Электрический ток — определение и основные понятия с примерами

Проводники и диэлектрики

Все существующие природные вещества по степени электропроводности условно разделяют на три группы: проводники электрического тока, диэлектрические и полупроводниковые материалы.

Что такое проводники и диэлектрики

Проводники это вещества, имеющие в своей структуре массу свободных электрических зарядов, способных перемещаться под воздействием внешней силы по всему объёму материала.

К группе проводников в электростатическом поле относят металлы и их соединения, некоторые виды электротехнического угля, растворы солей (кислот, щелочей), ионизированные газы.

Лучшим проводящим материалом считается металл, например, золото, платина, медь, алюминий. К неметаллическим веществам, проводящим ток, относится углерод.

Диэлектрики – вещества, противоположные по своим свойствам проводникам. При отсутствии нагревания заряженные частицы в нейтральном атоме тесно взаимосвязаны и не могут осуществлять движения в объеме материала. В связи с этим электрический ток в непроводнике протекать не может.

К материалам, непроводящим электрический ток, относят: керамику, резину, бумагу, стекло, фарфор, смолу, сухую древесину. Лучшим диэлектриком считается газ. Качества диэлектриков зависят от температуры и влажности среды, в которой они находятся.

Важно! При повышении влажности диэлектрики могут лишиться непроводящих способностей.

Проводники и диэлектрики активно используют в электротехнической области. Пример – материалом, из которого производят провода (кабели), служат проводники, изготовленные из металла. Изолирующие оболочки для них производят из диэлектриков – полимеров.

Лучшими считаются проводники, сырьем для производства которых послужило серебро, золото или платина. Повсеместное их использование ограничивается только большой стоимостью материала. Такие изделия нашли применение в оборонной и космической промышленности. В этих сферах важно обеспечение самого высокого качества оборудования, независимо от его стоимости.

Гораздо шире область применения медных и алюминиевых материалов. Невысокая стоимость и отличные проводящие качества позволили использовать их во многих отраслях хозяйствования.

В диэлектриках повышение температуры может приводить к возникновению свободных электрических зарядов. Это электроны, оторвавшиеся от ядра из-за температурных колебаний. Обычно это небольшое количество свободных зарядов. Но существуют изоляторы, в которых это число достигает существенных размеров. В этом случае изоляционные качества диэлектрика ухудшаются.

Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода. Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества.

Свойства проводников

Основными характеристиками проводников электричества являются:

  • сопротивление,
  • электропроводность.

При движении электронов по проводящему веществу происходят их столкновения с ионами и атомами. Это приводит к возникновению сопротивления.

Если между двумя проводниками создать разность потенциалов, то через третий, их соединяющий, потечет электрический ток. Направление его движения будет от большего потенциала к меньшему. В этом случае носителями будут электроны, не связанные между собой, которые определяют значение электропроводимости вещества.

Электропроводность – возможность материала пропускать электрический ток. Этот показатель обратно пропорционален сопротивлению материала, измеряется в сименсах, См.

В зависимости от носителей заряда, электропроводность может быть:

  • электронной,
  • ионной,
  • дырочной.

Выбор проводящих материалов должен осуществляться в соответствии с их свойствами:

  • Электрическими (удельное сопротивление и температурный коэффициент сопротивления);
  • Физическими (градус плавления, плотность);
  • Механическими (устойчивость к растяжению, изгибанию, возможность обработки на станках);
  • Химическими (взаимодействие с окружающей средой, возможность соединения при сварке, пайке).

Малым удельным сопротивлением обладают металлы без примесей. У сплавов этот показатель увеличивается. Сопротивление возрастает и с повышением температуры.

При выборе проводников для электроустановок, линий питания, защитного заземления и других сфер применения важно учитывать все качества материалов.

Зависимость сопротивления проводника от частоты тока

При воздействии электрического тока индукция магнитного поля происходит внутри прямолинейного проводника и в окружающем его пространстве. Магнитные линии образуют концентрические окружности.

Если проводник с током условно разбить на несколько параллельных друг другу нитей тока, то можно установить, что, чем ближе токовая нить находится к оси проводника, тем больший замыкающийся внутри магнитный поток её охватывает. Индуктивность нити и индуктивное сопротивление находятся в пропорциональной зависимости от магнитного потока, с нею связанного.

В связи с этим в нитях с переменным током, находящихся внутри проводящего вещества, возникает большее индуктивное сопротивление, чем в нитях, находящихся снаружи. Образуется неравномерность тока по сечению, возрастающая от оси к поверхности проводника, чем и объясняется увеличение сопротивления проводников переменному току. Это явление называется поверхностным эффектом.

Из-за неравномерного распределения плотности тока происходит увеличение сопротивления проводника. При небольшой частоте в 50 Гц и малом сечении медного провода явление поверхностного эффекта почти незаметно. При значительном увеличении частоты и сечения проводника из железа это явление будет более активным.

Формула определения длины проводника

Найти длину проводника можно путём непосредственного его измерения, например, рулеткой. Если предстоит подсчитать протяженность скрытой электропроводки в жилище, нужно учесть, что прокладывают её обычно горизонтально по стенам на расстоянии 15-20 см от потолка. Вертикально, под прямым углом, делают опуски на выключатели и розетки. Если проводник труднодоступен (заземляющие проводники), либо длина его велика, этот метод может оказаться сложно выполнимым.

Тогда длина проводника определяется другим способом. Для этого необходимо подготовить:

  • строительную рулетку,
  • тестер,
  • штангенциркуль,
  • таблицу электропроводности металлов.

Сначала нужно измерить сопротивление отдельных участков электропроводки. Далее определить сечение провода и материал, из которого он изготовлен. Обычно в быту используются алюминиевые или медные проводящие материалы.

Из формулы определения сопротивления (R = r * L * s) находят длину проводника по формуле:

L = R / r*s,

  • L – длина провода,
  • R – его сопротивление,
  • r – удельное сопротивление материала (для меди составляет от 0,0154 до 0,0174 Ом, для алюминия – от 0,0262 до 0,0278 Ом),
  • s – площадь поперечного сечения провода.

Рассчитывают сечение провода:

S = π/4 * D2,

  • π – число, приблизительно равное 3,14;
  • D – диаметр, замеряемый штангенциркулем.

Если необходимо найти длину провода, смотанного в бухту, определяют длину одного витка в метрах и умножают на число витков.

Если катушка круглого сечения, измеряют её диаметр, умножают на число π и на количество витков:

L = d * π * n,

  • d – диаметр катушки,
  • n – число витков провода.

Виды проводников

Состояние проводящих электрический ток материалов может быть твердым, жидким, газообразным.

Твёрдые – это группы металлов, их сплавов и некоторые модификации углерода. Металлы хорошо проводят тепло, электроэнергию.

Жидкие – это расплавленные металлы и электролиты. При невысокой температуре жидким проводником может быть ртуть или галлий. Температура плавления остальных элементов слишком высока.

Течение тока по металлу, имеющему твёрдое или жидкое состояние, происходит посредством движения свободных электронов. Благодаря этому, его электропроводность получила название электронной, а само вещество называют проводником первого рода.

Проводник второго рода (электролит) – это кислотный, щелочной, солевой раствор и расплав ионных соединений. В нём одновременно с движением тока переносятся молекулы (ионы), поэтому со временем структура электролита меняется, а на электродах осаживается продукт электролиза.

В электрическом поле низкой напряженности любой газ и пар не проводят ток. Но в случае достижения напряженностью максимальной критической отметки, когда начинаются ударная и фото-ионизация, газ может стать проводником с электронной и ионной электропроводностью. Когда на единицу объема будет приходиться одинаковое число электронов и положительных ионов, газ с сильной ионизацией станет уравновешенной, электропроводящей субстанцией, именуемой плазмой.

Свойства диэлектриков

Выбор диэлектриков должен осуществляться в соответствии с их свойствами:

  • Электрическими: пробивное напряжение (при котором наступает пробой), электрическая прочность (напряженность поля, при которой наступает пробой);
  • Физико-химическими: стойкость к нагреванию (способность длительно выдерживать рабочую температуру), холодостойкость (способность переносить перепады температур), смачиваемость (способность отторгать влагу);
  • Химическими: устойчивость к агрессивной среде, растворимость в лаках, возможность склеивания;
  • Механическими: радиационная устойчивость, вязкость (для жидких диэлектриков), защищенность от коррозии, предел прочности, возможность инструментальной обработки.

Что такое полупроводник

Полупроводник по обозначению – вещество, электрическая проводимость которого меньше, чем у металла, и больше, чем у диэлектрика.

Отличие полупроводника в том, что его электропроводность зависит от температурного режима и объема примесей в составе. Материал обладает характеристиками, как проводящими, так и диэлектрическими.

При увеличении температуры электропроводность вещества растёт, а уровень сопротивления падает. При уменьшении температуры сопротивление стремится к бесконечности.

Обратите внимание! При достижении температурой нулевой отметки полупроводник ведет себя как изолятор.

Благодаря своим уникальным свойствам, полупроводники применяются во многих отраслях промышленности: это и маломощные SMD на печатных платах, и устройства высокой мощности, например, тиристоры в силовой преобразовательной технике.

Зонная теория

Зонная теория твердых тел – это теория перемещения валентных электронов в потенциальном поле кристаллической решетки. Квантовая механика полагает, что свободные электроны могут обладать любой энергией, спектр которой непрерывен.

Электроны изолированных атомов имеют некоторую дискретную величину энергии. При объединении отдельных атомов в молекулы и образовании вещества происходит смещение электронных уровней атома. Таким образом, из энергетических уровней отдельных атомов в твёрдом теле образуются полосы зон энергетических уровней.

Верхняя заполненная зона, валентная, соответствует энергетическому уровню валентных электронов внешней оболочки. Ближайшая к ней, незаполненная, – зона проводимости. Взаимным расположением обеих зон определяются процессы, происходящие в твердом теле, и классифицируются материалы по группам: проводники, полупроводники, диэлектрики.

В проводниках зона проводимости и валентная зона совмещены. Образовавшаяся зона перекрытия позволяет электрону свободно перемещаться при получении даже небольшой энергии.

В полупроводниках зоны не перекрываются. Расстояние между ними, называемое запрещенной зоной, – менее 2. 0 эВ. При нулевой температуре в зоне проводимости отсутствуют электроны, а валентная зона ими заполнена. При возрастании температуры часть электронов забрасывается в зону проводимости за счет теплового движения. Полупроводник становится электропроводящим.

В диэлектриках зоны так же, как и у полупроводников, не перекрываются. Величина запрещенной зоны здесь – более 2. 0 эВ. Для того чтобы перевести электроны из зоны валентности в зону проводимости, необходимо значительно повысить температуру. При невысоких градусах электрический ток не проводится.

Сверхпроводимость

Свойство материала обладать нулевым электрическим сопротивлением при температуре ниже определенного значения получило название сверхпроводимости.

У некоторых проводящих веществ эта способность возникает при холодной температуре, близкой к химическому состоянию жидкого гелия.

В 1986 году произошло открытие веществ с высокотемпературной сверхпроводимостью. Например, керамика из кислорода, бария, меди, лантана не проводит ток в обычных условиях, а вследствие нагревания становится сверхпроводником.

На практике используют вещества, пропускающие электрический ток при 58 градусах Кельвина и более, то есть при температуре выше точки кипения азота.

Чаще всего находят применение твердые высокотемпературные сверхпроводники. Жидкие и газообразные используют реже. Все эти материалы необходимы для изготовления современных электротехнических устройств различной мощности.

Видео

Любая эксплуатируема система снабжения электричеством жилых домов, дач, коттеджей должна также гарантировать безопасность людей и пользователей в процессе работы с электрическим оборудованием, которое подключено к сети. Для этого в составе современных систем предусмотрена специализированная конструкция в виде заземляющего устройства. Благодаря его использованию, при становлении аварийных ситуаций, происходит снижение высокого потенциала до безопасных значений. Если условия, необходимые для получения заземляющего эффекта, отсутствуют, рекомендуется применять защитное зануление. В профессиональных кругах оно рассматривается в качестве заземления на ноль.

Занулением является система безопасности, предназначающаяся для защиты электрического оборудования при попадании на его корпус опасного напряжения. Такой способ защиты является довольно актуальным для квартир и домов, где невозможно обустроить полноценную систему заземления.

Отличием зануления от заземления является принцип работы системы, а именно: при заземлении ток КС уходит в землю. В то время как для зануления используется отдельный проводник, соединенный с фазой ноль обслуживающей подстанции. Также это может быть специальное устройство защиты, срабатывающее при малейших утечках электрического тока.

В то же время, цель зануления аналогична системе заземления – защита людей от возможных поражений током. В случае, когда возникает короткое замыкание, как правило, срабатывает система защиты. Следовательно, человек имеет все шансы остаться в живых и сберечь собственное здоровье. Согласно действующим нормативным документам и ПУЭ, скорость, с которой должны срабатывать защитные устройства регламентирована на значении не более 0. 4 секунды.

Что представляет собой зануление

При обустройстве зануления электроприборов предполагается присоединение к их корпусу нейтрали. В результате такого действия, если случится пробой изоляции или попадание фазы на корпус, произойдет короткое замыкание. При исправной защите автоматика сработает мгновенно и питание электрического прибора сразу же прекратится. Так наиболее просто можно ответить на вопрос, как функционирует система зануления.

Несмотря на кажущуюся простоту зануления, специалисты не рекомендуют делать его самостоятельно, а обратиться за помощью к профессиональным электрикам, которые имеют четкое понимание того, какую работу им предстоит выполнить. В противном случае есть огромная опасность того, что какие-либо параметры будут просчитаны неправильно либо выбраны неподходящие устройства, кабель другого сечения. В таких ситуациях есть риск, что во время короткого замыкания произойдет возгорание электропроводки и другими плачевными последствиями.

Если необходимо проведение зануления, лучшим решением станет консультация в этом вопросе с квалифицированными специалистами или их выезд на объект для оценки ситуации.

Функции зануления

Фактически в системе зануления сочетаются функции сразу двух типов защитных систем: заземлительного контура и системы защитного отключения. Основными элементами зануления являются:

  • Магистраль зануления – представляется в виде металлического проводника, который связывается с нейтральным проводом трансформаторной установки. К нему присоединяют элементы электрического оборудования, выполненные из металла. Все эти элементы должны быть обязательно изолированы от напряжений.
  • Ответвления магистрали к электрическим устройствам – представляют собой металлические проводники, которые выполняют роль связующих элементов для электрического оборудования и устройств, которые нужно занулить с магистралью зануления.
  • Аппарат для отключения – представляется коммутационным аппаратом, посредством которого выполняется присоединение электрического оборудования к питающей электросети. Аппарат реагирует на ток при однофазном замыкании на корпус электрических устройств и мгновенно отключает от сети аварийное (неисправное) оборудование.
  • Повторные магистрали заземления – это связующие элементы, соединяющие магистраль с поверхностью земли посредством заземлителей. Такие элементы имеют сравнительно невысокое сопротивление и используется лишь на некоторых участках занулительных систем.

Основные отличия

Если рассматривать разницу между системой заземления и занулением, отличиями служат следующие особенности:

  • Если необходимо заземление корпуса электрооборудования от нуля, для этого необходимо сооружение специального контура. В то же время, при обустройстве цепи зануления такая необходимость отпадает.
  • Конструкция системы заземления предполагает наличие отдельного провода, который будет соединять устройство, находящееся под защитой, с ЗУ. В свою очередь, при занулении проводник прокладывается также из этой точки, но лишь до шины входа.
  • Если происходит замыкание через ноль, для обеспечения безопасности данная фаза отключается от питающей электросети. В то время как при условии заземления происходит снижение опасного напряжения до минимальных значений.

Как правило, в многоквартирных жилых зданиях условий, необходимых для обустройства заземления нет. Поэтому в большинстве случаев зануление для городских квартир является единственно возможным вариантом электрозащиты, наряду с УЗO.

Что выбрать: зануление или заземление?

Зануление является более сложной системой, организация которой требует проведение множества сопутствующих расчетов. Даже малейшая ошибка может привести к серьезным проблемам. В этом контексте заземление отличается большей безопасностью. К тому же, организовать заземление можно и самостоятельно. Для этого нужно лишь подготовить металлопрокатные изделия – к примеру, уголок, и сварочную аппаратуру, чтобы выполнить соединение частей, проводящих ток.

Чтобы сделать зануление, при проведении расчетов, важно также обладать необходимым опытом и специализированными знаниями. В частности, если в распределительном электрощите обрывается нулевой проводник, прекращает работать вся система. В сравнении с заземлением, это также является одним из минусов зануления. Помимо этого, если такой обрыв все же произойдет, это чревато ударами током. При таких условиях система зануления считается довольно небезопасной.

Резюмируя все выше сказанной, можно сделать следующие выводы:

  • Если в доме существует возможность обустройства заземляющего контура, то лучше организовать заземление, а не занулять все электрические устройства.
  • Система заземления в сравнении с занулением отличается более высокой степенью безопасности.
  • Чтобы сделать зануление, необходимо вызвать квалифицированного специалиста. Помимо всего, проводится осмотр и анализ общего состояния нулевых проводников. В случае выявления каких-либо неисправностей либо несоответствия параметров должна быть проведена замена поврежденного или не работающего проводника.

По факту, находясь непосредственно на объекте и оценивая на месте ситуацию, специалист решает, что лучше всего сделать – зануление или заземление. Если навыки работы с такими системами у мастера отсутствуют или их недостаточно, допущенные при монтаже ошибки могут привести к нежелательным последствиям.

Электротехническая лаборатория, измерения, испытания, отчёты.

Проводник — вещество, имеющее свободные носители заряда (заряженные частицы), способные, в отличие от диэлектриков свободно перемещаться внутри этого вещества; их движением обусловлена возможность проводить электрический ток.

Кроме того, под термином «проводник» в электротехнике принято понимать провода или шины, предназначенные для соединений в электрических цепях.

Разновидности проводников. В зависимости от природы и механизма электропроводности их подразделяют на проводники первого и второго рода.

К первым можно отнести вещества с электронной проводимостью, обусловленной движением электронов в цепи от отрицательного полюса положительному. Ко вторым — вещества с ионной проводимостью.

В качестве примера проводников первого рода можно привести все металлы (их сплавы) а также, каменный уголь, графит, сажа и пр. Проводники второго рода — это электролиты (р-ры кислот, щелочи и соли, находящиеся растворенном, расплавленном или кристаллическом состоянии) и т.

Основные параметры проводниковых материалов:

Удельная проводимость проводника (σ) — величина, обратная удельному сопротивлению (р). Является наиболее важным параметром, характеризующим свойства проводникового материала. Наиболее широко в электротехнике используются чистые металлы и сплавы металлов с низким удельным сопротивлением (р=0,015-0,108 ом*мм2/м).

Температурный коэффициент удельного сопротивления (αρ) — показатель зависимости сопротивления проводника от его температуры. Так, при увеличении температуры увеличивается и удельное сопротивление большинства проводников.

Теплопроводность — его способность передавать теплоту. Для количественной оценки данной характеристики существует коэффициент теплопроводности (γт).

Ввиду того, что передача тепла в веществах осуществляется посредством электронов, коэффициент теплопроводности металлов, имеющих их наибольшее количество будет значительно превышать γт диэлектриков. Так, с увеличением температуры вещества связано снижение его удельной проводимости и отношение γт к его удельной проводимости будет увеличиваться.

Контактная разность потенциалов — разность потенциалов между двумя находящимися в контакте проводниками с одинаковой температурой. Их соединение сопровождается обменом электронами — заряд проводника с большей работой выхода отрицательно, с меньшей — положительно.

Их зарядка будет происходить до уравновешивания потоков движущихся электронов в обоих направлениях и не произойдет уравнивание электрохимического потенциала в системе.

Работа выхода электронов из металла — энергия, расходуемая на удаление электрона из поверхностного электронного слоя проводника.

Предел прочности при растяжении σρ и относительное удлинение перед разрывом Δl/l — показатели, характеризующие механические свойства материала.

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий