Переме́нный ток, электрический ток, который периодически изменяется по модулю и направлению. Для передачи и распределения электрической энергии преимущественно используется Переменный ток благодаря простоте трансформации его напряжения почти без потерь мощности. Генераторы и двигатели Переменный токпо сравнению с машинами постоянного тока при равной мощности меньше по габаритам, проще по устройству, надёжнее и дешевле. Переменный ток может быть выпрямлен, например полупроводниковыми выпрямителями, а затем с помощью полупроводниковых инверторов преобразован вновь в Переменный ток другой, регулируемой частоты; это создаёт возможность использовать простые и дешёвые безколлекторные двигатели. Характеристики переменного тока. Средняя мощность переменного тока за период T равна:Pср. = Im*Umcos()/2, где — сдвиг фаз между током и напряжением, Um и Im — максимальные (амплитудные) значения напряжения и силы тока. В цепи переменного тока с активной нагрузкой колебания силы тока совпадают по фазе с колебаниями напряжения. Если U = Umsin(wt), то I = Imsin(wt) и cos() =1. Действующие (эффективные) значения силы тока и напряжения рассчитываются по формулам:Iд = Im/корень 2, Uд =Um/корень2.
Билет 2. Вопрос 1. Активное сопротивление в цепи переменного тока: понятие, характеристики, графическое изображение. Сопротивление, включенное в цепь переменного тока, в котором происходит превращение электрической энергии в полезную работу или в тепловую энергию, называется активным сопротивлением. К активным сопротивлениям при промышленной частоте (50 гц) относятся, например, электрические лампы накаливания и электронагревательные устройства. Рассмотрим цепь переменного тока , в которую включено активное сопротивление. в цепи переменного тока с активным сопротивлением по мере изменения по величине и направлению напряжения одновременно пропорционально меняются величина и Направление тока. Это значит, что ток и напряжение совпадают по фазе. Построим векторную диаграмму действующих величин тока и напряжения для цепи с активным сопротивлением. Для этого отлов жим в выбранном масштабе по горизонтали вектор напряжения U. Чтобы на векторной диаграмме показать, что напряжение и ток в цепи совпадают по фазе (=0), откладываем вектор тока I по направлению вектора напряжения. Сила тока в такой цепи определяется по закону Ома: I=U/R.
Билет 4. Вопрос 1. Цепь переменного тока с индуктивностью и активным сопротивлением: значения тока и напряжения, векторная диаграмма. Через катушку и резистор протекает один и же ток, поэтому в качестве основного выберем вектортока и будем строить вектор напряжения, приложенного к этой цепи. Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности и на резисторе: U=UL+UR (4. 17) I=I0SINWt Напряжение на резисторе, как было показано выше, будет совпадать по фазе с током: (4. 18) а напряжение на индуктивности будет равно ЭДС самоиндукции со знаком минус (по второму правилу Кирхгофа):. 19) Мы видим, что напряжение на индуктивности опережает ток на угол пи/2. Построив векторы и , и воспользовавшись формулой (4. 17), найдем вектор Векторная диаграмма показана на рис. Мы видим, что в рассматриваемой цепи ток I отстает по фазе от приложенного напряжения U, но не на пи / 2, как в случае чистой индуктивности, на некоторый угол фи. Как видно из векторной диаграммы, модуль вектораUравен, (4. 20)где величина(4. 21)называется полным сопротивлением цепи. Сдвиг по фазефимежду током и напряжением данной цепи также определяется из векторной диаграммы:(4. 22)
Билет 5. Вопрос 1. Цепь переменною тока с емкостью и активным сопротивлением: значение тока и напряжения, векторная диаграмма. Через конденсатор и через резистор протекает один и тот же ток, описываемый формулой (4. 16), поэтому в качестве основного выберем вектор тока и будем строить вектор напряжения, приложенного к этой цепи. Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на конденсаторе и на резисторе:(4. 28)Напряжение на резисторе, как было показано выше, будет совпадать по фазе с током:(4. 29) а напряжение на конденсаторе будет отставать по фазе от тока на угол пи/2:Построив векторы,и воспользовавшись формулой (4. 28), найдем векторU. Векторная диаграмма показана на рис. Из векторной диаграммы следует, что в рассматриваемой цепи ток I опережает по фазе приложенном напряжение,вектор Uно не на пи/ 2, как в случае чистой емкости, а на некоторый уголфи. Этот угол может принимать значения от 0 допи /2 и при заданной емкости С зависит от значения активного сопротивления: с увеличениемRуголфиуменьшается. Как видно из векторной диаграммы, модуль вектораUравен(4. 31) где величина(4. 32)называется полным сопротивлением цепи. Сдвиг по фазеФИмежду током и напряжением данной цепи определяется из векторной диаграммы.
Билет 6. Вопрос 1. Последовательная цепь переменного тока. Резонанс напряжений: условия возникновения, учёт, использование. Через все элементы цепи протекает один и тот же ток, поэтому в качестве основного выберем вектор тока и будем строить вектор напряжения, приложенного к этой цепи. Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности, на емкости и на резисторе: Uвектор=uL+uC+uC (4. 34)напряжение на резисторе совпадает по фазе с током, напряжение на катушке опережает ток по фазе на пи/ 2, а напряжение наемкости отстает от тока по фазе на пи/2. Можно записать эти напряжения в следующем виде:UR = U0RSINwt = I0RSINwt ; UL=U0LSIN(wt + пи/2); UC=U0CSIN(wt-пи/2) = I0/wc * sin(wt-пи/2). Поскольку нам известны амплитуды и фазы векторов, мы можем построить векторную диаграмму и найти векторU(рис. 17). Из этой векторной диаграммы мы можем найти модуль вектора приложенного к цепи напряженияUи сдвиг по фазефимежду током и напряжением:(4. 36)где величина(4. 37) Резонанс напряжений характеризуется обменом энергии между магнитным полем катушки и электрическим полем конденсатора. Увеличение магнитного поля катушки индуктивности происходит исключительно за счет уменьшения энергии электрического поля в конденсаторе и наоборот. Следует обратить внимание на то, что при резонансе напряжения на реактивных сопротивленияхXL и XC могут заметно превышать приложенное к цепи напряжение. Если мы возьмем отношение приложенного напряжения к напряжению на индуктивности (или емкости), то получим UL=U* XL/R то есть напряжение на индуктивности будет больше приложенного напряжения в xL/Rраз. Это означает, что при резонансе напряжений на отдельных участках цепи могут возникать напряжения, опасные для изоляции приборов, включенных в данную цепь. В радиотехнике явление резонанса напряжений находит широкое применение в приемно-передающей аппаратуре и радиоизмерительных приборах.
Билет 8. Вопрос 1. Мощность переменного тока: виды, единицы измерения, коэффициент мощности. Коэффициент мощности — безразмерная физическая величина, характеризующая потребителя тока, с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, на сколько сдвинут по фазе ток, протекающий через потребитель электроэнергии, относительно приложенного к потребителю напряжения. Активная мощность (P) (W, Вт). В цепях однофазного синусоидального тока , P=U*I*cosфи ,где U и I — действующие значения напряжения и тока, φ — угол сдвига фаз между ними. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P=I2*r=U2*g. С полной мощностью S активная связана соотношениемP=S*COSфи. Реактивная мощность (Q) Единица измерения — вар. Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению действующих значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними:Q=U*I*sinфи (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до —90° является отрицательной величиной. Полная мощность (S) Единица полной электрической мощности —В*А Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U×I; связана с активной и реактивной мощностями соотношением:S=sqrtP2+Q2 , где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0). Векторная зависимость между полной, активной и реактивной мощностью выражается формулой: Sвектор=Pвектор+Qвектор
Билет 7. Вопрос 1. Параллельная цепь переменного тока. Резонанс токов: условия возникновения, учёт, использование
В отличие от последовательных цепей переменного тока, где ток, протекающий по всем элементам цепи, одинаков, в параллельных цепях одинаковым будет напряжение, приложенное к параллельно включенным ветвям цепи. Рассмотрим параллельное включение емкости и ветви, состоящей из индуктивности и активного сопротивления (рис. 20). Обе ветви находятся под одним и тем же приложенным напряжениемUПостроим векторную диаграмму для этой цепи. В качестве основного вектора выберем вектор приложенного напряжения U(рис. 21). Рис. 21 По ветви с индуктивностью и активным сопротивлением течет ток I1 Длину этого вектора найдем из соотношения I1=U/Z1= U/sqrtR2+XL2 (4. 43) и отложим этот вектор по отношению к вектору под углом ФИ1, который определяется по формуле tanфи1= XL/R (4. 44) Полученный таким образом вектор тока I1 разложим на две составляющие: активную и реактивную (рис. 4,21). Величину вектора тока I2 текущего по ветви с емкостью, находим из соотношения и откладываем этот вектор под углом 90′ против часовой стрелки относительно вектора приложенного напряженияU. Общий ток в цепиI равен геометрической сумме токовI1иI2 или геометрической сумме реактивного тока и активного тока Длина вектораI равна (4. 46) Сдвиг по фазе между общим токомIи приложенным напряжениемUможно определить из соотношения (4. 47) Из векторной диаграммы (рис. 21) видно, что длина и положение вектора общего тока зависят от соотношения между реактивными токамиILиIC В частности, приIL > IC. общий ток отстает по фазе от приложенного напряжения, приIL
Действующие значения силы тока и напряжения
Закон Ома для однородного участка цепи: сила тока на однородном участке цепи прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению участка цепи:
До сих пор рассматривались электрические цепи, содержащие резисторы, конденсаторы и катушки индуктивности, где в качестве источника ЭДС использовался источник постоянного тока. При подключении таких цепей к источнику переменного тока возникают новые закономерности, которые мы и рассмотрим ниже.
Пусть источник тока создает переменное гармоническое напряжение
Согласно закону Ома для участка цепи сила тока на участке цепи, содержащей только резистор сопротивлением R (рис. 18), подключенный к этому источнику, изменяется со временем также по синусоидальному закону:
Величины называются амплитудными значениями напряжения и силы тока соответственно.
Зависящие от времени значения напряжения U(t) и силы тока I(t) называют мгновенными.
Зная мгновенные значения U(t) и I(t), можно вычислить мгновенную мощность которая, в отличие от цепей постоянного тока, изменяется с течением времени.
С учетом зависимости силы тока от времени перепишем выражение для мгновенной мощности на резисторе в цепи переменного тока в виде
Поскольку мгновенная мощность меняется со временем, то использовать эту величину на практике в качестве характеристики длительно протекающих процессов крайне неудобно.
Перепишем формулу для мощности по-другому:
Первое слагаемое не зависит от времени. Второе слагаемое — переменная составляющая — функция косинуса двойного угла, ее среднее значение за период колебаний равно нулю (см. рис. 18).
Поэтому среднее значение мощности переменного электрического тока за длительный промежуток времени можно найти по формуле
Это выражение позволяет ввести действующие (эффективные) значения силы тока и напряжения, которые используются в качестве основных характеристик переменного тока.
Действующее (эффективное) значение силы переменного тока равно силе такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.
Поскольку для постоянного тока , то с учетом выражения (1) действующее значение силы синусоидального переменного тока
Аналогично можно ввести действующее значение и для напряжения:
Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, аналогичны и для переменного тока, если использовать в них действующие значения силы тока и напряжения:
Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока вследствие того, что их колебания совпадают по фазе (см. рис. 18).
Таким образом, резисторы оказывают сопротивление как постоянному, так и переменному току, при этом в обоих случаях в них происходит превращение электрической энергии во внутреннюю. Вследствие этого сопротивление резисторов R получило название активного или омического сопротивления.
Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока вследствие того, что их колебания совпадают по фазе (см. рис. 18).
Таким образом, резисторы оказывают сопротивление как постоянному, так и переменному току, при этом в обоих случаях в них происходит превращение электрической энергии во внутреннюю. Вследствие этого сопротивление резисторов R получило название активного или омического сопротивления.
Преобразование переменного тока
Генераторы переменного тока создают в расчете на определенные, сравнительно небольшие, значения напряжения и мощности тока. Для практического использования электрической энергии в различных устройствах и приборах необходимы различные значения напряжений. Для этого используются трансформаторы (от латинского слова transformo — преобразую). Трансформатор был изобретен в 1878 г. русским ученым Павлом Николаевичем Яблочковым.
Трансформатор (рис. 19, а) — это электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток той же частоты, но другого напряжения. Схематическое изображение и условное обозначение трансформатора показаны на рисунке 19 6, в.
В простейшем случае трансформатор состоит из двух обмоток, надетых на общий сердечник. Обмотка трансформатора, на которую подается переменное напряжение, называется первичной, а обмотка, с которой снимается преобразованное переменное напряжение, — вторичной. Число витков в первичной обмотке трансформатора обозначим а во вторичной —.
Обмотки трансформатора могут быть расположены на сердечнике различным образом (рис. 20).
Принцип действия трансформатора основан на явлении электромагнитной индукции. Линии индукции магнитного поля, создаваемого переменным током в первичной обмотке, благодаря наличию сердечника практически без потерь (без рассеяния) пронизывают витки вторичной обмотки. Поскольку магнитный поток во вторичной обмотке изменяется со временем, то согласно закону Фарадея в ней возбуждается ЭДС индукции. Подчеркнем, что трансформатор не годится для преобразования постоянного тока, поскольку магнитный поток, создаваемый в этом случае, не изменяется с течением времени.
Пусть первичная обмотка трансформатора подключена к источнику тока с переменной ЭДС действующим значением напряжения. Если пренебречь потерями магнитного потока в сердечнике, то согласно закону Фарадея ЭДС индукции, возникающая в каждом витке вторичной обмотки, будет такой же, как и ЭДС индукции в каждом витке первичной обмотки. Следовательно, отношение ЭДС в первичной и вторичной обмотках равно отношению числа витков в них:
где — значение ЭДС индукции в одном витке.
Режимом холостого хода трансформатора называется режим с разомкнутой вторичной обмоткой. В этом случае напряжение на вторичной обмотке равно индуцируемой в ней ЭДС:
Кроме того, вследствие малости активного сопротивления первичной обмотки
Следовательно, в режиме холостого хода согласно выражению (1) получаем
действующее значение напряжения на вторичной обмотке трансформатора пропорционально действующему значению напряжения на первичной обмотке.
Как следует из выражения (2), в зависимости от отношения числа витков в обмотках напряжение может быть как больше напряжения (трансформатор повышающий), так и меньше его (трансформатор понижающий).
Тип трансформатора характеризуется коэффициентом трансформации, который равен отношению числа витков первичной обмотки к числу витков вторичной:
Согласно выражению (2) отношение действующих значений напряжений на концах первичной и вторичной обмоток трансформатора в режиме холостого хода равно коэффициенту трансформации:
Как следует из выражения (3), = при k > I напряжение на вторичной обмотке будет меньше напряжения на первичной (<). Значит, в этом случае трансформатор будет понижающим. Соответственно, при k < 1 трансформатор будет повышающим.
Рабочим ходом (режимом) трансформатора называется режим, при котором в цепь его вторичной обмотки включена некоторая нагрузка. Можно считать, что в этом случае действующие значения ЭДС, напряжений и токов в первичной и вторичной цепях, согласно закону Ома для полной цепи, связаны соотношениями
Включение нагрузки во вторичную цепь трансформатора приводит к появлению в ней тока. Согласно правилу Ленца, магнитный поток, создаваемый током во вторичной обмотке, стремится скомпенсировать изменение магнитного потока через витки вторичной обмотки, а значит, и через витки первичной. Это приводит к тому, что после включения нагрузки сила тока в первичной обмотке увеличивается таким образом, что суммарный магнитный поток через первичную обмотку достигает прежней величины.
Согласно закону сохранения энергии мощность тока, выделяемая во вторичной обмотке трансформатора, «черпается» из цепи его первичной обмотки. Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2 %, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:
Режимом короткого замыкания называется режим, при котором вторичная обмотка трансформатора замкнута без нагрузки. Данный режим опасен для трансформатора, поскольку в этом случае ток во вторичной обмотке максимален и происходят электрическая и тепловая перегрузки системы.
При работе трансформатора всегда имеются энергетические потери, связанные с такими физическими процессами, как:
- нагревание обмоток трансформатора при прохождении электрического тока;
- работа по перемагничиванию сердечника;
- рассеяние магнитного потока.
Наиболее значительные энергетические потери при работе трансформатора обусловлены тепловым действием вихревых токов (токов Фуко), возникающих в сердечнике при изменении пронизывающего его магнитного потока.
Для уменьшения тепловых потерь сердечники (магнитопроводы) трансформаторов изготовляют не из сплошного куска металла, а из тонких пластин специальной трансформаторной стали, разделенных тончайшими слоями диэлектрика (пластины покрывают лаком).
Для предотвращения перегрева мощных трансформаторов используется масляное охлаждение (рис. 21).
Современные трансформаторы имеют очень высокие КПД (до 95—99 %), что позволяет им работать практически без потерь.
Первичная обмотка трансформатора имеет витков. Сколько витков должна содержать вторичная обмотка, чтобы при действующем значении напряжения на зажимах = 11 В передавать во внешнюю цепь мощность Р2 = 22 Вт? Сопротивление вторичной обмотки г= 0,20 Ом. Действующее значение напряжения в сети = 380 В.
По определению коэффициент трансформации
где — ЭДС индукции соответственно в первичной и вторичной обмотках. Пренебрегая активным сопротивлением первичной обмотки, имеем
Для вторичной обмотки трансформатора по закону Ома для замкнутой цепи можно записать:
где — действующие значения ЭДС индукции и силы тока во вторичной обмотке, — сопротивление нагрузки, г — сопротивление вторичной обмотки. Мощность, передаваемая во внешнюю цепь, определится по формуле
Откуда и, следовательно, ЭДС во вторичной обмотке можно представить в виде
Подставляя выражения для в формулу для коэффициента трансформации, получим
Число витков во вторичной обмотке определится по формуле
Производство, передача и потребление электрической энергии
Электроэнергия вырабатывается на электростанциях. В зависимости от вида первоначально используемого носителя энергии все современные электростанции делятся на тепловые, атомные и гидроэлектростанции. Приведем характеристики основных типов электростанций.
Тепловые электростанции (ТЭС) работают на угле, нефти, мазуте, газе и других горючих ископаемых (КПД = 40 %).
Гидроэлектростанции (ГЭС) используют энергию падающей воды (КПД = 95 %).
Атомные электростанции (АЭС) работают на энергии, выделяющейся при расщеплении ядер урана и плутония (КПД = 20 %).
Как известно, тепловые потери в проводниках пропорциональны квадрату силы тока, поэтому для их уменьшения целесообразно передавать электроэнергию при малой силе тока. Уменьшение силы тока в п раз снижает тепловые потери в проводах в раз. Напряжение при этом следует повышать для сохранения передаваемой мощности, поэтому на практике применяют высоковольтные линии электропередач (рис. 22).
Напряжение питания отдельных потребителей должно быть низким для упрощения их конструкции и безопасности обслуживания, что легко достигается при применении трансформаторов.
Рассмотрим блок-схему производства, передачи и распределения электроэнергии (рис. 23).
Генератор переменного тока вырабатывает напряжение в десятки киловольт и подает его на повышающий трансформатор. Для передачи электроэнергии через ЛЭП напряжение повышается до сотен киловольт. Перед доставкой потребителю осуществляется каскадное (последовательное) понижение напряжения с помощью понижающих трансформаторов.
В современном обществе потребление электроэнергии распределяется примерно следующим образом: промышленность — 70 %; транспорт — 15 %; сельское хозяйство — 10 %; бытовое потребление — 5 %.
В настоящее время все большее распространение получают линии электропередач на постоянном токе. Это происходит потому, что, хотя преобразование постоянного напряжения сложнее и дороже, постоянный ток по сравнению с переменным обладает рядом преимуществ.
Во-первых, постоянный ток не создает переменных магнитных полей, которые индуцируют токи в близлежащих проводах, что приводит к потерям мощности.
Во-вторых, постоянный ток можно передавать при более высоком напряжении, так как действующее напряжение в цепи равно амплитудному, и не следует опасаться электрического пробоя изолятора или воздуха при амплитудном напряжении.
Экологические проблемы производства электрической энергии
Развитие цивилизации на нашей планете сопровождается непрерывным ростом ежегодного энергопотребления. Однако запасы природного топлива (нефти, газа, угля, дров, торфа) и иных полезных ископаемых на Земле ограничены, поскольку из-за изменения геологических условий их формирование в настоящее время практически прекратилось.
Наиболее распространенным энергоносителем на сегодняшний день является нефть, поскольку ее сравнительно легко добывать, транспортировать, очищать и использовать. Помимо этого, нефть также является сырьем для производства разнообразных синтетических материалов — красок, лекарств, синтетических волокон, пластмасс и т. Не зря ее называют «кровью экономики», поскольку уровень нефтедобычи определяет темпы мировой индустриализации.
В нашей стране запасы нефти и угля не являются стратегическими. На территории Беларуси к основным видам добываемых топливных ресурсов следует отнести дрова и торф.
В настоящее время леса занимают около 30 % всей суши на Земле. Для сохранности леса его следует использовать лишь в тех пределах, в которых его можно восстановить. Соответственно, каждый год можно заготавливать I % нарастающих лесов, что составляет около 2 млрд древесины. Из этого количества примерно половина используется как топливо. Проблема сохранения лесов в настоящее время чрезвычайно актуальна, поскольку «зеленые легкие планеты» играют ключевую роль в обогащении атмосферы планеты кислородом.
Работа электростанций вследствие их значительной мощности существенным образом влияет на состояние окружающей среды и приводит к появлению следующих экологических проблем:
- ТЭС — загрязнение атмосферы продуктами сгорания, изменение природного теплового баланса из-за рассеяния тепловой энергии;
- ГЭС — изменение климата, нарушение экологического равновесия, уменьшение пахотных площадей;
- АЭС — опасность радиоактивного загрязнения среды при авариях, проблемы захоронения радиоактивных отходов.
Одной из главных экологических проблем современности является рост выбросов в атмосферу продуктов сгорания топлива (в первую очередь углекислого газа). Углекислый газ «окутывает» Землю, подобно пленке, препятствуя ее охлаждению. Это приводит к парниковому эффекту, при котором среднегодовая температура поверхности Земли повышается. Соответственно, за последние десятилетия на планете наблюдается глобальное потепление, которое может привести к необратимым изменениям в климате Земли.
В процессе своей жизнедеятельности человек расходует химическую энергию, получаемую организмом при расщеплении пищи. Таким образом, жизнь устроена так, что в конечном итоге каждый из нас потребляет часть энергии, рожденной на Солнце. С этой точки зрения вполне объяснимо поклонение наших древних пращуров богам Солнца, «дарующим жизнь всему сущему».
Рост энергопотребления заставляет ученых и инженеров искать альтернативные источники энергии, которые были бы возобновляемыми, т. , в отличие от нефти и газа, могли бы самостоятельно восстанавливаться с течением времени.
К возобновляемым источникам энергии относят ветер, недра Земли (геотермальная энергия), морские приливы, а также солнечное излучение, используемое напрямую.
Энергия ветра уже достаточно успешно преобразуется в электроэнергию в многочисленных небольших ветряных генераторах в зонах устойчивых ветров (рис. 24).
Проекты будущего предлагают использовать в качестве возобновляемых источников энергии колоссальную энергию океанических и воздушных течений: волн, тропических ураганов и торнадо. Ключевая причина их формирования — неравномерное нагревание Солнцем различных участков поверхности Земли.
Геотермальная энергия в местах естественных разломов используется для нужд человека. Так, например, г. Рейкьявик (столица Исландии) полностью отапливается за счет горячих геотермальных вод. Запасы геотермальной энергии достаточно велики, о чем можно судить по разрушительной силе землетрясений, извержений вулканов, гейзеров.
В настоящее время делаются первые шаги для использования энергии океанических приливов и отливов. Инженерная идея подобных проектов проста: если наполнить резервуары при приливе, то при отливе «уходящая» вода сможет вращать турбины и производить электричество.
Развитие современных технологий позволяет активно использовать энергию, вырабатываемую солнечными батареями. Так, в южных широтах энергии подобных батарей, установленных на крыше, хватает для энергоснабжения небольшого дома.
Современные технологии позволяют, используя солнечные батареи, получать электрическую энергию непосредственно от солнечного излучения не только на Земле, но и в космосе (рис. 25). Есть даже смелые проекты, в которых предлагается разместить солнечные батареи в ближнем космосе на расстоянии 36 ООО км от поверхности Земли. Это так называемая «синхронная» орбита, на которой батареи будут казаться «неподвижными» для земного наблюдателя, поскольку период их обращения будет равен 24 ч. В этом случае батареи будут находиться в тени Земли только 2 % времени, что позволит производить в 60 раз больше электричества, чем при таких же условиях на Земле.
В настоящее время активно разрабатываются проекты использования для получения энергии реакции слияния легких ядер водорода (термоядерного синтеза). Привлекательность проектов обусловлена тем, что запасы водорода в Мировом океане практически неограниченны. Кроме того, ожидается, что энергетический выход реакторов нового поколения будет в десятки раз выше, чем у существующих АЭС.
Возобновляемые источники энергии сравнительно безопасны, поскольку их использование практически не приводит к загрязнению окружающей среды.
Электромагнитные волны и их свойства
Впервые гипотезу о существовании электромагнитных волн высказал в 1864 г. шотландский физик Джеймс Максвелл. В своих работах он показал, что источниками электрического поля могут быть как электрические заряды, так и магнитные поля, изменяющиеся со временем.
В свою очередь магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическим током), либо переменными электрическими полями.
Изменение индукции магнитного поля с течением времени вызывает появление в окружающем пространстве вихревого электрического поля. Силовые линии этого поля замкнуты, а его напряженность в любой точке пространства перпендикулярна индукции магнитного поля (рис. 26, а).
Максвелл предположил, что любое изменение напряженности вихревого электрического поля сопровождается возникновением переменного магнитного поля (рис. 26, б).
Далее этот процесс может повторяться «до бесконечности», поскольку поля смогут попеременно воспроизводить друг друга даже в вакууме.
Совокупность связанных друг с другом периодически изменяющихся электрического и магнитного полей называют электромагнитным полем. Согласно теории Максвелла переменное электромагнитное поле распространяется в пространстве с конечной скоростью.
Рассмотрим подробнее процесс образования электромагнитного поля в пространстве, окружающем проводник.
Пусть в проводнике возбуждены электромагнитные колебания, в результате чего сила электрического тока в нем меняется со временем. Поскольку сила тока связана со скоростью движения свободных зарядов в проводнике, то скорость движения последних также будет изменяться со временем.
Это говорит о том, что свободные заряды внутри проводника будут двигаться с ускорением.
Согласно теории Максвелла при ускоренном движении свободных зарядов в проводнике в пространстве вокруг него создается переменное магнитное поле, которое порождает переменное вихревое электрическое поле. Последнее, в свою очередь, вновь вызывает появление переменного магнитного поля уже на большем расстоянии от заряда и т. (рис. 27). Таким образом, в пространстве вокруг проводника образуются взаимосвязанные электрические и магнитные поля, которые распространяются с течением времени в виде волны.
Направление распространения волны
Электромагнитное поле, распространяющееся в вакууме или в какой-либо среде с течением времени с конечной скоростью, называется электромагнитной волной (рис. 28).
Одним из важнейших результатов теории Максвелла было теоретическое определение скорости распространения электромагнитных волн. Согласно этой теории скорость с электромагнитной волны в вакууме связана с электрической постоянной и магнитной постоянной следующим соотношением:
Скорость распространения электромагнитных волн в вакууме с является максимально (предельно) достижимой величиной. В любом веществе их скорость распространения меньше с и зависит от его электрических и магнитных свойств.
Перечислим основные свойства электромагнитных волн:
- Распространяются не только в различных средах, но и в вакууме.
- Отражаются и преломляются на границах раздела сред.
- Являются поперечными.
- Распространяются в вакууме со скоростью
Экспериментально электромагнитные волны были открыты в 1887 г. немецким физиком Генрихом Рудольфом Герцем. Для их генерации он использовал устройство, впоследствии названное вибратором Герца (рис. 29).
Длина волны, излучаемой при проскакивании искры между электродами устройства, была = 10 м.
Герц считал, что такие волны невозможно использовать для передачи информации. Однако 7 мая 1905 г. русский ученый Александр Степанович Попов осуществил первую в мире передачу информации электромагнитными волнами — радиопередачу и положил начало эре радиовещания.
Свойства электромагнитных волн очень сильно зависят от их частоты. Спектр электромагнитного излучения удобно изображать в виде шкалы электромагнитных волн, приведенной на рисунке 30.
Классификация электромагнитных волн
В настоящее время электромагнитные волны находят широкое применение в науке и технике:
- плавка и закалка металлов в электротехнической промышленности, изготовление постоянных магнитов (низкочастотные волны)-, телевидение, радиосвязь, радиолокация (радиоволны); мобильная связь, радиолокация (микроволны)-,
- сварка, резка, плавка металлов лазерами, приборы ночного видения (инфракрасное излучение)-,
- освещение, голография, лазеры (видимое излучение)-,
- люминесценция в газоразрядных лампах, закаливание живых организмов, лазеры (ультрафиолетовое излучение);
- рентгенотерапия, рентгеноструктурный анализ, лазеры (рентгеновское излучение)-,
- дефектоскопия, диагностика и терапия в медицине, исследование внутренней структуры атомов, лазеры, военное дело (гамма-излучение).
Электромагнитные волны и их свойства
Радиоприемник настроен на радиостанцию, работающую на длине волны =25 м. Во сколько раз п необходимо изменить емкость приемного колебательного контура радиоприемника, чтобы настроиться на длину волны = 31 м?
Длина волны определяется по формуле
Период колебаний в контуре находится по формуле
Запишем уравнения для двух длин волн:
Разделив второе уравнение на первое, получим
Из этого соотношения находим
В электрической цепи, состоящей из конденсатора и катушки индуктивности (идеальный колебательный контур), могут возникнуть электромагнитные колебания — периодические изменения заряда на обкладках конденсатора, тока в контуре, электрического поля между обкладками конденсатора и магнитного поля внутри катушки.
Период электромагнитных колебаний в идеальном колебательном контуре определяется формулой Томсона:
Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток:
Сопротивление R резистора, на котором в цепи переменного тока происходит превращение электрической энергии во внутреннюю энергию, называется активным или омическим сопротивлением.
Трансформатор — электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток той же частоты, но другого напряжения. Принцип действия трансформатора основан на явлении электромагнитной индукции.
Тип трансформатора определяется коэффициентом трансформации, который равен отношению числа витков первичной обмотки к числу витков вторичной обмотки трансформатора:
Если k < 1, то трансформатор повышающий, если k > 1 — понижающий.
Совокупность связанных друг с другом периодически изменяющихся электрического и магнитного полей называют электромагнитным полем.
Электромагнитной волной называется распространяющееся в вакууме или в какой-либо среде с течением времени с конечной скоростью переменное электромагнитное поле.
Электромагнитные волны являются поперечными, так как векторы лежат в плоскости, перпендикулярной к скорости распространения волны.
Скорость распространения электромагнитных волн в вакууме:
Преобразование переменного тока и трансформатор
Генераторы переменного тока создают в расчете на определенные значения напряжения. Для практического использования электрической энергии во всевозможных устройствах и приборах необходимы различные значения напряжений. Для этого используются трансформаторы (от лат. transforrno — преобразую). Первую модель (прототип) трансформатора создал в 1831 г. Майкл Фарадей, намотав на железное кольцо две изолированные обмотки, которую использовал в своих экспериментах. Трансформатор был впервые использован для изменения напряжения в 1878 г. русским ученым Павлом Николаевичем Яблочковым для питания изобретенных им источников света — «электрических свечей».
Трансформатор (рис. 37, а) — это электромагнитное устройство, преобразующее переменный ток одного напряжения в переменный ток другого напряжения с сохранением его частоты.
Трансформатор, увеличивающий напряжение, называют повышающим, а уменьшающий напряжение — понижающим. Схематическое изображение и условное обозначение трансформатора показаны на рисунке 37 б, в.
Самый простой трансформатор состоит из двух обмоток (катушек), надетых на общий замкнутый сердечник (см. рис. 37, а). Обмотка трансформатора, на которую подается переменное напряжение, называется первичной, а обмотка, с которой снимается преобразованное переменное напряжение, — вторичной. Число витков в первичной обмотке трансформатора обозначим а во вторичной —
Обмотки трансформатора могут быть расположены на сердечнике различным образом (рис. 38).
Принцип действия трансформатора основан на явлении электромагнитной индукции. Магнитное поле, создаваемое переменным током в первичной обмотке (см. рис. 37, а), благодаря наличию замкнутого сердечника практически без потерь (без рассеяния) пронизывает витки вторичной обмотки. Для этого сердечник изготовляется из специального (ферромагнитного) материала, что позволяет создаваемое током в обмотках поле почти полностью локализовать внутри сердечника. В результате магнитный поток существует только внутри сердечника и одинаков во всех сечениях. Это дает возможность считать мгновенные значения магнитных потоков во всех сечениях сердечника одинаковыми.
Пусть первичная обмотка трансформатора подключена к источнику тока с переменной ЭДС и на нее подается напряжение Если пренебречь потерями магнитного потока в сердечнике, то согласно закону Фарадея ЭДС индукции, возникающая в каждом витке вторичной обмотки, будет такой же, как ЭДС индукции в каждом витке первичной обмотки. Следовательно, отношение ЭДС в первичной и во вторичной обмотках равно отношению числа витков в них:
где — значение ЭДС индукции в одном витке.
Вследствие малого активного сопротивления первичной обмотки
Режимом холостого хода трансформатора называется режим с разомкнутой вторичной обмоткой. В этом случае напряжение на вторичной обмотке равно индуцируемой в ней ЭДС:
Следовательно, в режиме холостого хода из соотношения (1) получаем:
действующее значение напряжения на вторичной обмотке пропорционально действующему значению напряжения на первичной обмотке.
Как следует из выражения (2), в зависимости от отношения числа витков в обмотках напряжение может быть как больше напряжения (трансформатор повышающий), так и меньше его (трансформатор понижающий).
Тип трансформатора определяется коэффициентом трансформации, который равен отношению числа витков первичной катушки к числу витков вторичной:
Согласно выражению (2) отношение действующих значений напряжений на первичной и вторичной обмотках трансформатора в режиме холостого хода равно коэффициенту трансформации:
Как следует из соотношения (3), и при напряжение на вторичной обмотке будет меньше напряжения на первичной Значит, в этом случае трансформатор будет понижающим. Соответственно, при трансформатор будет повышающим.
Рабочим ходом (режимом) трансформатора называется режим, при котором в цепь его вторичной обмотки включена некоторая нагрузка. Включение нагрузки во вторичную цепь трансформатора приводит к появлению в ней тока. Согласно правилу Ленца магнитный поток, создаваемый током во вторичной обмотке, стремится скомпенсировать изменение магнитного потока через витки вторичной обмотки, а значит, и через витки первичной обмотки (общий сердечник).
Это приводит к некоторому уменьшению магнитного потока в первичной обмотке, для компенсации которого действующее значение силы тока в первичной обмотке трансформатора увеличивается. Следовательно, после включения нагрузки трансформатора во вторичную обмотку сила тока в его первичной катушке увеличивается таким образом, чтобы суммарный магнитный поток через первичную обмотку достиг прежней величины.
Трансформатор не производит, а преобразовывает энергию. Согласно закону сохранения энергии мощность тока, выделяемая в цепи вторичной обмотки трансформатора в режиме нагрузки, поступает из цепи его первичной обмотки, т. от внешнего источника. Пренебрегая потерями энергии, связанными с нагреванием обмоток и работой по перемагничиванию сердечника, которые в современных трансформаторах не превышают 2 %, можем записать, что мощности тока в цепях обеих обмоток трансформатора практически одинаковы:
Таким образом, повышая напряжение в несколько раз, трансформатор во столько же раз уменьшает силу тока.
Режимом короткого замыкания называется режим, при котором вторичная обмотка трансформатора замкнута без нагрузки. Данный режим опасен для трансформатора, поскольку в этом случае действующее значение тока во вторичной обмотке максимально и происходят электрическая и тепловая перегрузки системы.
При работе трансформатора всегда имеются энергетические потери, связанные с такими физическими процессами, как:
- нагревание обмоток трансформатора при прохождении электрического тока;
- работа по перемагничиванию сердечника;
- рассеяние магнитного потока.
Наиболее значительные энергетические потери при работе трансформатора обусловлены тепловым действием вихревых токов (токов Фуко), возникающих в сердечнике при изменении магнитного потока.
Для уменьшения тепловых потерь сердечники (магнитопроводы) трансформаторов изготовляют не из сплошного куска металла, а из тонких пластин специальной трансформаторной стали, разделенных тончайшими слоями диэлектрика (пластины покрывают лаком). Такая конструкция сердечника позволяет значительно увеличить его электрическое сопротивление, что приводит к уменьшению потерь на его нагревание.
Для предотвращения перегрева мощных трансформаторов используется масляное охлаждение.
Современные трансформаторы имеют очень высокие КПД (до 98—99 %), что позволяет им работать практически без потерь.
Определите силу тока в первичной обмотке трансформатора, если напряжение на ее зажимах на выше, чем на вторичной обмотке. Сопротивление первичной обмотки коэффициент трансформации
По закону Ома сила тока в первичной обмотке:
где — напряжение на первичной обмотке.
где — напряжение на вторичной обмотке.
По условию задачи:
Тогда сила тока в первичной обмотке:
Генератор переменного тока
Под воздействием переменного электрического поля, созданного генератором, в промышленной сети возникает переменный ток, который представляет собой колебательное движение заряженных частиц.
Роль индукционного генератора переменного тока в промышленной сети
В быту и на производстве используют электрические приборы различной мощности, для питания которых создана промышленная сеть переменного тока с частотой 50 Гц. Источниками тока в этой сети являются индукционные генераторы переменного тока, расположенные на электростанциях. Переменный ток поступает по проводам линий электропередач к потребителям.
Индукционный генератор – это устройство, преобразующее механическую энергию в электрическую.
Вспомните! При изменении магнитного потока, пронизывающего замкнутый проводящий контур, в нем возникает индукционный ток.
Магнитный поток пронизывающий поверхность площадью S, равен:
где угол между нормалью к плоскости рамки и вектором магнитной индукции (рис. 27).
Возьмите на заметку
Значение угла поворота при вращении рамки с угловой скоростью будет определяться формулой: с учетом которой формула расчета магнитного потока (1) примет вид:
ЭДС индукции, созданная генератором переменного тока
Действие генератора переменного тока основано на законе электромагнитной индукции: переменный магнитный поток, пронизывающий замкнутую проводящую рамку, создает вихревое электрическое поле, в рамке возникает индукционный ток.
При очень малом значении промежутка времени закон электромагнитной индукции для замкнутого контура примет вид:
где – мгновенное значение ЭДС индукции.
Определим производную от магнитного потока:
где — максимальное значение ЭДС.
Ротор генератора состоит из большого количества рамок. Если число рамок в роторе N, то максимальное значение ЭДС генератора равно:
Устройство индукционного генератора переменного тока
Генератор состоит из: 1) индуктора – устройства, создающего магнитное поле; 2) якоря – обмотки, в которой индуцируется ЭДС; 3) колец со щетками – устройства, при помощи которого снимается или подводится ток к вращающейся части генератора (рис. 28).
Вращающуюся часть генератора называют ротором, неподвижную часть – статором. В мощных генераторах ротор используется в качестве индуктора, а статор – в качестве якоря. Это обусловлено тем, что допустимая сила тока в роторе ограничивается нагреванием скользящих контактов, а ток высоких значений, созданный на якоре, удобнее снимать с неподвижной обмотки. Для увеличения ЭДС индукции используется обмотка статора с большим количеством витков. Для увеличения магнитного потока обмотки индуктора и якоря наматывают на стальные сердечники, между которыми оставляют небольшой зазор, необходимый для вращения. При вращении ротора магнитный поток, пронизывающий якорь, меняется, возникает ЭДС индукции (рис. 29).
Вспомните! Закон электромагнитной индукции для замкнутого контура: Для контура из N витков − изменение магнитного потока.
Напряжение на выходе генератора
Напряжение можно считать равным по числовому значению ЭДС индукции, если сопротивление обмотки статора значительно меньше в сравнении с сопротивлением внешней цепи: тогда
Из (8) следует, что максимальные значения ЭДС индукции и напряжения на выходе генератора равны:
где N − число витков якоря.
Генераторы электростанций создают напряжение в несколько тысяч вольт.
Частота вращения ротора генератора
Для получения переменного тока частотой 50 Гц ротор с одной парой полюсов должен вращаться с частотой 50 об/с или 3000 об/мин. Такую скорость вращения могут придать ротору паровые и газовые турбины. На гидроэлектростанциях используют тихоходные водяные турбины, поэтому для получения стандартной частоты переменного тока применяют генераторы с роторами, имеющими большое число пар полюсов. Ротор с 24 парами полюсов вращается с частотой 125 об/мин или около 2 об/с:
где n − число пар полюсов в индукторе.
Контур сечением S = 400 см2 , состоящий из N = 100 витков провода, равномерно вращают с угловой скоростью = 1 рад/с в однородном магнитном поле индукцией B = 0,01 Тл, силовые линии которого перпендикулярны оси вращения. Определите максимальное значение ЭДС.
S = 400 см2
= 1 рад/с
B = 0,01 Тл
СИ 0,04 м2
0,01 Тл · 0,04 м2 · 1 рад/с · 100 = 0,04 В.
Ответ: 0,04 В.