Электрические тройники — устройство, заземление

Содержание

Тройники

Описание: Разветвитель электрический Эра SP-2e-W с заземлением, 2 розетки, белый. Если в Вашем доме недостаточно розеток, чтобы одновременно подключить несколько электроприборов, то тройник марки Эра станет Вашим надежным помощником. Электрический разветвитель расчитан на максимальную мощность 16А/3500Вт. Корпус выполнен из ударопрочного и негорючего пластика (поликарбонат). Модель тройника на 16А позволяет подключить мощные бытовые приборы общей нагрузкой до 3500Вт. Не бойтесь включить чайник, обогреватель или микроволновку. Дизайн разработан в России командой Эра Style. Рекомендуемая розничная цена:
341. 70 руб Оптовая цена:
узнать у
менеджераКупить на OZON
Купить на WILDBERRIES

Условия поставки тройника электрического линейного 16 А с заземлением белого | 11-1079 REXANT

Мой рассказ будет состоять из трёх частей.

1 часть. Заземление
(общая информация, термины и определения)

В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования. Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений. Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.

1 часть. Заземление

В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

Термины и определения
Б. Назначение (виды) заземления

Рабочее (функциональное) заземление
Б2. Защитное заземлениеБ2. Заземление в составе внешней молниезащиты
Б2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2. Заземление в составе электросети

Качество заземления. Сопротивление заземления.

Факторы, влияющие на качество заземленияВ1. Площадь контакта заземлителя с грунтомВ1. Электрическое сопротивление грунта (удельное)Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления

Термины и определения

Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта. Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1. 7 в редакции седьмого издания).

И попытаюсь “перевести” эти определения на “простой” язык.

Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1. 28).

Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

Заземляющее устройство — совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1. 19).

Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т. состоять из нескольких взаимно удаленных заземлителей. На рисунке оно показано толстыми красными линиями:

Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1. 15).

Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т. ), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки. Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды. На рисунке он показан толстыми красными линиями:

Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1. 26).

Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом. Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571. 21-2000 п. 21)

Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т. ), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки. На рисунке они показаны толстыми красными линиями:

Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.

Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру. На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:

Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода. Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Назначение (виды) заземления

Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.

Рабочее (функциональное) заземление

Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1. 30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т. для их работы в ОБЫЧНОМ режиме.

Защитное заземление

Это заземление, выполняемое в целях электробезопасности (ПУЭ 1. 29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т. в АВАРИЙНОМ режиме) и при разрядах молний. Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

Подробнее защитное назначение заземления можно рассмотреть на двух примерах:

  • в составе внешней молниезащитной системы в виде заземленного молниеприёмника
  • в составе системы защиты от импульсного перенапряжения
  • в составе электросети объекта
Заземление в составе молниезащиты

Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе. Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке). При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.

Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

Заземление в такой системе является обязательным элементом, т. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)

УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии. Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно). Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.

Классический УЗИП представляет собой газовый разрядник (wiki), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд 🙂 между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

Как и в молниезащите — заземление в такой системе является обязательным элементом, т. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Заземление в составе электросети

Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.

Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

Качество заземления. Сопротивление заземления.

Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт. Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).

Факторы, влияющие на качество заземления

Сопротивление в основном зависит от двух условий:

  • площадь ( S ) электрического контакта заземлителя с грунтом
  • электрическое сопротивление ( R ) самого грунта, в котором находятся электроды
Площадь контакта заземлителя с грунтом.

Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт).

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

Электрическое сопротивление грунта (удельное)

Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода. Примером “плохого” для заземления грунта является сухой песок.

(Если интересно, можно посмотреть таблицу величин удельного сопротивления грунтов, используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.

Существующие нормы сопротивления заземления

Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0. 5, 2, 4, 8, 10, 30 и более Ом.

Для ориентирования приведу следующие значения:

  • для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
  • у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
    при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
  • при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
  • при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
Расчёт сопротивления заземления

Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

Выбор формул расчёта зависит от выбранной конфигурации заземлителя. Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:

Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора. Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

Строительство заземлителей

При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

Подробнее о строительстве — в следующих частях.

  • Вторая часть
  • Третья часть

Алексей Рожанков, специалист технического центра «ZANDZ. ru»

При подготовке данной части использовались следующие материалы:

  • Публикации на сайте “Заземление на ZANDZ.ru”
  • Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания (гуглить)
  • ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
    Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить)
  • Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87 (гуглить)
  • Собственный опыт и знания

Схема и механизм работы электрического разветвителя

По внешнему виду тройники могут выглядеть совершенно по-разному: квадратные, круглые, треугольные, плоские и объемные, короткие и удлиненной формы. Поверхностная форма не воздействует на механизм работы электрического разветвителя.

Внутри тройник состоит из вилки и переходника для нескольких розеток, которые совмещаются при помощи штепселя. Тройник погружается вилкой в гнезда основной розетки и начинает распределять электрический ток между подключенными приборами. Все детали тройника надежно фиксируют в жаропрочной пластмассовой оболочке различных цветовых оттенков (в интернете есть фотографии разобранного тройника).

Главный ультиматум при сборке разветвителей – прочное закрепление штепселя. При несоблюдении этого требования происходит повышение температуры в месте соединения и это может послужить причиной возникновения пожара. Из-за высокого градуса температуры происходят внешние и внутренние повреждения розеток и тройников, что нарушает их функциональность.

Дополнительные функции тройника

Помимо функции распределения электрического тока между несколькими электроприборами, тройники несут дополнительные миссии. Одна из ролей это заземление. Тройники с заземлением не позволит перегреться корпусу и при задевании не произойдет удара током.

Также выпускают тройники с защитной функцией: на корпусе располагаются вспомогательные крышки, кнопки для регулирования напряжения.

Разновидность бытового электрического разветвителя

По ассортименту тройники классифицируются на основании каких-то дополнительных функций:

  • тройники с заземлением;
  • тройники с защитными крышками;
  • тройники с кнопкой стабилизатора напряжения электрического тока;
  • евротройники с евровилкой или еврогнездами.

Тройник с заземлением можно определить по внешнему виду: внутри гнезд располагаются узкие металлические полоски, а также на корпусе ставиться специальное теснение. Такой разветвитель рационально использовать, если в помещение протянута проводка с заземлением.

В помещениях с повышенной влажностью имеется необходимость применять бытовые электрические тройники с защитными крышками. Эти крышки выступают в роли барьера для попадания влаги в корпус устройства и не допускают окисления в месте сплава.

Разветвители с кнопкой регулирования напряжения или сетевые фильтры выравнивают силу тока при скачках электроэнергии и оберегают от случая короткого замыкания.

В зависимости от гнезда основной розетки и формы вилки дополнительных электроприборов, можно выбирать тип тройника. Если стационарная розетка имеет еврогнезда, то нужно использовать тройник с евровилкой. Она тоньше обычной вилки и без проблем подойдет к розеткам.

Возможен вариант, когда гнезда основной розетки выполнены по евростандарту и у подключаемых приборов евровилки. Производители тройников предусмотрели и такой вариант.

Меры безопасности при пользовании тройником

Несоблюдения простых правил использования распределителей электроэнергии может привести к печальным последствиям. Самое страшное, что может произойти, это человек получит удар током или возникнет пожар. Чтобы этого избежать, достаточно придерживаться несложных мер защищенности.

В развитых странах разработаны нормы защиты тройников от воздействия внешних факторов. Они указываются специальными отметками IP.

Первая аббревиатура указывает уровень защиты от попадания пыли вглубь разветвителя, а под второй зашифрован показатель прикрытия от влаги. Показатели находятся в диапазоне от 0 до 6, где 0 минимальное значение, а 6 – максимальное. Например, в помещениях с повышенной влажностью нужно устанавливать распределители с показателями защиты не меньше IP44.

Если в качестве тройника используется удлинитель, то нужно систематически осматривать внешнее состояние провода. Поврежденная целостность шнура может привести к поражению электрическим током или возникновению пожара.

Как уже указывалось выше, при выборе тройника, необходимо учитывать суммарную степень нагрузки. Чем больше электроприборов разом подключено к тройнику, тем сильнее греется электропроводка. Это может так же привести к пожару. Из-за такого момента лучше применять распределитель электроэнергии с тремя гнездами, не больше.

Таким образом, можно сделать следующие выводы: если возникла потребность использовать электроразветвитель, то нужно изучить все воздействующие факторы. Выбирать тройники лучше хорошего качества с прочным корпусом в соответствии с видом проводки и стационарных розеток.

Фото тройников

В любом современном доме имеется большое количество техники, нуждающейся в подпитке из электросети. Как правило, ее количество очень сильно превышает количество имеющихся в доме розеток. Решить эту проблему может покупка самого обыкновенного пластикового тройника.

Как правильно выбрать тройник?

Поскольку бытовой тройник подключается к электрической сети, на первый план выносится его безопасность. Некачественный или неправильно подобранный разветвитель может стать причиной поломки техники, короткого замыкания и пожара.

Чтобы не допустить таких последствий, необходимо знать максимально допустимую нагрузку для Вашей электрической проводки. Сумма тока подключенных к тройнику устройств ни в коем случае не должна превышать этот показатель.

Строение и принцип работы

Внешне тройники могут иметь массу различий. Они могут иметь форму квадрата, круга или треугольника, иметь разную длину и объем. Такой показатель, как форма и размер тройника относится только к его эргономичности, никак не влияя на механизм его работы.

Внутреннее строение прибора всегда остается неизменным: вилка из внешней части разветвителя передает электрический ток на совмещенные штепселем переходники на 3 розетки.

Главное требование к этой простой конструкции — надежная фиксация штепселя. Если данная деталь будет закреплена не плотно, это может привести к пожару, так как в месте соединения штепселя и переходника начнется нагревание.

Виды тройников

Кроме своей основной функции — увеличения количества рабочих розеток, разветвитель может иметь еще несколько дополнительных ролей.

Одна из полезных функций тройника — это заземление. Эта функция не дает пластиковому корпусу перегреваться во время работы, а также защищает от удара электрическим током при контакте.

Некоторые модели могут быть оснащены специальными кнопками, регулирующими напряжение. Цена такого тройника весьма демократична, поэтому такая покупка является наиболее приемлемой.

Для домов, где имеются маленькие дети, были созданы разветвители с крышками, закрывающими гнезда розеток. Также эти крышки защищают всю конструкцию от влаги, не позволяя ей проникать внутрь и окислять металл в местах сплавов.

Гораздо реже можно встретить приборы, оснащенные таймером, который будет подавать электрический ток строго отведенное количество времени или подсветкой.

Меры предосторожности

Чтобы обезопасить себя от поражения током или пожара, нужно соблюдать несложные меры предосторожности.

Во-первых, нужно следить за внешним состоянием разветвителя, не имеет ли он следов намокания или сколов после падения. Поврежденный тройник несет в себе сильную угрозу жизни и здоровью, так как повреждения штепселя ведет к перегреву контактов и корпуса.

  • Во-вторых, в помещении с высокой влажностью и запыленностью запрещается использовать тройники, не защищенные плотной крышкой.
  • В-третьих, необходимо не перегружать тройник: чем больше мощных приборов включено через него в сеть, тем больше угроза его перенапряжения.

Цены

Тройник – весьма недорогой товар, цена которого в разных регионах практически не отличается.

Цена на простой разветвитель в 2018 году составляет от 25 до 150 рублей. Тройник с заземлением будет стоить незначительно дороже — от 70 до 200 рублей, а модель, оснащенная дополнительно кнопкой для регулировки напряжения – 300 рублей.

Покупка

Обычно вопросов, где купить тройник, не возникает. Этот простой прибор, который имеется в ассортименте большинства хозяйственных и магазинов электротехники.

  • Также можно совершить покупку в интернет- магазине, ознакомившись с параметрами и фото тройников.
  • Ознакомившись со всеми требованиями к предстоящей покупке, можно выбрать качественный разветвитель, который прослужит многие годы.

Фото тройников

Здравствуйте, уважаемые читатели сайта sesaga. В этой статье мы будем с Вами разбираться, как подключить заземление. Эта тема довольно-таки обширная и имеет множество нюансов, и здесь так просто не скажешь — делай так или подключай сюда. Поэтому, чтобы Вы понимали меня, а мне было легче Вам объяснить, будет и теория и практика.

Заземление в нашей современной жизни является неотъемлемой частью. Конечно, можно обойтись и без заземления, ведь, сколько мы жили без него. Но, с появлением современной бытовой техники, заземление является просто обязательным условием для защиты человека от поражения электрическим током.

Общие понятия

Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Заземление предназначено для отвода токов утечки, возникающих на корпусе электрооборудования при аварийном режиме работы этого оборудования, и обеспечение условий к немедленному отключению напряжения с поврежденного участка сети путем срабатывания устройств защитного и автоматического отключения.

Например: произошел пробой изоляции между фазой и корпусом электрооборудования — на корпусе появился некоторый потенциал фазы.

Если оборудование заземлено, то это напряжение потечет по защитному заземлению, обладающему низким сопротивлением, и даже, если не сработает устройство защитного отключения, то при прикосновении человека к корпусу, ток, который остался на корпусе, будет не опасен для человека. Если же оборудование не заземлено — весь ток потечет через человека.

Заземление состоит из заземлителя и заземляющего проводника, соединяющего заземляющее устройство с заземляемой частью.

  • Заземлителем является металлический стержень, чаще всего стальной, или другой металлический предмет, имеющий контакт с землей непосредственно или через промежуточную проводящую среду.
  • Заземляющий проводник – это провод, соединяющий заземляемую часть (корпус оборудования) с заземлителем.
  • Заземляющее устройство – это совокупность заземлителя и заземляющих проводников.

Немного теории

Все Вы видели во дворах небольшие кирпичные сооружения, в которые заходят и выходят силовые кабеля — это трансформаторные подстанции (электроустановки).

Трансформаторные подстанции служат для приема, преобразования и распределения электрической энергии.

Любая подстанция имеет силовой трансформатор, служащий для преобразования напряжения, распределительные устройства и устройства автоматического управления и защиты.

Принимая высоковольтное напряжение сети 6 – 10 kV (киловольт) подстанция преобразует его и передает потребителю — то есть нам. Прием и преобразование напряжения обеспечивает силовой трансформатор, с выхода которого к потребителю уходит трехфазное переменное напряжение 0,4 kV или 400 Вольт.

Для питания домашнего однофазного оборудования (телевизор, холодильник, утюг, компьютер и т. ) используется одна из трех фаз L1; L2; L3 и нулевой рабочий проводник «N».

Это стандартная схема обеспечения потребителей электрической энергией, на базе которой были разработаны дополнительные схемы, различающиеся по способу подключения защитного заземления, подключения и защиты электрооборудования, а также принятых мер для защиты людей от поражения электрическим током.

Трансформаторная подстанция имеет свой контур заземления, к которому подключены все металлические корпуса оборудования подстанции. Контур заземления представляет собой вбитые в землю металлические стержни, связанные между собой металлической шиной при помощи сварки. Эту шину называют шиной заземления.

Шина заземления заводится в здание подстанции и прокладывается по периметру здания. К ней привариваются болты, к которым уже через заземляющие проводники подключается все оборудование подстанции.

Согласно ПУЭ (Правила Устройства Электроустановок) заземляющий проводник (нулевой защитный) на электрических схемах имеет буквенное обозначение «РЕ» и цветовую маркировку с чередующимися поперечными или продольными полосами желтого и зеленого цветов.

Системы заземления

Системы заземления различаются по способу заземления нулевого рабочего «N» проводника на вторичной обмотке силового трансформатора и потребителей электрической энергии (двигатель, телевизор, холодильник, компьютер и т. ), питающихся от этого трансформатора.

Рассмотрим на примере трансформаторной подстанции. Вторичная обмотка силового трансформатора подстанции имеет три катушки соединенные «звездой», где начала катушек соединяются в общую точку, называемую нейтралью «N», которая непосредственно соединена с заземляющим устройством.

Свободные концы катушек подключаются к проводам трехфазной сети, уходящей к потребителям трехфазной или однофазной электрической энергии. Такое соединение нейтрали называется глухозаземленной и используется в системах заземления типа TN.

Здесь нейтраль «N», или еще ее называют рабочий ноль, выполняет две функции:

Совместно с одной из трех фаз образует напряжения 220 Вольт. Выполняет защитную функцию, так как имеет прямой контакт с землей.

На данный момент существует 3 типа систем заземления:

IT — система, в которой нейтраль трансформатора изолирована от земли или заземлена через устройства, имеющие большое сопротивление, а открытые проводящие части заземлены.

Все три системы заземления разработаны для защиты людей и электрооборудования от действия электрического тока. Данные системы заземления считаются равноценными для защиты людей, но они не равноценны по способу обеспечения надежности (безотказности, ремонтопригодности) электроснабжения потребителей электрической энергией.

  • Обозначаются системы заземления двумя буквами.
    Первая буква определяет связь нейтрали трансформатора с землей:
  • T – нейтраль заземлена;
    I – нейтраль изолирована от земли.
  • Вторая буква определяет связь открытых проводящий частей с землей:
  • T – открытые проводящие части непосредственно заземлены;
    N – открытые проводящие части присоединены к глухозаземленной нейтрали трансформатора.
  • Теперь рассмотрим все системы по порядку.

Система заземления TN

Система «TN» — это система, в которой нейтраль трансформатора заземлена, а открытые проводящие части присоединены к нейтрали посредством нулевых защитных проводников.

Открытая проводящая часть – доступная прикосновению проводящая часть электроустановки (например: корпус бытовых электроприборов), которая в нормальном режиме работы электроустановки не находится под напряжением, но может оказаться под напряжением в случае повреждения изоляции.

Как правило, повреждение изоляции может быть вызвано многими факторами: это и старение оборудования, механические повреждения, длительная эксплуатация при максимальных нагрузках, скопление пыли между корпусом оборудования и токоведущими частями, образование влаги на пыльной поверхности, находящейся рядом с токоведущими частями, климатическое воздействие, заводской брак и т.

Так вот, в свою очередь система TN разделяется еще на три подсистемы:

TN-C-S — система, в которой функции нулевого защитного «РЕ» и нулевого рабочего «N» проводников совмещены в одном проводнике в какой-то ее части, начиная от силового трансформатора.

Система TN-С

Система TN-C — это одна из первых систем заземления, которая еще встречается в старом жилищном фонде построенном до середины 90-х годов, но, не смотря на это, она еще существует и действует. Эта система прокладывается четырехпроводным кабелем, в котором идут 3 фазных провода и 1 нулевой.

Здесь нулевой защитный «РЕ» и нулевой рабочий «N» проводники совмещены в одном проводнике на всем протяжении системы. То есть, для питания электрооборудования и его заземления используется один «PEN» проводник, и это на сегодняшний день является главным недостатком системы TN-C.

В то время практически не было электрооборудования требующего трехпроводное подключение и поэтому к защитному заземлению не придавалось особых требований, и такая система считалась надежной. Но с появлением в нашем быту современного трехпроводного оборудования, где предусмотрен заземляющий проводник «РЕ», система TN-C перестала обеспечивать нужный уровень электробезопасности.

На сегодняшний день, практически вся современная техника питается через импульсные блоки питания, которые не имеют гальванической развязки с сетью 220 Вольт.

Это связано с тем, что в импульсных блоках питания есть помехоподавляющие фильтры, которые предназначены для подавления высокочастотных помех питающей сети 220 Вольт, и которые через развязывающие конденсаторы соединены с корпусом оборудования.

Высокочастотные помехи, возникающие в питающей сети, через развязывающие конденсаторы, провод защитного заземления «PE», трехполюсную вилку и розетку стекают на «землю».

Вот поэтому возникает опасность появления фазного напряжения на корпусе оборудования при пробое изоляции между фазой и корпусом или пропадании рабочего нуля «N» при питании современной техники используя систему заземления TN-C не имеющей отдельного проводника защитного заземления «РЕ».

Например: если оторвется или отгорит между этажным и квартирным щитом Ваш рабочий ноль «N», то возникает опасность появления фазового напряжения на корпусе, работающего в данный момент бытового оборудования. И если оно не будет заземлено, то при прикосновении к металлическому неокрашенному корпусу голой рукой, через Вас потечет ток, и Вы получите заряд.

Хотя, благодаря импульсным блокам питания современная техника стала меньше, дешевле и легче, но и, естественно, требования в отношении уровня электробезопасности стали уже выше.

Но, как говорится, спасение утопающих дело рук самих утопающих, и поэтому некоторые умельцы, чтобы обезопасить себя, тянут заземление самостоятельно. Одни садятся на батареи центрального отопления, другие подключаются к корпусу этажного щита, ставят перемычку в розетке, устанавливают УЗО, а некоторые даже делают свой контур заземления.

Например: Вы подключились третьим проводником к корпусу этажного щита и думаете что заземлились. Это большое заблуждение. Вы сделали зануление — и не более того.

  • Защитное зануление – это преднамеренное электрическое соединение открытых проводящих частей электроустановки (например, корпус оборудования) с глухозаземленной нейтралью генератора или силового трансформатора, выполняемое в целях электробезопасности.
  • Глухозаземленная нейтраль – это нейтраль трансформатора, присоединенная непосредственно к заземляющему устройству.
  • Так вот, зануление на корпус этажного щита опасно тем, что в случае обрыва Вашего рабочего нуля «N» питание бытовых приборов, включенных в данный момент в розетку, будет проходить уже через защитный проводник «РЕ».

А это уже неправильная схема питания для бытовых приборов, которая приведет к короткому замыканию и поломке всей техники. Автомат защиты сработает, но только от тока короткого замыкания, который создаст Ваша уже сгоревшая техника. А если в этот момент Вы возьметесь за металлический неокрашенный корпус, то вдобавок, на мгновение, получите заряд бодрости.

Хотя в ПУЭ №7 зануление допускается и считается дополнительной мерой защиты. Но опять же возникает вопрос: в каком месте делать зануление. Здесь решать Вам.

Другой пример. Вы подключились к батарее центрального отопления, пытаясь таким-образом обмануть счетчик или заземлиться. На Вашем стояке сосед снизу делает ремонт и заменил старые ржавые трубы на пластиковые. Как итог — Вы оказались отрезанными от Вашей мнимой земли. Теперь Вы и соседи сверху будут находиться в постоянной опасности.

Или еще пример. Вы учли все нюансы и решили заземлиться другим способом. В подвале дома или возле дома вырыли яму, вбили штыри, сделали по всем правилам контур заземления, и заземляющий проводник «РЕ» провели к себе в квартиру. Все, дело сделано, и теперь можно спать спокойно. А вот и нет.

Вдруг Ваш сосед задумал подшутить над Вами из вредности или просто из зависти, что у Вас есть заземление, а у него его нет. Возьмет и отрежет заземляющий проводник.

Или ответственный по дому увидит неположенный по проекту провод и уберет его, а Вы живете и знать не знаете, что остались без заземления. К тому же еще заземление должно периодически проверятся специальными приборами.

Вы это будете делать? У Вас есть такие приборы?

Как вариант защиты Вы установили в двухпроводную линию УЗО. В принципе, это не такой уж плохой вариант, но тоже имеет свои нюансы.

УЗО срабатывает на токи утечки 10 mA, 30 mA и 300 mA, но для этого ему нужен защитный проводник «РЕ», относительно которого УЗО видит эти токи. В системе TN-C защитного проводника «РЕ» нет, зато он есть в системе TN-S, для которой и было разработано УЗО. На двухпроводной линии УЗО тоже сработает, но через ток утечки, который Вы создадите своим телом.

Возьмем, к примеру, все тот же пробой изоляции на корпус, и при этом, одновременное прикосновение к оголенной батарее центрального отопления.

В системе TN-S ток утечки, возникший на корпусе, сразу пойдет по защитному проводнику «РЕ», и если его порог превысит уставку УЗО, то оно сработает и отключит питание. И даже, когда для УЗО порог будет маленький и оно не сработает — Вы ничего не почувствуете, или Вас будет просто немного пощипывать.

В системе TN-C другой случай. При одновременном касании к корпусу и оголенной батарее центрального отопления через Вас на батарею потечет ток.

Если будет стоять обыкновенный автомат, то Вы, в зависимости от силы тока, так и останетесь висеть между двух огней, так как проходящий через Вас ток не будет являться током короткого замыкания.

Если же будет стоять УЗО, то по достижению порога уставки оно сработает и отключит питание.

И вот здесь наступает момент истины: УЗО, в системе TN-C, от поражения электрическим током Вас не спасет. Свой заряд бодрости Вы получите. Вопрос только во времени нахождения под действием электрического тока.

В ПУЭ №7 по поводу установки УЗО в систему TN-C сказано:

Не допускается применять УЗО, реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C).

В случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN-C, защитный РЕ-проводник электроприемника должен быть подключен к PEN-проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата.

Опять возникает вопрос: откуда тянуть защитный проводник. Так что, здесь опять решать Вам.

Поэтому, если Вы живете в домах старой постройки и у Вас двухпроводная сеть, то обезопасив свою квартиру заземлением, как Вам кажется, проблема не решиться, а только ухудшится для Вас или соседей. Проблему двухпроводной сети надо решать коллективно – всем домом:

Переделка или изменение системы питания дома с четырехпроводной на пятипроводную линию. Замена старых этажных щитов на новые, рассчитанные для пятипроводной линии.

Но не подумайте, что все так страшно. В этой части статьи я рассказал о возможных ситуациях, которые могут возникнуть с нами при неправильном подключении и использовании защитного заземления. Во второй части статьи мы продолжим разбираться с оставшимися системами заземления. Удачи!

Соединение элементов заземляющих устройств в земле

При обустройстве заземления приходится соединять между собой провода, а также проводники и штыри, устанавливаемые под землей. Такие соединения должны быть устойчивыми к действию коррозии, а также не требовать обслуживания в течение длительного периода времени. В настоящее время используются три основных способа соединения проводов заземлений — опресовка, сварка и винтовой зажим. В этой статье будет дано краткое описание каждого из методов и проведено сравнение их преимуществ и недостатков.

Нормативная база

Соединение проводов заземления регулируется ГОСТ Р 50571. 54-2013 (МЭК 60364-5-54:2011) «Электроустановки низковольтные». Часть 5-54, пункт 542. 8: «Если заземлитель состоит из частей, которые должны быть соединены вместе, соединение должно быть выполнено экзотермической сваркой, опрессовкой, зажимами или другим разрешённым механическим соединителем».

Другим документом, регламентирующим соединение проводов заземления, является ПУЭ.

139, 7-е издание ПУЭ, в частности, гласит: «Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов должны быть надёжными и обеспечивать непрерывность электрической цепи… Соединения должны быть защищены от коррозии и механических повреждений. Для болтовых соединений должны быть предусмотрены меры против ослабления контакта».

Кроме этого, параметры соединения проводов заземления винтовыми зажимами регулируются ГОСТ 10434 «Соединения контактные электрические. Общие технические требования». Если нет агрессивной среды (земля к ней, как правило, не относится), то соединения должны относиться ко 2 классу.

К нему относятся контактные соединения цепей, сечения проводников которых выбраны по стойкости к сквозным токам, потере и отклонению напряжения, механической прочности и защите от перегрузки.

Допускает зажимное соединение и циркуляр 11/2006 ассоциации «Электромонтаж», если соединяемые элементы выполнены не из чёрных металлов.

Опрессовка

Соединение проводов посредством опрессовки — самый простой и технологичный способ. Провода вставляются с двух сторон в гильзу и опрессовываются специальным устройством, именуемым кримпером. Однако, такой способ непригоден для соединения провода со штырём заземления.

К тому же, если соединение опрессовкой находится под землей, то гильза и провода покрываются слоем окиси, что повышает сопротивление контакта. Применяется герметизация такого соединения, но в итоге такая герметизация представляет собой сложное и ненадёжное решение. По сути, не могут полностью быть соблюдены нормы ПУЭ.

Вот почему опрессовка не может быть применяться для соединения, находящегося под землей.

Сварка

Известны два основных вида сварки — электродуговая и экзотермическая. При электродуговой сварке температура достигает +7000°C, из-за чего происходит разрушение защитного антикоррозионного слоя. Кроме этого, сильный нагрев ослабляет не только покрытия, но и металлы, из которых сделаны сердцевины проводников. Возникает так называемая межкристаллитная коррозия, которая потенциально способна привести к разрушению соединения. Вот почему ГОСТ Р 50571. 54-2013 не указывает в числе допустимых для соединения проводников заземления методов дуговую сварку.

Вместо дуговой сейчас для соединения проводов заземления применяют так называемую экзотермическую (иногда её ещё называют термитной) сварку. При экзотермической сварке для нагрева металла используется так называемый термит — порошкообразная смесь алюминия или магния с железной окалиной (либо окисью меди).

Применительно к контуру заземления обычно используется термит на основе алюминия и оксида меди. Место соединения заформовывают огнеупорным материалом, туда засыпают порошкообразный термитный состав, который затем поджигают. В результате сгорания термита образуется жидкая медь, которая имеет хорошую адгезию со свариваемым материалам. Температура расплава превышает 3000°C.

Экзотермическая сварка соответствует нормам как ГОСТ Р 50571. 54-2013, так и ПУЭ.

Выпускаются готовые комплекты для экзотермической сварки, для использования которых не требуется специальной подготовки. Тем не менее, при прочих равных условиях, применение экзотермической сварки всё же сложнее, чем соединение проводов винтовыми зажимами. Естественно, к винтовым зажимам, пригодным для соединения проводов заземления, предъявляются особые требования.

Винтовые зажимы

Для того, чтобы реализовать преимущества готовых наборов для заземления ZANDZ, а, именно, предельную простоту сборки и установки, есть смысл использовать винтовые зажимы.

Если при сборке допущена ошибка, можно разобрать и потом правильно собрать.

Но даже если ваши квалификация и опыт позволяют сразу сделать всё правильно, всё равно с винтовыми зажимами работать проще, чем применять сварку.

Но у винтовых зажимов есть два недостатка, которые, впрочем, преодолимы. Во-первых, при соединении ими омеднённого штыря заземления и провода из обычной стали, либо оцинкованной стали, возникает электрохимическая реакция, приводящая к коррозии. Во-вторых, со временем может происходить ослабление затяжки винтов, на что особое внимание обращено в ПУЭ.

Проблема возникновения электрохимической реакции в винтовых зажимах успешно решается использованием специальной прокладки, механически разделяющей проводники из разных материалов, но при этом сохраняющей электрический контакт между ними.

Выводы

Из всех рассмотренных способов соединения проводников в заземлении, располагающихся в грунте, наиболее надёжным является экзотермическая сварка.

Но для массового применения можно рекомендовать винтовые зажимы, имеющие меры по предотвращению электрохимической коррозии и ослабления соединения со временем. В любом случае, для правильного выбора типа соединения лучше обратиться за консультацией к специалистам.

Вам нужна консультация по проектированию или монтажу заземления и молниезащиты? Обращайтесь в Технический центр ZANDZ. com!

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий

Adblock
detector