Электростатический двигатель своими руками из подручных средств — Сделай сам

Реальные перспективы создания вечного двигателя на магнитах

Противники теории создания вечного двигателя говорят о невозможности нарушения закона о сохранении энергии. Действительно, нет совершенно никаких предпосылок к тому, чтобы получить энергию из ничего.

С другой стороны, магнитное поле – это вовсе не пустота, а особый вид материи, плотность которого может достигать 280 кДж/м³. Именно это значение и является потенциальной энергией, которую теоретически может использовать вечный двигатель на постоянных магнитах.

Несмотря на отсутствие готовых образцов в общем доступе, о возможности существования подобных устройств говорят многочисленные патенты, а также факт наличия перспективных разработок, которые остаются засекреченными еще с советских времен.

Норвежский художник Рейдар Финсруд создал свой вариант вечного двигателя на магнитах

К созданию подобных электрогенераторов приложили силы знаменитые физики-ученые: Никола Тесла, Минато, Василий Шкондин, Говард Джонсон и Николай Лазарев. Следует сразу оговориться, что создаваемые с помощью магнитов двигатели называются «вечными» условно — магнит теряет свои свойства через пару сотен лет, а вместе с ним прекратит работу и генератор. Многочисленные энтузиасты стараются создать вечный двигатель на магнитах своими руками по схеме, в которой вращательное движение обеспечивается взаимодействием магнитных полей. Как известно, одноименные полюса отталкиваются друг от друга. Именно этот эффект и лежит в основе практически всех подобных разработок. Грамотное использование энергии отталкивания одинаковых полюсов магнита и притяжения разноименных полюсов в замкнутом контуре позволяет обеспечить длительное безостановочное вращение установки без приложения внешней силы.

Двигатель Лоренца можно сделать самостоятельно с использованием простых материалов

Если вы хотите собрать вечный двигатель на магнитах своими руками, то обратите внимание на разработки Лоренца. Антигравитационный магнитный двигатель его авторства считается наиболее простым в реализации. В основе этого устройства лежит использование двух дисков с разными зарядами. Их наполовину помещают в полусферический магнитный экран из сверхпроводника, который полностью выталкивает из себя магнитные поля. Такое устройство необходимо для изоляции половин дисков от внешнего магнитного поля. Запуск этого двигателя выполняется путем принудительного вращения дисков навстречу друг другу. По сути, диски в получившейся система являются парой полувитков с током, на открытые части которых будут воздействовать силы Лоренца.

Асинхронный «вечный» двигатель на постоянных магнитах, созданный Никола Тесла, вырабатывает электричество за счет постоянно вращающегося магнитного поля. Конструкция довольно сложная и трудно воспроизводимая в домашних условиях.

Вечный двигатель на постоянных магнитах Николы Тесла

Одна из самых известных разработок – это «тестатика» Баумана. Устройство напоминает своей конструкцией простейшую электростатическую машину с лейденскими банками. «Тестатик» состоит из пары акриловых дисков (для первых экспериментов использовались обычные музыкальные пластинки), на которые наклеены 36 узких и тонких полосок алюминия.

Кадр из документального фильма: к Тестатике подключили 1000-ваттную лампу. Слева — изобретатель Пауль Бауман

После того, как диски толкали пальцами в противоположные стороны, запущенный двигатель продолжал работать неограниченно долгое время со стабильной скоростью вращения дисков на уровне 50-70 оборотов в минуту. В электроцепи генератора Пауля Баумана удается развить напряжение до 350 вольт с силой тока до 30 Ампер. Из-за небольшой механической мощности это скорее не вечный двигатель, а генератор на магнитах. Сложность воспроизведения устройства Свита Флойда заключается не в его конструкции, а в технологии изготовления магнитов. В основе этого двигателя используются два ферритовых магнита с габаритами 10х15х2,5 см, а также катушки без сердечников, из которых одна является рабочей с несколькими сотнями витков, а еще две – возбуждающие. Для запуска триодного усилителя необходима простая карманная батарейка 9В. После включения устройство может работать очень долго, самостоятельно питая себя по аналогии с автогенератором. По утверждениям Свита Флойда, от работающей установки удалось получить выходное напряжение в 120 вольт с частотой 60 Гц, мощность которого достигала 1 кВт. Большой популярностью пользуется схема вечного двигателя на магнитах на основе проекта Лазарева. На сегодняшний день его роторный кольцар считается устройством, реализация которая максимально близка к концепции вечного двигателя. Важное преимущество разработки Лазарева состоит в том, что даже без профильных знаний и серьезный затрат можно собрать подобный вечный двигатель на неодимовых магнитах своими руками. Такое устройство представляет собой емкость, разделенную пористой перегородкой на две части. Автор разработки использовал в качестве перегородки специальный керамический диск. В него устанавливается трубка, а в емкость заливается жидкость. Для этого оптимально подходят улетучивающиеся растворы (например, бензин), но можно использовать и простую водопроводную воду. Механизм работы двигателя Лазарева очень просто. Сначала жидкость подается через перегородку вниз емкости. Под давлением раствор начинает подниматься по трубке. Под получившейся капельницей размещают колесо с лопастями, на которых устанавливают магниты. Под силой падающих капель колесо вращается, образуя постоянное магнитное поле. На основе этой разработки успешно создан самовращающийся магнитный электродвигатель, на которой зарегистрировало патент одно отечественное предприятие. Если вы ищете интересные варианты, как сделать вечный двигатель из магнитов, то обязательно обратите внимание на разработку Шкондина. Конструкцию его линейного двигателя можно охарактеризовать как «колесо в колесе». Это простое, но в то же время производительное устройство успешно используется для велосипедов, скутеров и другого транспорта. Импульсно-инерционное мотор-колесо представляет собой объединение магнитных дорожек, параметры которых динамично изменяются путем переключения обмоток электромагнитов.

Общая схема линейного двигателя Василия Шкондина

Ключевыми элементами устройства Шкондина являются внешний ротор и статор особой конструкции: расположение 11 пар неодимовых магнитов в вечном двигателе выполнено по кругу, что образует в общей сложности 22 полюса. На роторе установлены 6 электромагнитов в форме подков, которые установлены попарно и смещены друг к другу на 120°. Между полюсами электромагнитов на роторе и между магнитами на статоре одинаковое расстояние. Изменение положения полюсов магнитов относительно друг друга приводит к созданию градиента напряженности магнитного поля, образуя крутящий момент. Неодимовый магнит в вечном двигателе на основе конструкции проекта Шкондина имеет ключевое значение. Когда электромагнит проходит через оси неодимовых магнитов, то образуется магнитный полюс, который является одноименным по отношению к преодоленному полюсу и противоположным по отношению к полюсу следующего магнита. Получается, что электромагнит всегда отталкивается от предыдущего магнита и притягивается к следующему. Такие воздействия и обеспечивают вращение обода. Обесточивание элетромагнита при достижении оси магнита на статоре обеспечивается размещением в этой точке токосъемника.

Житель г. Пущино Василий Шкондин изобрел не вечный двигатель, а высокоэффективные мотор-колёса для транспорта и генераторы электроэнергии.

Коэффициент полезного действия двигателя Шкондина составляет 83%. Конечно, это пока еще не полностью энергонезависимый вечный двигатель на неодимовых магнитах, но очень серьезный и убедительный шаг в правильном направлении. Благодаря особенностям конструкции устройства на холостом ходу удается вернуть часть энергии батареям (функция рекуперации). Альтернативный движок высокого качества, производящий энергию исключительно за счет магнитов. База — статичный и динамичный круги, на которых в задуманном порядке располагается несколько магнитов. Между ними возникает самооталкивающая сила, из-за которой и возникает вращение подвижного круга. Такой вечный двигатель считают очень выгодным в эксплуатации.

Вечный магнитный двигатель Перендева

Существует и множество других ЭМД, схожих по принципу действия и конструкции. Все они еще несовершенны, поскольку не способны долгое время функционировать без каких-либо внешних импульсов. Поэтому работа над созданием вечных генераторов не прекращается. Понадобится:

  •   3 вала
  •   Диск из люцита диаметром 4 дюйма
  •   2 люцитовых диска диаметром 2 дюйма
  •   12 магнитов
  •   Алюминиевый брусок

Валы прочно соединяются между собой. Причем один лежит горизонтально, а два другие расположены по краям. К центральному валу крепится большой диск. Остальные присоединяются к боковым. На дисках располагаются неодимовые магниты — 8 в середине и по 4 по бокам. Алюминиевый брусок служит основанием для конструкции. Он же обеспечивает и ускорение устройства. Планируя активно использовать подобные генераторы, следует соблюдать осторожность. Дело в том, что постоянная близость магнитного поля приводит к ухудшению самочувствия. К тому же для нормального функционирования устройства необходимо обеспечить ему специальные условия работы. Например, защитить от воздействия внешних факторов. Итоговая стоимость готовых конструкций получается высокой, а вырабатываемая энергия слишком мала. Поэтому и выгода от использования подобных конструкций сомнительна. Экспериментируйте и создавайте собственные версии вечного двигателя. Все варианты разработок вечных двигателей продолжают совершенствоваться энтузиастами, а в сети можно обнаружить множество примеров реально достигнутых успехов. Интернет-магазин «Мир Магнитов» предлагает вам выгодно купить неодимовые магниты и своими руками собрать различные устройства, в которых бы шестеренки безостановочно крутились благодаря воздействиям сил отталкивания и притяжения магнитных полей. Выбирайте в представленном каталоге изделия с подходящими характеристиками (размеры, форма, мощность) и оформляйте заказ.

2016 18060 0

Магнитный двигатель своими руками

Практически все в нашей жизни зависит от электричества, но существуют определенные технологии, которые позволяют избавиться от локальной проводной энергии. Предлагаем рассмотреть, как сделать магнитный двигатель своими руками, его принцип работы, схема и устройство.

Типы и принципы работы

Существует понятие вечных двигателей первого порядка и второго.

Первый порядок – это устройства, которые производят энергию сами по себе, из воздуха, второй тип – это двигатели, которым необходимо получать энергию, это может быть ветер, солнечные лучи, вода и т. , и уже её они преобразовывают в электричество.

Согласно первому началу термодинамики, обе эти теории невозможны, но с таким утверждением не согласны многие ученые, которые и начали разработку вечных двигателей второго порядка, работающих на энергии магнитного поля.

Фото — Магнитный двигатель дудышева

Над разработкой «вечного двигателя» трудилось огромное количество ученых во все времена, наиболее большой вклад в развитие теории о магнитном двигателе сделали Никола Тесла, Николай Лазарев, Василий Шкондин, также хорошо известны варианты Лоренца, Говарда Джонсона, Минато и Перендева.

Фото — Магнитный двигатель Лоренца

У каждого из них своя технология, но все они основаны на магнитном поле, которое образовывается вокруг источника. Стоит отметить, что «вечных» двигателей не существует в принципе, т. магниты теряют свои способности приблизительно через 300-400 лет.

Самым простым считается самодельный антигравитационный магнитный двигатель Лоренца. Он работает за счет двух разнозаряженных дисков, которые подключаются к источнику питания. Диски наполовину помещаются в полусферический магнитный экран, поле чего их начинают аккуратно вращать. Такой сверхпроводник очень легко выталкивает из себя МП.

Простейший асинхронный электромагнитный двигатель Тесла основан на принципе вращающегося магнитного поля, и способен производить электричество из его энергии. Изолированная металлическая пластина помещается как можно выше над уровнем земли.

Другая металлическая пластина помещается в землю. Провод пропускается через металлическую пластину, с одной стороны конденсатора и следующий проводник идет от основания пластины к другой стороне конденсатора.

Противоположный полюс конденсатора, будучи подключенным к массе, используется как резервуар для хранения отрицательных зарядов энергии.

Фото — Магнитный двигатель Тесла

Роторный кольцар Лазарева пока что считается единственным работающим ВД2, кроме того, он прост в воспроизведении, его можно собрать своими руками в домашних условиях, имея в пользовании подручные средства. На фото показана схема простого кольцевого двигателя Лазарева:

Фото — Кольцар Лазарева

На схеме видно, что емкость поделена на две части специальной пористой перегородкой, сам Лазарев применял для этого керамический диск. В этот диск установлена трубка, а емкость заполнена жидкостью. Вы для эксперимента можете налить даже простую воду, но желательно применять улетучивающийся раствор, к примеру, бензин.

Работа осуществляется следующим образом: при помощи перегородки, раствор попадает в нижнюю часть емкости, а из-за давления по трубке перемещается наверх. Это пока что только вечное движение, не зависящее от внешних факторов. Для того чтобы соорудить вечный двигатель, нужно под капающей жидкостью расположить колесико.

На основе этой технологии и был создан самый простой самовращающийся магнитный электродвигатель постоянного движения, патент зарегистрирован на одну российскую компанию. Нужно под капельницу установить колесико с лопастями, а непосредственно на них разместить магниты.

Из-за образовавшегося магнитного поля, колесо начнет вращаться быстрее, быстрее перекачиваться вода и образуется постоянное магнитное поле.

Линейный двигатель Шкондина произвел своего рода революцию в прогрессе. Это устройство очень простой конструкции, но в тоже время невероятно мощное и производительное. Его двигатель называется колесо в колесе, и в основном его используют в современной транспортной отрасли.

Согласно отзывам, мотоцикл с мотором Шкондина может проехать 100 километров на паре литров бензина. Магнитная система работает на полное отталкивание.

В системе колеса в колесе, есть парные катушки, внутри которых последовательно соединены еще одни катушки, они образовывают двойную пару, у которой разные магнитные поля, за счет чего они двигаются в разные стороны и контрольный клапан.

Автономный мотор можно устанавливать на автомобиль, никого не удивит бестопливный мотоцикл на магнитном двигателе, устройства с такой катушкой часто используются для велосипеда или инвалидной коляски. Купить готовый аппарат можно в интернете за 15000 рублей (производство Китай), особенно популярен пускатель V-Gate.

Фото — Двигатель Шкондина

Альтернативный двигатель Перендева – это устройство, которое работает исключительно благодаря магнитам.

Используется два круга – статичный и динамичный, на каждом из них в равной последовательности, располагаются магниты. За счет самооталкивающейся свободной силы, внутренний круг вращается бесконечно.

Эта система получила широкое применение в обеспечении независимой энергии в домашнем хозяйстве и производстве.

Фото — Двигатель Перендева

Все перечисленные выше изобретения находятся в стадии развития, современные ученые продолжают их совершенствовать и искать идеальный вариант для разработки вечного двигателя второго порядка.

Помимо перечисленных устройств, также популярностью у современных исследователей пользуется вихревой двигатель Алексеенко, аппараты Баумана, Дудышева и Стирлинга.

Как собрать двигатель самостоятельно

Самоделки пользуются огромным спросом на любом форуме электриков, поэтому давайте рассмотрим, как можно собрать дома магнитный двигатель-генератор.

Приспособление, которое мы предлагаем сконструировать, состоит из 3 соединенных между собой валов, они скреплены таким образом, что вал в центре повернут прямо к двум боковым. К середине центрального вала прикреплен диск из люцита диаметров четыре дюйма, толщиной в половину дюйма.

Внешние валы также оснащены дисками диаметром два дюйма. На них расположены небольшие магниты, восемь штук на большом диске и по четыре на маленьких.

Фото — Магнитный двигатель на подвеске

Ось, на которых расположены отдельные магниты, находится в параллельной валам плоскости. Они установлены таким образом, что концы проходят возле колес с проблеском в минуту.

Если эти колеса двигать рукой, то концы магнитной оси будут синхронизироваться. Для ускорения рекомендуется установить алюминиевый брусок в основание системы так, чтобы его конец немного касался магнитных деталей.

После таких манипуляций, конструкция должна начать вращаться со скоростью пол оборота в одну секунду.

Приводы установлены специальным образом, при помощи которого валы вращаются аналогично друг другу. Естественно, если воздействовать на систему сторонним предметом, к примеру, пальцем, то она остановится. Этот вечный магнитный двигатель изобрел Бауман, но ему не удалось получить патент, т. на тот момент устройство отнесли к разряду непатентуемых ВД.

Для разработки современного варианта такого двигателя многое сделали Черняев и Емельянчиков.

Фото — Принцип работы магнита

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

  • Полная автономия, экономия топлива, возможность из подручных средств организовать двигатель в любом нужном месте;
  • Мощный прибор на неодимовых магнитах способен обеспечивать энергией жилое помещение до 10 вКт и выше;
  • Гравитационный двигатель способен работать до полного износа и даже на последней стали работы выдавать максимальное количество энергии.
  • Магнитное поле может негативно влиять на здоровье человека, особенно этому фактору подвержен космический (реактивный) движок;
  • Несмотря на положительные результаты опытов, большинство моделей не способны работать в нормальных условиях;
  • Даже после приобретения готового мотора, его бывает очень сложно подключить;
  • Если Вы решите купить магнитный импульсный или поршневой двигатель, то будьте готовы к тому, что его цена будет сильно завышена.

Работа магнитного двигателя – это чистая правда и она реально, главное правильно рассчитать мощность магнитов.

Магнитный двигатель своими руками — фантастика или реальность

Практически все происходящее в нашем быту целиком зависит от электроэнергии, однако существуют некоторые технологии, позволяющие совсем избавиться от проводной энергии. Давайте вместе рассмотрим, можно ли изготовить магнитный двигатель своими руками, в чес состоит принцип его работы, как он устроен.

Принцип работы

Сейчас существует понятие, что вечные двигатели могут быть первого и второго вида. К первому относятся устройства, производящие самостоятельно энергию – как бы из воздуха, а вот второй вариант – двигатели, получающие эту энергию извне, в ее качестве выступает вода, солнечные лучи, ветер, а затем устройство преобразовывает полученную энергию в электричество. Если рассматривать законы термодинамики, то каждая из этих теорий практически неосуществима, однако с подобным утверждением совершенно не согласны некоторые ученые. Именно они начали разрабатывать вечные двигатели, относящиеся ко второму типу, работающие на получаемой от магнитного поля энергии.

Разрабатывали подобный «вечный двигатель» множество ученых, причем во разное время. Если рассматривать конкретнее, то наибольший вклад в такое дело, как развитие теории создания магнитного двигателя совершили Василий Шкондин, Николай Лазарев, Никола Тесла. Помимо них хорошо известны разработки Перендева, Минато, Говарда Джонсона, Лоренца.

Все они доказывали, что силы, заключенные в постоянных магнитах, имеют огромную, постоянно возобновляемую энергию, которая пополняется из мирового эфира.

Тем не менее, суть работы постоянных магнитов, а также их действительно аномальную энергетику никто на планете до сих пор не изучил.

Именно поэтому так никто не смог пока достаточно эффективно применить магнитное поле для того, чтобы получить действительно полезную энергию.

Сейчас еще никто не смог создать полноценного магнитного двигателя, однако существует достаточное количество весьма правдоподобных устройств, мифов и теорий, даже вполне обоснованных научных работ, которые посвящены разработке магнитного двигателя.

Всем известно, что для сдвига притянутых постоянных магнитов требуется значительно меньше усилий, нежели для того, чтобы их оторвать один от другого.

Именно это явление чаще всего используется, чтобы создать настоящий «вечный» линейный двигатель на основе магнитной энергии.

Каким должен быть настоящий магнитный двигатель

В общем, выглядит подобное устройство следующим образом.

  • Катушка индуктивности.
  • Магнит подвижный.
  • Пазы катушек.
  • Центральная ось;
  • Шарикоподшипник;
  • Стойки.
  • Диски;
  • Постоянные магниты;
  • Закрывающие магниты диски;
  • Шкив;
  • Приводной ремень.
  • Магнитный двигатель.

Любое устройство, которое изготовлено на подобном принципе, вполне успешно может быть использовано для выработки по-настоящему аномальной электрической и механической энергии. Причем, если применять его как генераторный электрический узел – то он способен вырабатывать электроэнергию такой мощности, которая существенно превышает аналогичное изделие, в виде механического приводного двигателя.

Теперь разберем подробнее, что вообще представляет из себя магнитный двигатель, а также почему множество людей пытаются разработать и воплотить в реальность эту конструкцию, видя именно в ней заманчивое будущее.

Действительно настоящий двигатель этой конструкции должен функционировать исключительно только на магнитах, при этом используя непосредственно для перемещения всех внутренних механизмов их постоянно выделяемую энергию.

Важно: основной проблемой разнообразных конструкций основанных именно на использовании постоянных магнитов, становится то, что они склонны стремиться к статическому положению, именуемому равновесием.

Когда рядом привинтить два достаточно сильных магнита, то они двигаться будут только до момента, когда будет достигнуто на минимально возможной удаленности максимальное притяжение между полюсами.

В реальности они просто друг к другу повернутся.

Поэтому каждый изобретатель разнообразных магнитных двигателей пытается сделать переменным притяжение магнитов за счет механических свойств самого двигателя или использует функцию своеобразного экранирования.

При этом магнитные двигатели в чистом виде очень неплохи по своей сущности. А если добавить к ним реле и управляющий контур, использовать гравитацию земли и дисбаланс, то они становятся действительно идеальными.

Их смело можно именовать «вечными» источниками поставляемой бесплатной энергии! Есть сотни примеров всевозможных магнитных двигателей, начиная от наиболее примитивных, которые можно собрать собственноручно и заканчивая японскими серийными экземплярами.

В чем преимущества и минусы работающих двигателей на магнитной энергии

Преимуществами магнитных двигателей является их полная автономия, стопроцентная экономия топлива, уникальная возможность из средств, находящихся под руками, организовать в любом требуемом месте установку. Также явным плюсом выглядит то, что мощный прибор, изготовленный на магнитах может обеспечивать жилое помещение энергией, а также такой фактор, как возможность гравитационному мотору работать до тех пор, пока он не износится. При этом даже перед физической кончиной он способен выдавать максимум энергии.

Однако у него имеются и определенные недостатки:

  • доказано, что магнитное поле весьма негативно воздействует на здоровье, особенно этим отличается реактивный движок;
  • хотя имеются положительные результаты экспериментов, большинство моделей совсем не функционируют в естественных условиях;
  • приобретение готового устройства еще не гарантирует, что оно будет успешно подключено;
  • когда появится желание купить магнитный поршневой или импульсный двигатель, стоит быть настроенным на то, что он будет иметь слишком завышенную стоимость.

Как самостоятельно собрать подобный двигатель

Подобные самоделки пользуются неизменным спросом, о чем свидетельствуют практически все форумы электриков. Из-за этого следует подробнее рассмотреть, каким же образом можно самостоятельно собрать дома работающий магнитный двигатель.

То приспособление, которое сейчас мы вместе попробуем сконструировать, будет состоять из соединенных трех валов, причем они должны скрепляться так, чтобы центральный вал был прямо повернут к боковым.

По центру среднего вала необходимо прикрепить диск, изготовленный из люцита и имеющий диаметр около десяти сантиметров, а его толщина составляет немногим больше одного сантиметра. Наружные валы также должны оснащаться дисками, но уже вдвое меньшего диаметра.

На этих дисках закрепляются небольшие магниты. Из них восемь штук крепят на диск большего диаметра, а на маленькие — по четыре.

При этом ось, где расположены отдельные магниты, должна располагаться параллельно плоскости валов. Их устанавливают так, чтобы концы магнитов проходили с минутным проблеском возле колес. Когда эти колеса приводятся руками в движение, то полюсы магнитной оси станут синхронизироваться.

Чтобы получить ускорение настоятельно рекомендуется в основании системы установить брусок из алюминия так, чтобы конец его немного соприкасался с магнитными деталями.

Выполнив подобные манипуляции, можно будет получить конструкцию, которая будет вращаться, выполняя полный оборот за две секунды.

При этом приводы необходимо устанавливать определенным образом, когда все валы будут вращать относительно других аналогично.

Естественно, когда выполнить на систему сторонним предметом тормозящее воздействие, то она прекратит вращение.

Именно такой вечный двигатель на магнитной основе впервые изобрел Бауман, однако у него не получилось запатентовать изобретение, поскольку в то время устройство относилось к той категории разработок, на которые патент не выдавался.

Этот магнитный двигатель интересен тем, что совершенно не нуждается во внешних энергетических затратах. Только магнитное поле вызывает вращение механизма. Из-за этого стоит попробовать самостоятельно соорудить вариант подобного устройства.

Для выполнения эксперимента потребуется заготовить:

  • диск, изготовленный из оргстекла;
  • двухсторонний скотч;
  • заготовку, выточенную из шпинделя, а затем закрепленную на стальном корпусе;
  • магниты.

Важно: последние элементы необходимо слегка подточить с одной из сторон под углом, тогда можно будет получить более наглядный эффект.

На заготовку из оргстекла в виде диска по всему периметру требуется наклеить с помощью двухстороннего скотча кусочки магнита. Располагать их необходимо наружу сточенными краями. При этом следует обязательно проследить, чтобы все сточенные края каждого магнита обязательно имели одностороннее направление.

В результате полученный диск, на котором расположены магниты, необходимо закрепить на шпинделе, а затем проверить, насколько свободно он будет вращаться, чтобы не допустить ни малейшего цепляния.

Когда к выполненной конструкции поднести маленький магнит, аналогичный тем, которые уже наклеены на оргстекло, то ничего не должно измениться.

Хотя если попробовать сам диск немного покрутить, то станет заметен небольшой эффект, хотя и весьма незначительный.

Теперь следует поднести больший размерами магнит и понаблюдать, как изменится ситуация. При подкручивании рукой диска механизм останавливается все равно в промежутке, имеющемся между магнитами.

Когда взять только половинку магнита, который поднести к изготовленному механизму, зрительно видно, что после легкого подкручивания он немного продолжает движение из-за воздействия слабого магнитного поля.

Осталось проверить, каким будет наблюдаться вращение, если поочередно убирать магнитики с диска, делая между ними большие промежутки.

И этот эксперимент обречен на фиаско — диск неизменно будет останавливаться точно в магнитных промежутках.

Проведя длительные исследования, каждый сможет воочию убедиться, что подобным образом не получится изготовить магнитный двигатель. Следует поэкспериментировать с иными вариантами.

Заключение

Магнитомеханическое явление, заключающееся в необходимости применять действительно незначительные усилия, чтобы сдвигать магниты, если сравнивать с попыткой их отрыва, использовано повсеместно для создания, так называемого, «вечного» линейного магнитного мотора-генератора.

Многие верят, что очень скоро наступит время, когда мощную энергию человечество сможет получать без использования газа и нефтепродуктов. На самом деле гигаватты электроэнергии, которая будет совершенно бесплатной, можно получать, если руководствоваться только магнетизмом, законами электростатики, силы тяготения и постулатами Архимеда.

Существует ли «рог изобилия» магнитной энергии?

На примере двигателя Минато и аналогичных конструкций рассмотрена возможность использования энергии магнитного поля и трудности, связанные с ее практическим применением.

В своей повседневной жизни полевую форму существования материи мы редко замечаем. Разве что, когда падаем. Тогда гравитационное поле становится для нас болезненной реальностью. Но есть одно исключение – поле постоянных магнитов. Практически каждый в детстве играл с ними, с пыхтением пытаясь разорвать два магнита. Или, с таким же азартом, сдвинуть упрямо сопротивляющиеся одноименные полюса.

С возрастом интерес к этому занятию пропадал, или, наоборот, становился предметом серьезных исследований. Идея практического использования магнитного поля появилась задолго до теорий современной физики. И главным в этой идее было стремление использовать «вечную» намагниченность материалов для получения полезной работы или «дармовой» электрической энергии.

Изобретательные попытки практического использования постоянного магнитного поля в двигателях или электрических генераторах не прекращаются и в наши дни. Появление современных редкоземельных магнитов с высокой коэрцитивной силой подогрел интерес к подобным разработкам.

Обилие остроумных конструкций разной степени работоспособности заполонили информационное пространство сети. Среди них выделяется движитель японского изобретателя Кохеи Минато.

Сам Минато по специальности музыкант, но много лет занимается разработкой магнитного двигателя собственной конструкции, изобретенного, по его словам, во время концерта фортепьянной музыки. Трудно сказать, каким музыкантом был Минато, но бизнесменом он оказался хорошим: свой двигатель запатентовал в 46 странах и продолжает этот процесс сегодня.

Необходимо отметить, что современные изобретатели ведут себя довольно непоследовательно.

Мечтая осчастливить человечество своими изобретениями и остаться в истории, они с не меньшим старанием стараются скрыть детали своих разработок, надеясь в будущем получить дивиденды с продажи своих идей.

Но стоит вспомнить Николу Тесла, когда тот, для продвижения своих трехфазных двигателей, отказался от патентных отчислений фирмы, осваивавшей их выпуск.

Вернемся к магнитному двигателю Минато. Среди множества других, аналогичных конструкций, его изделие выделяется очень высокой экономичностью. Не вдаваясь в детали конструкции магнитного двигателя, которые все равно скрыты в патентных описаниях, необходимо отметить несколько его особенностей.

В его магнитном двигателе наборы постоянных магнитов расположены на роторе под определенными углами к оси вращения. Прохождение «мертвой» точки магнитами, которая, по терминологии Минато, называется точкой «коллапса», обеспечивается за счет подачи короткого мощного импульса на электромагнитную катушку статора.

Именно эта особенность и обеспечили конструкции Минато высокую экономичность и бесшумность работы при высоких оборотах вращения. Но утверждение, что КПД двигателя превышает единицу, не имеет под собой никакого основания.

Для анализа магнитного двигателя Минато и похожих конструкций, рассмотрим понятие «скрытой» энергии. Скрытая энергия присуща всем видам топлива: для угля она составляет 33 Дж/грамм; для нефти – 44 Дж/грамм.

А вот энергия ядерного топлива оценивается в 43 миллиарда этих единиц. По разным, противоречивым оценкам, скрытая энергия поля постоянного магнита составляет около 30% потенциала ядерного топлива, т.

это один из самых энергоемких источников энергии.

А вот воспользоваться этой энергией далеко не просто. Если нефть и газ при воспламенении отдает сразу весь свой энергетический потенциал, то с магнитным полем все не так просто.

Запасенная в постоянном магните энергия может совершать полезную работу, но конструкция движителей при этом очень сложна.

Аналогом магнита может служить аккумулятор очень большой емкости с не менее большим внутренним сопротивлением.

Поэтому сразу возникают несколько проблем: получить большую мощность на валу двигателя при малых его габаритах и массе затруднительно. Магнитный двигатель со временем, по мере расходования запасенной энергии, будет терять свою мощность. Даже предположение о том, что энергия восполняется магнитным полем Земли, не может устранить этот недостаток.

Главным же недостатком является требование прецизионной сборки конструкции двигателей, которое препятствует его массовому освоению. Минато до настоящего времени работает над определением оптимального расположения постоянных магнитов.

Поэтому его обиды на японские корпорации, которые не хотят осваивать изобретение, необоснованны. Любой инженер, при выборе двигателя, в первую очередь поинтересуется его нагрузочными характеристиками, деградацией мощности в течении срока эксплуатации и еще рядом характеристик. Подобной информации по двигателям Минато, как, впрочем, и остальным конструкциям, до настоящего времени нет.

Редкие примеры практического воплощения магнитных двигателей вызывают больше вопросов, чем восхищение. Недавно фирма SEG из Швейцарии объявила о готовности выпускать под заказ компактные генераторы, приводом в которых служит разновидность магнитного двигателя Серла.

Генератор вырабатывает мощность около 15 кВт, имеет размеры 46х61х12см и ресурс работы до 60 МВт-часов. Это соответствует среднему сроку эксплуатации 4000 часов. Но каковы будут характеристики в конце этого периода?

Фирма честно предупреждает, что после этого необходимо повторное намагничивание постоянных магнитов. Что стоит за этой процедурой – неясно, но скорей всего, это полная разборка и замена магнитов в магнитном двигателе. А цена такого генератора составляет более 8500 евро.

Фирма Минато тоже объявила о заключении контракта на изготовление 40000 вентиляторов с магнитными двигателями. Но все эти примеры практического применения единичны. Причем, никто не утверждает при этом, что их устройства имеют КПД больше единицы, и они будут работать «вечно».

Если традиционный асинхронный двигатель выполнить из современных дорогих материалов, например, обмотки из серебра, а магнитопровод из тонкой стальной аморфной ленты (стеклометалл), то при сравнимой с магнитным двигателем цене получим близкий КПД. При этом, асинхронные двигатели будут иметь значительно больший срок службы при простоте изготовления.

Подводя итоги, можно утверждать, что пока удачных конструкций магнитных двигателей, пригодных для массового промышленного освоения, не создано.

Те образцы, которые работоспособны, требуют инженерной доводки, дорогих материалов, прецизионной, индивидуальной настройки и не могут конкурировать с уже освоенными типами двигателей.

И уж совсем безосновательны утверждения, что эти двигатели могут работать неограниченное время без подвода энергии.

Как сделать простейший электродвигатель своими руками?

Многие радиолюбители всегда не прочь смастерить какой-нибудь декоративный прибор исключительно в демонстративных целях. Для этого используются простейшие схемы и подручные средства, особенно большим спросом пользуются подвижные механизмы, способные наглядно показать воздействие электрического тока. В качестве примера мы рассмотрим, как сделать простой электродвигатель в домашних условиях.

Что понадобится для простейшего электродвигателя?

Учтите, что изготовить рабочую электрическую машину, предназначенную для совершения какой либо полезной работы от вращения вала в домашних условиях довольно сложно. Поэтому мы рассмотрим простую модель, демонстрирующую принцип работы электрического двигателя. С его помощью вы можете продемонстрировать взаимодействие магнитных полей в обмотке якоря и статоре. Такая модель будет полезной в качестве наглядного пособия для школы или приятного и познавательного времяпрепровождения с детьми.

Для изготовления простейшего самодельного электродвигателя вам понадобится обычная пальчиковая батарейка, кусочек медной проволоки с лаковой изоляцией, кусочек постоянного магнита, по размерам не больше батарейки, пара скрепок. Из инструмента хватит кусачек или пассатижей, кусочка наждачной бумаги или другой абразивный инструмент, скотч.

Процесс изготовления электродвигателя состоит из таких этапов:

  • Намотайте на пальчиковую батарейку от 10 до 15 витков медной проволоки – это и будет ротор мотора. Можно использовать не только батарейку, но и любое круглое основание.
  • Снимите намотку с батарейки, постарайтесь не сильно нарушать диаметр витков. Зафиксируйте всю катушку двумя диаметрально противоположными витками, как показано на рисунке ниже. Рис. 1: зафиксируйте обмотку витками
  • При помощи мелкого наждака зачистите концы якоря электродвигателя. Ваша задача – удалить слой изоляции, так как через эти концы будет осуществляться токосъем.
  • При помощи пассатижей согните две скрепки таким образом, чтобы получились круглые петли посредине скрепки. В качестве основания для перегиба петли можно использовать любой твердый предмет, к примеру, спичку. Рис. 2: согните скрепку
  • Зафиксируйте скотчем обе скрепки на выводах пальчиковой батарейки, важно добиться плотного прилегания. Если нужно, намотайте несколько слоев скотча.
  • Поместите в петли концы ротора, он же будет выступать и валом электродвигателя. Зачищенные концы провода должны располагаться на скрепках. Рис. 3: поместите ротор в петли
  • Зафиксируйте под катушкой на поверхности пальчиковой батарейки постоянный магнит.

Простой электродвигатель готов – достаточно толкнуть пальцем катушку и она начнет вращательное движение, которое будет продолжаться до тех пор, пока вы не остановите вал мотора или не сядет батарейка.

Рис. 4: запустите катушку

Если вращение не происходит, проверьте качество токосъема и состояние контактов, насколько свободно ходит вал в направляющих и расстояние от катушки до магнита. Чем меньше расстояние от магнита до катушки, тем лучше магнитное взаимодействие, поэтому улучшить работу электродвигателя можно за счет уменьшения длины стоек.

Одноцилиндровый электродвигатель

Если предыдущий вариант никакой полезной работы не выполнял в силу его конструктивных особенностей, то эта модель будет немного сложнее, зато найдет практическое применение у вас дома. Для изготовления вам понадобится одноразовый шприц на 20мл, медная проволока для намотки катушки (в данном примере используется диаметром 0,45мм­), проволока из меди большего диаметра для коленвала и шатуна (2,5 мм), постоянные магниты, деревянные планки для каркаса и конструктивных элементов, источник питания постоянного тока.

Из дополнительных инструментов понадобится клеевой пистолет, ножовка, канцелярский нож, пассатижи.

Процесс изготовления электродвигателя заключается в следующем:

  • При помощи ножовки или канцелярского ножа обрежьте шприц, чтобы получить пластиковую трубку.
  • Намотайте на пластиковую трубку тонкую медную проволоку и зафиксируйте ее концы клеем, это будет обмотка статора. Рис. 5: намотайте проволоку на шприц
  • С толстой проволоки удалите изоляцию при помощи канцелярского ножа. Отрежьте два куска проволоки.
  • Согните из этих кусков проволоки коленчатый вал и шатун для электродвигателя, как показано на рисунке ниже. Рис. 6: согните коленвал и шатун
  • Наденьте кольцо шатуна на коленчатый вал, чтобы обеспечить его плотную фиксацию, можно надеть кусок изоляции под кольцо. Рис. 7: наденьте шатун на коленвал
  • Из деревянных плашек изготовьте две стойки для вала, деревянное основание и ушко для неодимовых магнитов.
  • Склейте неодимовые магниты вместе и приклейте к ним ушко при помощи клеевого пистолета.
  • Зафиксируйте второе кольцо шатуна в ушке при помощи шплинта из медной проволоки. Рис. 8: зафиксируйте второе кольцо шатуна
  • Вставьте вал в деревянные стойки и наденьте втулки для ограничения перемещения, сделайте их из кусочков родной изоляции провода.
  • Приклейте статор с обмоткой, стойки с шатуном на деревянное основание, кроме дерева можете использовать и другой диэлектрический материал. Рис. 9: приклейте стойки и статор
  • При помощи саморезов с плоской шляпкой зафиксируйте выводы на деревянном основании. Два контакта должны иметь достаточную длину, чтобы касаться вала электродвигателя – один выгнутой части, другой прямой. Рис. 10: точки касания вала
  • Наденьте на вал с одной стороны маховик для стабилизации вращения, а с другой крыльчатку для вентилятора.
  • Припаяйте один вывод обмотки электродвигателя к контакту колена, а второй к отдельному выводу. Рис. 11: припаяйте выводы обмотки
  • Подключите электродвигатель к батарейке при помощи крокодилов.

Одноцилиндровый электродвигатель готов к эксплуатации – достаточно подключить питание к его выводам для работы и прокрутить маховик, если он находится в том положении, с которого сам стартовать не может.

Рис. 12: подключите питание

Чтобы прекратить вращение вентилятора, отключите электродвигатель посредством снятия крокодила хотя бы с одного из контактов.

Электродвигатель из пробки и спицы

Также представляет собой относительно простой вариант самоделки, для его изготовления вам понадобится пробка от шампанского, медная проволока в изоляции для намотки якоря, вязальная спица, медная проволока для изготовления контактов, изолента, деревянные заготовки, магниты, источник питания. Из инструментов вам пригодятся пассатижи, клеевой пистолет, мелкий натфиль, дрель, канцелярский нож.

Процесс изготовления электродвигателя будет состоять из таких этапов:

  • Обрежьте края пробки, чтобы получить две плоских поверхности, на которых будет располагаться провод.
  • Просверлите сквозное отверстие в пробке и проденьте в него спицу. С одной стороны намотайте изоленту. Рис. 13: вставьте спицу и намотайте изоленту
  • В торце пробки вставьте два отрезка проволоки и приклейте их.
  • Намотайте обмотку ротора из тонкой проволоки в одном направлении. Сделайте перемотку якоря изолентой, чтобы витки в электродвигателе не распустились во время работы.
  • Зачистите надфилем концы обмотки электродвигателя и выводы на пробке и соедините их.

Рис. 14: соедините концы обмотки и выводы

Для лучшего контакта можно припаять. Выводы следует согнуть так, чтобы они буквально лежали на спице.

Рис. 15: согните выводы

Рис. 18: установите магниты

Наденьте крыльчатку вентилятора на вал и подключите к источнику питания – при протекании электрического тока по катушке произойдет магнитное взаимодействие с полем постоянных магнитов, благодаря чему и возникнет вращательное движение. Простейший электродвигатель готов, запитать его можно и от переменного тока в сети, но вместо батарейки вам придется использовать блок питания.

Видео инструкции в помощь

Первый униполярный двигатель Фарадея можно собрать за минуту. Необходимо совсем мало деталей. Все они, за исключением провода, есть на фотографии.

Нужен один неодимовый магнит: диск или пруток с аксиальным намагничиванием (на одной плоской стороне южный полюс, а на другой северный). Подойдёт любой из четырёх с фотографии.

Шуруп, гвоздь или саморез из примагничивающегося материала. Длина примерно 45 мм. Более короткие или более длинные могут снижать скорость вращения. Острый конец способствует лёгкой и быстрой работе.

Аккумулятор AA 1,2 В и провод подходящей длины.

Устройство собирается таким образом: магнит прикрепляется к головке шурупа. Конец шурупа за счёт этого примагничивается к аккумулятору. Через скользящий контакт ток подаётся к магниту. Начинается вращение.

Смена полюсов магнита или полярности аккумулятора вызывает движение мотора в противоположную сторону.

Второй двигатель линейный. В нём происходит не вращение, а линейное перемещение.

Он сделан из AAA аккумулятора, двух кубических неодимовых магнитов 8* 8* 8 мм и скрученной медной проволоки, образующей как бы туннель диаметром 12 мм. Но лучше использовать круглые магниты.

Проволока обязательно должна быть без изоляции! Её диаметр 0,5 мм. Диаметр маркера, на который она накручивалась — 11 мм. Направление движения зависит от вида намотки (по часовой стрелке, против часовой стрелки) и внешних полюсов магнитов. Магниты к аккумулятору нужно подносить одноимёнными полюсами, соответственно, внешние полюса всегда тоже одноимённые. Дальше видео работы.

На следующем видео перемещение аккумулятора с неодимовыми магнитами в растянутой пружине (примерно 5 мм между витками).

Можно сделать круговую пружину, тогда «электричка» будет перемещаться без остановки по кругу.

Если информация понравилась, ставьте лайк и поделитесь в соцсетях. Также буду рад комментариям!

Паровой двигатель своими руками из подручных средств

Когда уже доделывал свой газогенератор — наткнулся в интернет на книжку «Как самому сделать паровой двигатель до 1. 5л/с» книжка 1903 года (. ) выпуска, написана через «ять», размеры в вершках и аршинах, но содержит информацию, достаточную для изготовления своего парового двигателя, с чертежами и пояснениями

Саму книгу полностью в статье публиковать не буду, ссылку на нее дам в конце. Идея вот в чем: 100 лет назад это можно было сделать методом пайки из ружейных гильз, обрезков труб и самовара в качестве парового котла, давление в котором (по книжке) составляло всего 2-3 атмосферы. В общем — из подручных тогда средств (есть вещи, которые и через 100 лет не меняются). При этом автор книги советовал использовать паровой двигатель для аэрации воды в аквариуме или приспособить к нему динамо для выработки электроэнергии. Или установить на лодку. (Приводятся двигатели разной мощности).

Но мы-то живем немного в другом веке: сварочный инвертор не редкость, автомобильный хлам — в избытке, простой газовый баллон — держит поболе 2 атмосфер. В общем — развернуться есть куда, а скажем мотоциклетный двигатель — это уже готовый паровой со всеми необходимыми шатунами, поршнем и подшипниками, только надо сделать систему газораспределения (и продумать систему смазки):

(Автор видео с Ютуб — Iван Гнатюк, ссылка — на ролик с его канала)

Другая идея переделки 2-тактного двигателя:

В начале статьи упоминалось про газогенератор: я его сделал и «скрестил» с бензогенератором, но штука оказалась хлопотная и пока — дорогая. Почему — тема отдельной статьи, ссылка в конце текста.

Мне представляется, что паровой двигатель для получения электроэнергии и попутного отопления дома (гаража, дачи) отработанным паром — вариант чуть ли не идеальный: уже упоминал в разных статьях, что дом я — все равно отапливаю, вскипятить до пара ведро-другое воды особых проблем не составит, тогда как возня с газогенератором — уже не попутная, а отдельная тема: встал, затопил печку, пошел «раскочегаривать» газогенератор, наконец завел бензогенератор (20 минут на «взлет» в прохладном гараже).

Если всё получится — идея сведется к простым действиям «топлю печку — получаю электричество, заодно заряжаю аккумуляторы». В наш нанотехнологичный век можно сделать еще проще: приобрести печку с элементами Пельте, но это пока дорого и бессмысленно: тема отдельной статьи, скоро напишу.

Мой плейлист в Ютуб с подборкой видео про паровые двигатели (в основном на них ездят): здесь

Покритикуйте, посоветуйте. Может у кого-то уже есть опыт эксплуатации парового двигателя, да еще и вместе с электрогенератором (я планирую автомобильный 12В).

Испытание парового котла ———————————-P. Сделать паровую турбину в домашних условиях — гораздо сложнее (огромные обороты: балансировка, износ подшипников). Но может кто-то сделал?

Разморозка труб и колодца паром — я уже сделал себе паровой котел, правда использую пока не по назначению )

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий