатели).

Для грамотного обустройства ЗУ в подводящем силовом кабеле 380 Вольт должна быть предусмотрена отдельная (дополнительная) шина. Один ее конец подключается к «земляной» клемме распредкоробки электродвигателя, а второй – непосредственно к корпусу силового шкафа.

Важно! В этом случае должна соблюдаться последовательность установки заземления, согласно которой перед подсоединением кабеля сначала к ЗУ подключается сам электрический щиток.

Сечение проводников, используемых при обустройстве заземления для электродвигателей должно соответствовать нормам, приведенным в ПУЭ (смотрите таблицу).

Заземление сварочных аппаратов

При работе со сварочным оборудованием заземление его корпуса согласно требованиям ПУЭ также обязательно. Помимо этой части электрического агрегата заземляться должен один из выводов трансформаторной вторичной обмотки (к другой клемме подсоединяется держатель электродов). Заземляемый вывод на корпусе обозначается соответствующим значком и оснащается приспособлением, надежно фиксирующим протянутую от защитного контура шину.

Величина переходного сопротивления защитного контура или ЗУ для сварочного оборудования не должна превышать 10-ти Ом. Если потребуется повысить электропроводимость заземляющей конструкции – увеличивают контактную площадь всех соединений, включая поверхность соприкосновения с землей.

Как и в случае с рассмотренными ранее электродвигателями последовательное включение сварочных аппаратов в заземляющую цепочку запрещено.

Защита передвижных установок

Все, что было рассмотрено ранее, традиционно относится к обычному стационарному оборудованию. Иной подход наблюдается при необходимости заземления передвижных электроустановок, для которых выполнение требований по переходному сопротивлению несколько затруднено. В связи с этим ПУЭ допускают повышение его величины до предельного значения, равного 25-ти Омам.

Обратите внимание: В отдельных случаях допускается в качестве заземления для передвижек применять имеющиеся на объекте стационарные ЗУ.

Последнее требование справедливо лишь для установок с автономным питанием, имеющим изолированную от земли нейтраль (в качестве примера может быть приведено ГРПШ).

Этот вид заземляющих устройств традиционно применяется для тех образцов оборудования, которые не являются источниками питания для остальных установок и не склонны к искрообразованию. Другая область их применения – передвижные агрегаты, оснащенные собственными стационарными заземлителями, не используемыми в данный момент. Передвижные установки с автономным питанием из-за возможного образования трущихся сочленений и изолированной от земли нейтрали подлежат регулярному освидетельствованию в части состояния защитной оболочки (изоляционного покрытия).

Защита электроприборов

Для обеспечения требуемого уровня защиты при работе с электрическими приборами различного типа возможны следующие защитные меры:

  • надежная защита открытых для общего доступа токоведущих частей;
  • усиление защитной изоляции методом ее наращивания;
  • ограничение доступности к корпусам оборудования.

Кроме того, для этих целей могут применяться пониженные напряжения (если это позволяют особенности конструкции).

Чтобы избежать нежелательных пробоев изоляции и попадания опасного напряжения на корпуса электроприборов используются следующие «классические» методы:

  • Наличие защитного заземления.
  • Система выравнивания потенциалов.
  • Дополнительная (усиленная) изоляция токоведущих частей.

В отдельных случаях ограничение проявляется в том, что такие образцы электроаппаратуры не допускается эксплуатировать в особо опасных помещениях (влажных или с сильным запылением). Если наряду с заземлением применяются другие способы защиты работающих с приборами людей – они не должны взаимно исключать друг друга. Другими словами их действие не должно снижать эффективность уже имеющейся и работающей в этом месте защиты.

Применение элементов естественных заземлителей допускается только в ситуациях, когда исключена вероятность нанесения подземным конструкциям ощутимого ущерба, связанного с протеканием по ним аварийного тока.

Заземление и зануление

Для защиты человека от удара током в особо опасных условиях эксплуатации нередко используется принцип одновременного заземления и зануления электроустановок. Всем, кто не знаком со вторым понятием, следует знать, что зануление электроустановок – это умышленное соединение их корпусов с нейтралью подводящей силовой линии. Понять принцип его действия поможет ознакомление с тем, как реализуется это способ защиты на практике.

Суть зануления состоит в превращении случайного попадания сетевого напряжения на корпус установки (из-за повреждения изоляции, например) в однофазное короткое замыкание. Отсюда следует, что и рассматриваемое нами заземление и зануление, как системы, выполняют функцию защиты от поражения электрическим током. Но делают они это каждая по-своему (смотрите фото ниже).

В одном случае (при заземлении) для получения цепочки стекания тока пробоя применяется отдельное заземляющее устройство, снижающее потенциал на корпусе прибора до безопасного уровня. Для «срабатывания» системы зануления тот же корпус электрически соединяется с нейтралью питающей сети.

Токопроводящие части электроустановок подлежат заземлению или занулению во всех случаях, когда защищаемое оборудование работает в помещениях повышенной опасности (с большой запыленностью и высоким уровнем влажности). Специалистам, занимающимся вопросами его защиты важно четко представлять себе отличие этих двух понятий. Кроме того им потребуется хорошо разбираться в том как правильно сделать контур заземления для данного образца оборудования.

Периодичность проверки

Для проверки текущего состояния ЗУ согласно требованиям ПУЭ проводятся периодические испытания заземляющих контуров. Они позволяют убедиться в соответствии их параметров (сопротивления стеканию тока, в частности) установленным нормативам.

Дополнительная информация: Для контроля текущего состояния ЗУ используются специальные измерительные приборы, подключаемые к нему по особым схемам.

В ПУЭ также оговаривается, что периодичность проверки (испытаний) действующих систем зависит от класса самого проводимого обследования. Так, визуальные осмотры заземляющих конструкций должны проводиться не реже одного раз в полгода. Если та же процедура сопровождается выборочным вскрытием почвы в вызывающих подозрения местах – проверки проводятся не реже раза в 12 лет. Нормы и сроки проверок для различных конструкций заземляющих устройств могут несколько отличаться от рассмотренных показателей (смотрите монографию Р. Карякина под тем же названием).

В заключение отметим, что после ознакомления с предложенным материалом заинтересованный пользователь сможет четко представить себе, для чего нужно заземление и как оно обустраивается. Знание всех тонкостей этого вопроса поможет ему уберечь себя и своих близких от опасности поражения электрическим током. Кроме того, умение разбираться в них обеспечит сохранность эксплуатируемого на объекте электрооборудования.

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Какие электрические характеристики обеспечивают безопасную работу контура заземления

Защитная функция контура основана на том явлении, что аварийный ток стекает по пути наименьшего сопротивления.

На корпусе любого бытового прибора из-за повреждения изоляции может появиться потенциал фазы. В старой системе заземления TN-C он станет стекать через тело прикоснувшегося человека.

Тяжесть электротравмы зависит от многих факторов, но может привести и к фатальным последствиям.

В схеме электропитания TN-S искусственно созданный РЕ проводник через контур заземления отводит опасный потенциал, защищает человека от поражения током.

Для оптимальной работы схемы необходимо учесть:

  • сопротивление растеканию;
  • напряжения прикосновения и шага;
  • состояние грунта по его удельному сопротивлению;
  • электрические характеристики выбранных материалов и их стойкость к воздействию агрессивной среды почвы;
  • конструкцию контура, которая должна быть просчитана по нормативам и проверена электрическими замерами высокоточными приборами.

Сопротивление заземляющего устройства в электроустановках до 1000 В: из каких составляющих оно складывается

Любой контур заземления состоит из вертикальных или горизонтальных заземлителей (электродов), расположенных в земле. Через создаваемый ими контакт протекает аварийный ток.

Вертикальные электроды заглублены в почву, разнесены на определенное расстояние, объединены горизонтальным заземлителем, подключенным к главной шине здания.

Для частного дома редко используется один вертикальный заземлитель по причине противодействия сопротивления растеканию тока.

Допустим, что имеется сооружение с подключенным к нему одним вертикальным электродом, расположенным в почве. На главную шину организовано металлическое короткое замыкание. Сопротивлением заземляющего проводника пренебрегаем для упрощения.

Ток короткого замыкания начинает стекать на потенциал земли по электроду и распределяется с него равномерно по всем направлениям. При этом максимальная плотность тока будет создана у самого заземлителя, а с удалением от него она станет уменьшаться.

Прохождение тока через постоянно увеличивающуюся поверхность земли ослабляет его величину. Напряжение тоже имеет самую большое значение у электрода, а с постоянным снижением величины тока оно падает. Здесь проявляет свое действие простой закон Ома.

Сопротивление заземляющего устройства Rз — это сопротивление участка земли между точками нулевого потенциала. Оно вычисляется по формуле Rз=Uф/Iкз.

На его величину очень слабо влияет сопротивление металлических частей заземлителей с шиной и контакты электродов с землей — они очень маленькие. Вопрос его снижения решается за счет изменения конструкции контура и характеристик грунта.

Улучшить этот показатель можно установкой дополнительного электрода. Однако монтировать его следует определенным образом.

Если два электрода разместить рядом, то площадь зоны растекания практически не меняется. Ток короткого замыкания стекает на том же участке грунта. Поэтому заземлители необходимо разнести на большее расстояние.

При этом ток КЗ станет стекать с каждого электрода, разделяясь на два потока, а между ними образуется пространство, где они оказывают влияние друг на друга. Оно называется зоной экранирования. Для оценки его характеристик введены поправочные коэффициенты.

Второй способ улучшения сопротивления заземляющего устройства основан на увеличении длины вертикального электрода и его заглублении в грунт до 30 метров. Технология этого метода приведена в конце статьи.

Несколько вертикальных электродов привариваются в почве к металлической полосе (горизонтальному заземлителю). Он тоже оказывает влияние на стекание аварийного тока, оценивается по индивидуальному коэффициенту.

Его величина зависит от количества электродов в контуре и отношения расстояния между ними к их длине. Данные сведены в таблицу.

Таким образом, электрические характеристики создаваемого контура сильно зависят от конфигурации и расположения вертикальных и горизонтальных заземлителей, их заглубления в грунт.

Владельцу частного дома необходимо оценивать сопротивление заземляющего устройства в электроустановках до 1000 В и делать предварительный расчет на бумаге до начала сборки конструкции. Для этого требуется представлять, из каких процессов берутся параметры, задаваемые в проекте.

Напряжение прикосновения и шага: что это такое и как оно влияет на расчет контура заземления

Напряжение прикосновения описывает пункт ПУЭ 1. Его величина заложена в формулы для расчета сопротивления контура заземления.

Представим, что на корпусе какого-то оборудования появился фазный потенциал U и к нему прикоснулся человек с сопротивлением тела R.

Через него начнет стекать ток Iт, который определяется по закону Ома. Величина приложенного напряжения зависит от места создания контакта, удаления от максимальной величины U, обозначается термином прикосновения (Uпр).

Поскольку от Uпр зависит безопасность человека, то на него введены строгие нормативы. При создании электрического проекта на объект в него закладывают жесткие ограничения, влияющие на безопасность. Они учтены в допустимых параметрах сопротивления заземляющего устройства.

Еще один ряд факторов, влияющий на расчет контура — учет тех процессов, которые протекают непосредственно на грунте при стекании аварийного тока, распределяющегося внутри той зоны, где может случайно оказаться человек. Их учитывает напряжение шага.

В эпицентре разряда приложено максимальное напряжение, а его величина постепенно снижается с увеличением расстояния до нуля. Когда в этой зоне будет двигаться человек, то между его ногами возникнет разность потенциалов.

Она возрастает при приближении к месту разряда, а при определенных условиях может привести к электротравме: чем ближе к центру, тем опаснее.

Термин напряжения шага Uш заложен в пункт ПУЭ 1. Он строго нормируется формулами расчета проекта заземляющих устройств.

На промышленных объектах обычно применяются дорогие специальные защиты, быстро отключающие аварийные режимы, когда напряжению шага остается возможность проявить себя очень короткое время.

В частном доме таких устройств нет. Поэтому к качеству контура предъявляются повышенные требования. Владельцу необходимо продумать место его расположения и трассу прохождения горизонтального заземлителя.

Напряжение прикосновения и шага стремятся сделать настолько минимальными, насколько они могут обеспечить повышенную безопасность человека. Они учитываются нормативами ПУЭ.

Какие нормы по сопротивлению растекания заложены в ПУЭ и почему

Для создания надежного контура частного дома следует понимать, что он работает не сам по себе, а в составе всей системы заземления электроустановки, начиная от промышленной трансформаторной подстанции.

Безопасность зависит от типа нейтрали ТП и быстроты ликвидации аварийных ситуаций.

На промышленных объектах, требующих оперативного отключения аварий, создается эффективно заземленная нейтраль, позволяющая при однофазных замыканиях на землю быстро отключать токи КЗ. Для этого ее сопротивление, с учетом влияния всех естественных и искусственных заземлителей, не должно превышать 0,5 Ома. (Пункт 1

Бытовая электрическая сеть 380/220 вольт обычно создается с глухозаземленной нейтралью. Ее безопасность в какой-то части может улучшить разделительный трансформатор.

За ним создается сеть с изолированной нейтралью. Но мы сейчас рассматриваем другой вопрос.

Трансформаторная подстанция, подключенная по обычной схеме с заземленной нейтралью, должна работать в режиме, предусмотренном пунктом ПУЭ 1. 101.

Это значит, что при питании частного дома напряжением 380/220 вольт общее сопротивление всей цепочки заземляющих устройств должно укладываться в норматив менее 4 Ома. На эту величину оказывают влияние все повторные заземлители ВЛ и естественные заземления.

К последним относят железобетонные фундаменты зданий и другие, закопанные в грунт металлические конструкции. Их задача — длительно обеспечивать электрический контакт с землей.

Повторные заземлители линии распределяются по опорам ВЛ для обеспечения достаточной величины тока однофазного замыкания, которую должна почувствовать токовая защита. Они же ставятся на вводе в здание.

Все эти заземления должны в комплексе обеспечить величину сопротивления 0,4 Ома на трансформаторной подстанции.

Когда ВЛ и ТП введены в эксплуатацию, то любое смонтированное на них заземление находится в работе. Измерить отдельно его сопротивление невозможно и очень опасно: оно является частью электрической цепи.

Теперь продолжим рассмотрение пункта ПУЭ 1. 107. для заземляющего устройства частного дома. Здесь уже приводятся другие нормативы.

Для создаваемого нами заземлителя введена величина 30 Ом. Контур заземления можно отключить от ГЗШ и замерить его сопротивление. Понимаем, что в работе оно участвует со всеми повторными и естественными заземлителями схемы и обеспечивает 4 Ома для трансформатора на КТП.

Но не все так просто. Нам потребуется выполнить еще одно условие безопасности: сопротивление ближайшего повторного заземлителя должно составить 10 Ом. Об этом говорит пункт ПУЭ 1. 103.

Однако обеспечить эти 10 и 30 Ом простыми способами не всегда возможно из-за физического состояния грунта.

Виды грунтов и их удельное сопротивление: что требует обязательного учета

Наш контур будет забит в землю, которая служит проводником электрического тока. Ее проводимость зависит от многих факторов и нормируется величиной удельного сопротивления.

Например, скальный грунт имеет очень плохие характеристики. Работать на нем — плохая затея. Нормируемые параметры и возможные пределы их отклонения помещены в таблицу.

Сведения эти представлены как ориентировочные для проведения приблизительного расчета. При создании проекта контура их желательно уточнить на конкретной местности.

Чем влажнее почва и больше в ее состав входит различных солей, тем лучше ее удельное сопротивление. Однако солевые растворы — это агрессивная среда, вызывающая коррозию металлов.

Именно постоянные колебания влаги, зависящие от времени года и погодных условий, вызывают большие отклонения удельного сопротивления от средней величины.

В мороз вода превращается в лед, а он довольно плохо проводит электрический ток. Во время жары почва высыхает. Зима и лето — самые неблагоприятные периоды для работы контура заземления.

Поэтому эти времена года используются для проведения контрольных замеров сопротивлений растекания.

Грунт не обладает однородной структурой. При заглублении в почву могут встретиться всякие сюрпризы. Предвидеть их нереально. Особенно при большой глубине.

Например, сверху почвы может быть слой чернозема, а под ним суглинок или супесок, камни.

Приблизительно оценить состав грунта можно самостоятельно. Для этого берут с глубины порядка метра его кусочек и пытаются скатать «колбаску» между ладонями. Если ее толщина соответствует спичке, то это глина.

Из песка скатать ничего не получится, он рассыпается. Из суглинка можно сделать колбаски толщиной порядка сантиметра. Супесок скатывается чуть большими кусочками и сразу разваливается.

Метод приблизительный, но он позволяет получить данные для расчета проекта. Более точно эти результаты обеспечивают приборы, предназначенные для измерения электрического сопротивления грунтов. Ими занимаются специалисты электролабораторий.

Поскольку удельное сопротивление грунта сильно зависит от сезона, то для более точного расчета контура введены сезонные коэффициенты, учитывающие еще и четыре района проживания.

Требования к материалам для контура заземления, которые надо знать обязательно

Качественный электрический контакт между металлом электродов и почвой создается не за счет закапывания конструкции, а при забивании стержней в землю, когда грунт уплотняется при вдавливании.

Электроды должны хорошо выдерживать ударные механические нагрузки при монтаже схемы, входить в грунт без деформации и сохранять свои электрические характеристики десятилетиями в условиях действия на них агрессивной почвенной среды.

К выбору заземлителей предъявляются строгие нормативы по виду металлов и их габаритов. Предельно допустимые минимальные размеры электродов опубликованы таблицей ПУЭ.

Уменьшать сечение материалов нельзя, а выбирать толще не рационально.

Для вертикальных заземлителей обычно используется труба, пруток и уголок, а горизонтальных — та же полоса или пруток. Их поперечное сечение должно соответствовать требованиям таблицы 1. 104.

Конструкция контура предназначена для создания электрического контакта с грунтом даже при коррозии металла. Защищать его красками нельзя.

Окончательная сборка электродов осуществляется сваркой, а ее шов довольно быстро ржавеет и разрушается. Поэтому его надо покрывать защитным слоем битумного лака.

Металл соединительной полосы, расположенный на открытом воздухе, к которому подключают отвод на главную защитную шину, тоже нужно покрасить.

Как рассчитать контур заземления

Проект создается в несколько этапов.

Шаг №1. Выбор материала

Металл и его профиль выбирают по вышеприведенной таблице 1. 104. При изготовлении используют те материалы, которые имеются в наличии или проще всего приобрести в конкретной местности. Главное условие — соблюсти требуемое сечение.

Шаг №2. Определение конструкции

  • глубиной забивки вертикальных заземлителей H;
  • расстоянием между ними D;
  • их количеством N.

Расчет предполагает их расположение в линию, а не треугольником, когда увеличивается зона экранирования. Но при необходимости этот вариант можно легко пересчитать.

Направление линии выбирается с учетом местных условий так, чтобы она не пересекалась с другим магистралями, например, канализацией, водопроводом, подводом газа.

Глубину забивки определяют опытным путем на одном контрольном экземпляре. Для него выкапывают ямку глубиной 0,7 метра и в нее загоняют пробный стержень.

При этом оценивают затрачиваемое усилие и особенности технологии. Если залить в ямку ведро воды и дать ее впитаться в грунт хотя бы полчаса, то забивка потребует меньших физических усилий.

Рекомендуемая длина для опытного образца обычно составляет 2-2,5 метра. Короче стержни делают только для очень плотных почв.

Расстояние между вертикальными электродами выбирают кратно их длине: это позволяет лучше учитывать коэффициенты взаимного влияния.

Количество вертикальных заземлителей определяет длину соединительной полосы с учетом участка подвода к дому, а ее характеристики тоже закладывают при расчете конструкции.

Когда конфигурация и размеры выбраны, то приступают к следующему этапу.

Шаг №3. Расчет электрического сопротивления выбранного контура

Вычисления по математическим формулам позволяют предварительно оценить собираемую конструкцию. Если она укладывается в норматив, то можно приступать к ее изготовлению. В противном случае вносятся коррективы схемы увеличением числа электродов, их заглублением или повышением расстояний.

Вначале считают сопротивление одиночных заземлителей с учетом их формы и способа заглубления.

Когда расчет выполнен и проверен, то приступают к определению специальных коэффициентов использования. Они учитывают степень экранирования и взаимного влияния электродов.

Привожу их наиболее распространенную часть таблицей.

После определения коэффициентов влияния можно приступать к общему расчету сопротивления заземляющего устройства. Привожу формулу.

Полученный результат может уложиться в нормируемые 30 Ом или быть выше. Если он не удовлетворяет требованиям ПУЭ, то потребуется что-то добавить в конструкцию или изменить размеры. После этого необходимо сделать новый расчет и добиться положительного результата.

Вычисления можно вести вручную по формулам на бумаге или воспользоваться онлайн калькулятором, приложенным ниже.

Просчитав несколько вариантов исполнения заземлительной конструкции, вы хорошо запомните ее особенности, поймете технологию сборки. А это поможет избежать ошибок и создать надежное устройство для длительной эксплуатации.

2 схемы изготовления контура заземления в частном доме

Приступать к практическим работам на грунте можно только после того, как теоретический расчет собираемой схемы полностью уложился в требования безопасности, заложенные в ПУЭ.

Типовой контур для обычных грунтов из подручных средств

Для сборки заземлительного устройства потребуется:

  • Прокопать канаву под горизонтальный электрод на глубину порядка 0,8 метра. Ее ширина в местах забивки вертикальных штырей должна обеспечить удобство работы сварочными электродами.
  • Забить в грунт вертикальные штыри на всю глубину, оставив на поверхности только десяток сантиметров для монтажа горизонтальной полосы.

Чтобы не разбивать верхушку электрода кувалдой его сразу защищают предохранительным колпаком. Можно заранее приварить пластину или кусок уголка, предотвращающий деформации.

ПУЭ определяет нормативы на использование защитного проводника из:

  • стали с поперечным сечением 75 мм кв (очень проблемно подключать к ГЗШ вводного щита);
  • алюминиевого провода 16 кв мм (требует периодического поджатия при эксплуатации из-за высокой текучести металла);
  • меди сечением 10 квадрат. Это самый приемлемый вариант монтажа к контуру и ГЗШ.

Промышленные модульные заземлители быстрого монтажа

Специальные заводские комплекты значительно облегчают сборку и монтаж контура, но их стоимость может разочаровать.

Здесь обычно используется один вертикальный стальной электрод с омедненным покрытием сборной конструкции за счет промежуточных резьбовых переходников.

Длина одного элемента составляет 1,5 метра. Последовательное соединение четырех звеньев позволяет углубиться на 6 м. Можно забивать в землю и дальше, вплоть до 30 метров.

Но здесь махать кувалдой очень затруднительно. Такую работу выполняют мощным перфоратором.

На верхний штырь забитого электрода монтируется через специальный обжимной переходник под заземляющий проводник.

Место контакта защищается битумной лентой. В таком виде оно может быть скрыто в почве.

Однако для проведения профилактических осмотров его лучше делать чуть выше грунта и помещать в защитный короб.

Пример того, как сделать заземление в частном доме своими руками по этому методу объясняет своим видеороликом владелец Energosystems.

Окончанием работы следует считать не завершение монтажа и подключение заземлительного проводника к ГЗШ вводного щитка, а электрические проверки собранной схемы.

Они заключаются в замере электрического сопротивления специальными приборами. Это работа электротехнической лаборатории.

Она оценит сопротивление собранного заземлительного устройства и ближайшего повторного заземлителя. Если они укладываются в норму, то вопрос закрыт. Вы получите заверенный протокол проверки.

На практике встречаются случаи, когда теоретический расчет не оправдывает ожидания, а реальная норма завышена. К этому надо быть готовым.

Выход из этой ситуации прост: траншею в районе концевого электрода оставляют открытой и прокапывают ее дальше для вбивания дополнительного вертикального заземлителя.

Его подключают сваркой через соединительную полосу к основному контуру. Затем выполняют повторный замер сопротивления.

Свои работы лаборатория выполняет за деньги. Они позволяют оценить реальное состояние контура, а не полагаться на волю случая.

Выражаю благодарность владельцу видео Алекс Жук за его канал «Лекции по электротехнике». Предлагаю оценить его работу «Зачем нужен контур заземления».

Жду ваших вопросов в комментариях.

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий

Adblock
detector