В случае электрического пробоя все вторичные напряжения в блоке питания отсутствуют. Во случае утечки вентилятор компьютерного БП может «подёргиваться» и на выходе могут появляются пульсации выходного напряжения, периодически пропадающие. То есть модуль защиты периодически срабатывает, но полной блокировки не происходит. Диоды Шоттки 100% сгорели, если радиатор, на котором они закреплены, очень теплый или сильно пованивает горелым от них.
На принципиальных схемах они обозначается почти как диод, мотри рисунок выше, но с небольшими графическими отличиями, кроме того достаточно часто попадаются сдвоенные диоды-шоттки.
Сдвоенный диод Шоттки – это два отдельных элемента собранных в одном общем корпусе причем выводы катодов или анодов этих компонентов объединены. Поэтому сдвоенный диод, обычно трех выводной. В импульсных и компьютерных блоках питания можно достаточно часто увидеть сдвоенные диоды Шоттки с общим катодом.
Так как оба диода размещены в едином корпусе и собраны при одинаковом технологическом процессе, то их технические параметры почти идентичны. При подобном размещение в одном корпусе, во время работе они будут находится в одном температурном режиме, а это один из главный факторов увеличения надежность работы устройства в целом.
- Максимальное постоянное обратное напряжение;
- Максимальное импульсное обратное напряжение;
- Максимальный (средний) прямой ток;
- Максимальный импульсный прямой ток;
- Постоянное прямое напряжение на диоде при заданном прямом токе через него;
- Обратный ток диода при предельном обратном напряжении;
- Максимальная рабочая частота диода;
- Время обратного восстановления;
- Общая емкость диода.
В конце 30-х годов XX века немецкий физик Вальтер Шоттки обнаружил, что внешнее электрическое поле заставляет свободные электроны покидать зону проводимости и в буквальном смысле выходить из твёрдого тела. Данная квантовая зависимость впоследствии была названа именем её первооткрывателя и теперь известна, как эффект Шоттки.
Несмотря на то, что открытие германского учёного относится к области теоретической физики, оно находит применение в практической радиотехнике и лежит в основе функциональности таких радиокомпонентов, как диоды Шоттки. Их отличие от обычных электрических вентилей заключается в отсутствии классического полупроводникового p-n-перехода. Его роль играет контакт между полупроводником и металлом.
Металл и полупроводник: особенности контакта.
В контактной области полупроводниковых и металлических материалов эффект Шоттки приводит к образованию в полупроводнике слоя, сильно обеднённого электронами. Он обладает вентильными свойствами, присущими полупроводниковому p-n-переходу. Эта зона представляет собой преграду для носителей заряда, поэтому данные радиокомпоненты часто называют диодами с барьером Шоттки.
Элементы отличаются от обычных полупроводниковых вентилей следующими качествами:
- пониженное падение напряжения при прямом смещении;
- незначительная собственная ёмкость;
- малый обратный ток;
- низкое допустимое обратное напряжение.
При прямом смещении разность потенциалов на диоде Шоттки не превышает 0,5 В, тогда как на обычном выпрямительном вентиле падение напряжения составляет около 2-3 В. Это объясняется небольшим сопротивлением переходного участка между полупроводником и металлом.
Низковольтные диоды.
Особенность диодов Шоттки состоит в том, что они являются низковольтными. Если приложенная разность потенциалов превышает некоторый допустимый уровень, то в соответствии с квантовыми законами происходит пробой, который в обычном полупроводниковом радиокомпоненте может быть туннельным, лавинным или тепловым. После первых двух диод восстанавливается и продолжает исправно работать. Тепловой пробой означает фатальную поломку.
В диодах с барьером Шоттки пробой всегда бывает только тепловым. Такова особенность металло-полупроводникового перехода. При большом обратном смещении элемент выходит из строя и нуждается в замене. Этим, кстати, объясняется сильная чувствительность диодов Шоттки к статическому электричеству – при их монтаже и обслуживании радиоаппаратуры с этими элементами необходимо заземлять спецодежду и инструменты.
Однако чувствительность этих радиокомпонентов не всегда является их недостатком. Например, благодаря этой характеристике диоды с барьером Шоттки используются в особо чувствительных гетеродинах, которые получают способность обрабатывать радиосигналы очень малой мощности.
Основные параметры.
- Максимальное постоянное обратное напряжение;
- Максимальное импульсное обратное напряжение;
- Максимальный (средний) прямой ток;
- Максимальный импульсный прямой ток;
- Постоянное прямое напряжение на диоде при заданном прямом токе через него;
- Обратный ток диода при предельном обратном напряжении;
- Максимальная рабочая частота диода;
- Время обратного восстановления;
- Общая емкость диода.
Производство диодов Шоттки.
В качестве полупроводниковой составляющей используются стандартные материалы – кремний, германий и арсенид галлия. На них в процессе изготовления радиокомпонентов напыляются такие металлы, как золото, серебро, палладий, вольфрам. Именно эти элементы таблицы Менделеева обеспечивают достаточно высокий потенциальный барьер, определяющий функциональность диодов Шоттки.
Германиевые радиокомпоненты показывают высокую устойчивость к изменению температурного режима, поэтому данный материал чаще кремния и арсенида галлия используется при производстве диодов для мощных схем питания. Зато кремниевые и галлиевые элементы демонстрируют лучшие частотные параметры.
Так вот барьер Шоттки – это переход между металлом и полупроводником. В обычном диоде у нас используется переход между полупроводниками p-типа и n-типа, а здесь уже совсем другая история – металл + полупроводник.
Приветствую всех на сайте MicroTechnics снова! Сегодня мы продолжим курс “Основы электроники“, и героем статьи станет еще один электронный компонент, а именно диод Шоттки. В недавних статьях мы рассматривали принцип работы и применение обычных диодов и стабилитронов:
И вот настало время диода Шоттки!
Основной отличительной особенностью этого элемента является малое падение напряжения при прямом включении (относительно обычного выпрямительного диода). Давайте разберемся, с чем же в данном случае связано это пониженное падение.
“Сердцем” диода Шоттки является не p-n переход, который образуется при соприкосновении двух полупроводников с разными типами проводимости, а так называемый барьер Шоттки. И элемент, и барьер названы так в честь немецкого физика Вальтера Шоттки, который занимался исследованием этих процессов и явлений в 1930-х годах.
Так вот барьер Шоттки – это переход между металлом и полупроводником. В обычном диоде у нас используется переход между полупроводниками p-типа и n-типа, а здесь уже совсем другая история – металл + полупроводник.
Для работы барьера Шоттки необходимо, чтобы работы выхода использующихся металла и полупроводника были различными. А работа выхода, в свою очередь, это энергия, которую необходимо сообщить электрону для его удаления из твердого тела. Рассмотрим случай, когда барьер образуется при контакте металла и полупроводника n-типа. Причем работа выхода электронов из полупроводника меньше, чем работа выхода из металла:
Здесь нам важно заметить, что поскольку phi_ <М>> phi_ <П>, то, напротив, j_ <М>. В результате этого при контакте металла и полупроводника в пограничной области буду скапливаться заряды:
Иными словами, из-за того, что работа выхода из полупроводника меньше, то электронам проще перейти из него в металл, чем наоборот, в обратном направлении. Но как и для p-n перехода этот процесс не будет протекать бесконечно. Эти заряды создадут дополнительное электрическое поле в граничной области, и, в результате, под действием этого поля токи термоэлектронной эмиссии выравняются.
Как видите, в целом, процессы, протекающие в барьере Шоттки, по своей сути очень похожи на то, что происходит в p-n переходе при контакте двух полупроводников. При подключении внешнего напряжения возникает дополнительное поле, которое смещает баланс токов в пограничной области.
Как вы помните, при прямом смещении в обычном диоде в полупроводниковых областях накапливаются неосновные носители заряда – дырки в n-области и электроны в p-области:
Так вот в момент перехода диода в закрытое состояние (при подаче обратного смещения) неосновные носители начинают перемещаться навстречу друг другу, что приводит к возникновению кратковременного импульса обратного тока. Для диодов Шоттки же этот негативный и нежелательный эффект фактически сводится на нет!
Итак, суммируем все, что мы рассмотрели, и построим вольт-амперную характеристику диода Шоттки и обычного выпрямительного диода:
А теперь резюмируем плюсы и минусы этих элементов:
А теперь давайте проведем несколько практических экспериментов. Протестируем две аналогичные схемы на работу с сигналами высокой частоты. Только в одной схеме задействуем диод Шоттки, а в другой обычный выпрямительный диод и сравним осциллограммы сигналов на выходе.
На принципиальных схемах диод Шоттки обозначается так:
Тесты будем проводить на простой схеме однополупериодного выпрямителя:
Для эксперимента я взял диод Шоттки 10BQ015 и выпрямительный диод 1N4001. Попробуем подать на вход синусоиду с частотой 1 КГц:
Первый канал (желтый) – сигнал на входе
Второй канал (красный) – сигнал на выходе цепи с диодом Шоттки
Третий канал (синий) – сигнал на выходе цепи с обычным диодом
Результат вполне ожидаем. Диоды пропускают ток только в одном направлении, поэтому нижний полупериод входного сигнала срезается. Пока разницы, честно говоря, никакой не наблюдается. Увеличиваем частоту входного сигнала до 100 КГц:
Первый канал (желтый) – сигнал на входе
Второй канал (красный) – сигнал на выходе цепи с диодом Шоттки
Третий канал (синий) – сигнал на выходе цепи с обычным диодом
И здесь уже видим, что обычный диод с таким сигналом попросту перестает справляться. При переключении диода (из открытого состояния в закрытое) возникает нежелательный импульс обратного тока (в точности так, как мы и обсудили чуть ранее).
Итак, мы рассмотрели устройство, основные характеристики и принцип работы диода Шоттки. Давайте на этом и завершим сегодняшнюю статью, всем большое спасибо за уделенное время и до встречи в новых статьях!
У сдвоенных вентилей выходы катодов или анодов совмещены. Отсюда следует, что такое изделие обладает тремя концами. Сборки с общим катодом, например, работают там, где требуются импульсные блоки питания. Диоды Шоттки с общим анодом используются существенно реже.
Диод Шоттки: принцип работы
От классического вида вентиль Шоттки отличается тем, что основу его работы составляет пара полупроводник-металл. Зачастую эта пара упоминается как барьер Шоттки. Этот барьер, кроме схожей с p-n переходом способности проводить электричество в одну сторону, обладает несколькими полезными особенностями.
Арсенид галлия и кремний – основные поставщики материала для производства электронного элемента в промышленных условиях. В более редких случаях используют драгоценные химические элементы: платина, палладий и им подобные.
Его графическое условное выражение на электрических схемах не совпадает с классическими диодами. Маркировка электронных элементов похожа. Также встречаются двойные диоды в виде сборки.
Важно! Двойной диод – это пара диодов, совмещенных в общем объеме.
Сдвоенный диод с барьером Шоттки
У сдвоенных вентилей выходы катодов или анодов совмещены. Отсюда следует, что такое изделие обладает тремя концами. Сборки с общим катодом, например, работают там, где требуются импульсные блоки питания. Диоды Шоттки с общим анодом используются существенно реже.
Диоды находятся в едином корпусе и используют для их изготовления одну технологию производства, поэтому по набору своих параметров они как близнецы-братья. Температура работы у них тоже одинаковая, т.к. находятся в общем пространстве. Данное свойство значительно уменьшает необходимость их замены из-за потери работоспособности.
Самые важные отличительные свойства рассматриваемых вентилей – это незначительное прямое падение напряжения (до 0,4 В) в момент перехода и высокое время срабатывания.
Однако упомянутая величина падения напряжения обладает узким диапазоном прикладываемого напряжения – не более 60 В. И сама эта величина мала, что задаёт достаточно узкий спектр применения данных диодов. Если напряжение превысит указанную величину, барьерный эффект исчезает, и диод начинает работать в режиме обычного выпрямительного диода. Обратное напряжение для большинства из них не выходит за рамки 250 В, однако существуют образцы с величиной обратного напряжения 1,2 кВ.
При проектировании электрических схем проектировщики частенько на принципиальных схемах диод Шоттки не выделяют графически, однако в спецификации к заказу указывают на его использование, прописывая в типе. Поэтому при заказе оборудования на это нужно обращать пристальное внимание.
Диоды Шоттки в источниках питания
В компьютерных блоках питания очень часто расположены вентили Шоттки. Пятивольтовое напряжение обеспечивает серьёзный ток в десятки ампер, что для низковольтных систем питания является рекордом. Для этих блоков питания и применяют вентили Шоттки. В основном, используются сдвоенные диоды с единым катодом. Ни один качественный современный питающий блок компьютеров не обходится без такой сборки.
Диагноз. «Перегоревший» питающий блок электронного устройства чаще всего означает необходимость замены сгоревшей сборки Шоттки. Причины неисправности всего две: увеличенный ток утечки и электрический пробой. При наступлении описанных состояний электрическое питание на компьютер перестаёт подаваться. Защитные механизмы сработали. Рассмотрим, как это происходит.
Напряжение на входе компьютера отсутствует на постоянной основе. Блок питания полностью заблокирован вшитой в компьютер защитой.
После ремонта блока питания, связанного с заменой сдвоенных диодов Шоттки, необходимо «прозвонить» и транзисторы. При обратной процедуре диоды также требуют проверки. Особенно это правило актуально, если причиной ремонта стала утечка.
Такое универсальное использование элемента связано с способностью полупроводникового диода с эффектом Шоттки во много раз усиливать работоспособность любого прибора и увеличивать его эффективность. Обратное сопротивление электротока восстанавливается, за счет чего он сохраняется в электрической сети. Потери динамики напряжения минимизируются. Также диод Шоттки вбирает несколько видов излучений.
Маркировка и схема диода Шоттки
На схеме преподносится почти как стандартный полупроводниковый диод, но имеются и отличия.
Обозначения диодов
В маркировке используется набор символов, они всегда обозначаются сбоку изделия. Используются международные стандарты, но в зависимости от производителя маркировка может отличаться.
Сочетание цифр и букв на корпусе не всегда понятно, но в радиотехнических справочниках всегда можно найти точную расшифровку.
Диоды в сборке имеют очень близкие параметры, поскольку каждая такая сборка изготавливается единым технологическим циклом, и в итоге их рабочий температурный режим одинаков, соответственно выше и надежность. Прямое падение напряжения 0,2 — 0,4 вольта наряду с высоким быстродействием (единицы наносекунд) — несомненные преимущества диодов Шоттки перед p-n-собратьями.
Диоды Шоттки или более точно — диоды с барьером Шоттки — это полупроводниковые приборы, выполненные на базе контакта металл-полупроводник, в то время как в обычных диодах используется полупроводниковый p-n-переход.
Диод Шоттки обязан своим названием и появлением в электронике немецкому физику изобретателю Вальтеру Шоттки, который в 1938 году, изучая только что открытый барьерный эффект, подтвердил выдвинутую ранее теорию, согласно которой хоть эмиссии электронов из металла и препятствует потенциальный барьер, но по мере увеличения прикладываемого внешнего электрического поля этот барьер будет снижаться. Вальтер Шоттки открыл этот эффект, который затем и назвали эффектом Шоттки, в честь ученого.
Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника. В таких условиях, в соответствии с уравнением Ричардсона, ток термоэлектронной эмиссии с поверхности полупроводника окажется больше, чем ток термоэлектронной эмиссии с поверхности металла:
В начальный момент времени, при контакте названных материалов, ток от полупроводника в металл превысит обратный ток (из металла в полупроводник), в результате чего в приповерхностных областях как полупроводника, так и металла — станут накапливаться объемные заряды — положительные в полупроводнике и отрицательные — в металле. В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон.
Под действием поля термодинамическая работа выхода для полупроводника возрастет, и возрастание будет происходить до тех пор, пока в контактной области не уравняются термодинамические работы выхода, и соответствующие им токи термоэлектронной эмиссии применительно к поверхности.
Картина перехода к равновесному состоянию с формированием потенциального барьера для полупроводника p-типа и металла аналогична рассмотренному примеру с полупроводником n-типа и металла. Роль внешнего напряжения — регулировка высоты потенциального барьера и напряженности электрического поля в области пространственного заряда полупроводника.
На рисунке выше представлены зонные диаграммы различных этапов формирования барьера Шоттки. В условиях равновесия в области контакта токи термоэлектронной эмиссии выравнялись, вследствие эффекта поля возник потенциальный барьер, высота которого равна разности термодинамических работ выхода: φк = ФМе — Фп/п.
Очевидно, вольт-амперная характеристика для барьера Шоттки получается несимметричной. В прямом направлении ток растет по экспоненте вместе с ростом прикладываемого напряжения. В обратном направлении ток не зависит от напряжения. В обоих случаях ток обусловлен электронами в качестве основных носителей заряда.
Диоды Шоттки поэтому отличаются быстродействием, ведь в них исключены диффузные и рекомбинационные процессы, требующие дополнительного времени. С изменением числа носителей и связана зависимость тока от напряжения, ибо в процессе переноса заряда участвуют эти носители. Внешнее напряжение меняет число электронов, способных перейти с одной стороны барьера Шоттки на другую его сторону.
Вследствие технологии изготовления и на основе описанного принципа действия, — диоды Шоттки имеют малое падение напряжения в прямом направлении, значительно меньшее чем у традиционных p-n-диодов.
Здесь даже малый начальный ток через контактную область приводит к выделению тепла, которое затем способствует появлению дополнительных носителей тока. При этом отсутствует инжекция неосновных носителей заряда.
У диодов Шоттки поэтому отсутствует диффузная емкость, поскольку нет неосновных носителей, и как следствие — быстродействие достаточно высокое по сравнению с полупроводниковыми диодами. Получается подобие резкого несимметричного p-n-перехода.
Таким образом, прежде всего диоды Шоттки — это СВЧ-диоды различного назначения: детекторные, смесительные, лавинно-пролетные, параметрические, импульсные, умножительные. Диоды Шоттки можно применять в качестве приемников излучения, тензодатчиков, детекторов ядерного излучения, модуляторов света, и наконец — выпрямителей высокочастотного тока.
Обозначение диода Шоттки на схемах
Диоды Шоттки сегодня
На сегодняшний день диоды Шоттки распространены весьма широко в электронных устройствах. На схемах они изображаются по иному, чем обычные диоды. Часто можно встретить сдвоенные выпрямительные диоды Шоттки, выполненные в трехвыводном корпусе свойственном силовым ключам. Такие сдвоенные конструкции содержат внутри два диода Шоттки, объединенные катодами или анодами, чаще — катодами.
Диоды в сборке имеют очень близкие параметры, поскольку каждая такая сборка изготавливается единым технологическим циклом, и в итоге их рабочий температурный режим одинаков, соответственно выше и надежность. Прямое падение напряжения 0,2 — 0,4 вольта наряду с высоким быстродействием (единицы наносекунд) — несомненные преимущества диодов Шоттки перед p-n-собратьями.
Особенность барьера Шоттки в диодах, применительно к малому падению напряжения, проявляется при приложенных напряжениях до 60 вольт, хотя быстродействие остается непоколебимым. Сегодня диоды Шоттки типа 25CTQ045 (на напряжение до 45 вольт, на ток до 30 ампер для каждого из пары диодов в сборке) можно встретить во многих импульсных источниках питания, где они служат в качестве силовых выпрямителей для токов частотой до нескольких сотен килогерц.
Нельзя не затронуть тему недостатков диодов Шоттки, они конечно есть, и их два. Во-первых, кратковременное превышение критического напряжения мгновенно выведет диод из строя. Во-вторых, температура сильно влияет на максимальный обратный ток. При очень высокой температуре перехода диод просто пробьет даже при работе под номинальным напряжением.
Ни один радиолюбитель не обходится без диодов Шоттки в своей практике. Здесь можно отметить наиболее популярные диоды: 1N5817, 1N5818, 1N5819, 1N5822, SK12, SK13, SK14. Эти диоды есть как в выводном исполнении, так и в SMD. Главное, за что радиолюбители их так ценят — высокое быстродействие и малое падение напряжения на переходе — максимум 0,55 вольт — при невысокой цене данных компонентов.
Редкая печатная плата обходится без диодов Шоттки в том или ином назначении. Где-то диод Шоттки служит в качестве маломощного выпрямителя для цепи обратной связи, где-то — в качестве стабилизатора напряжения на уровне 0,3 — 0,4 вольт, а где-то является детектором.
В приведенной таблице вы можете видеть параметры наиболее распространенных сегодня маломощных диодов Шоттки.
Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.
К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.
Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.
Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.
В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.
На принципиальных схемах диод Шоттки изображается вот так.
Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.
Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).
Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.
Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.
У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.
К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).
Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!
Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.
Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.
К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.
В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.
Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.
Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.
Применение диодов Шоттки в источниках питания.
Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.
Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.
В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.
То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.
Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.
Проверка диодов Шоттки мультиметром.
Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.
Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.
Эти электронные элементы, представленные выше, можно встретить в нашем мире практически везде: в компьютерах, стабилизаторах, бытовой технике, радиовещании, телевидении, блоках питания, солнечных батареях, транзисторах и во многих других приборах из всех сферах жизни.
Эти электронные элементы, представленные выше, можно встретить в нашем мире практически везде: в компьютерах, стабилизаторах, бытовой технике, радиовещании, телевидении, блоках питания, солнечных батареях, транзисторах и во многих других приборах из всех сферах жизни.
Во всех случаях поднимает эффективность и работоспособность, уменьшает численность потерь динамики напряжения, восстанавливает обратное сопротивление тока, принимает на себя излучение альфа, бета и гамма- зарядов, позволяет работать достаточно много времени без пробоев, удерживает ток в напряжении электрической цепи.
Для ускорения процесса накопления и рассасывания неосновных носителей заряда целесообразно ограничить их накопление. Достичь этого можно путем шунтирования коллекторного перехода транзистора диодом Шоттки, т. е. диодом с выпрямляющим электрическим переходом между металлом и полупроводником. Структура такого интегрального транзистора показана на рис. 7.5.
27. Вертикальная структура транзистора Шоттки.
Наибольшее распространение получили транзисторы, имеющие вертикальную структуру, в которой все выводы от областей транзистора расположены в одной плоскости на поверхности подложки Такая структура называется планарной.
Для ускорения процесса накопления и рассасывания неосновных носителей заряда целесообразно ограничить их накопление. Достичь этого можно путем шунтирования коллекторного перехода транзистора диодом Шоттки, т. е. диодом с выпрямляющим электрическим переходом между металлом и полупроводником. Структура такого интегрального транзистора показана на рис. 7.5.
Рис. 7.5. Структура транзистора с диодом Шоттки
Иногда на принципиальных схемах затруднительно графически обозначить этот элемент, его рисуют, как обычный диод, а в спецификации дополнительно указывают тип.
Принцип действия и обозначение
Если обычный полупроводниковый диод основан на свойствах p-n перехода, то принцип работы диода Шоттки основан на свойствах перехода при контакте металла и полупроводника. Такой контакт получил в физике получил название «барьер Шоттки». В качестве полупроводника чаще всего используется арсенид галлия (GaAs), а из металлов применяют в основном следующие:
- вольфрам;
- платину;
- серебро;
- золото;
- палладий.
На радиотехнических схемах обозначение диода Шоттки похоже на обозначение обычного полупроводникового элемента, но есть заметное различие: со стороны катода, где есть небольшая перпендикулярная к основной линии черта, у нее дополнительно загибаются края в разные стороны под прямым углом или с плавным изгибом.
Иногда на принципиальных схемах затруднительно графически обозначить этот элемент, его рисуют, как обычный диод, а в спецификации дополнительно указывают тип.
При прохождении электрического тока по цепи положительные и отрицательные заряды скапливаются по всему периметру устройства, включая защитное кольцо. Скопление частиц происходит в различных элементах диода. Это обеспечивает возникновение электрического поля с последующим выделением определенного количества тепла.
Сфера применения
Диод Шоттки может включать в себя любой аккумулятор.
Он входит в устройство солнечной батареи. Солнечные панели, которые уже давно успешно работают в условиях космического пространства, собираются именно на основании барьерных переходов Шоттки. Такие гелиосистемы устанавливаются на космических аппаратах (спутниках и телескопах, проводящих работу в жестких условиях безвоздушного пространства).
Устройство незаменимо при работе компьютеров, бытовой техники, радиоприемников, блоков электропитания. При правильном использовании диод Шоттки увеличивает производительность любого устройства, предотвращает потери тока. Он способен принимать на себя альфа-, бета- и гамма-излучение. Именно поэтому он незаменим в условиях космоса.
С помощью такого устройства можно осуществить параллельное соединение диодов, используя их в качестве сдвоенных выпрямителей. Таким образом можно объединить межлу собой два параллельных источника питания. Один корпус включает в себя два полупроводника, а концы положительного и отрицательного зарядов связываются друг с другом. Есть и более простые схемы, где диоды Шоттки очень малы. Это характерно для очень мелких деталей в электронике.
Диод Шоттки является незаменимым элементом во многих электронных устройствах. Главное — понимать специфику его работы и использовать его корректно.
Источник — http://eandc.ru/news/detail.php?ID=27665
Источник — http://microtechnics.ru/diod-shottki-ustrojstvo-princzip-raboty-i-osnovnye-harakteristiki/
Источник — http://amperof.ru/elektropribory/diod-shottki.html
Источник — http://principraboty.ru/princip-raboty-dioda-shottki-chto-tako-diod-shottki/
Источник — http://electricalschool.info/electronica/1827-diody-shottki-ustrojjstvo-vidy.html
Источник — http://go-radio.ru/diod-schottky.html
Источник — http://instrument.guru/elektronika/diod-shottki-harakteristiki-printsip-raboty.html
Источник — http://studfile.net/preview/7387615/page:10/
Источник — http://220v.guru/elementy-elektriki/diody/chto-takoe-diod-shottki-i-princip-ego-raboty.html
Источник — http://batteryk.com/diod-shottki-printsip-raboty