Выявление неполадок и их устранение
Для начала надо вспомнить, что электролюминесцентный светильник выполняет свои функции освещения только тогда, когда согласованно работают все его составные части – сама лампа, балласт, который может быть либо электромеханическим, либо электронным. Таким образом, причины неисправной работы светильника могут находиться как в схеме пускорегулирующей аппаратуры, так и быть отказом работы ЛДС из-за ее старения или нарушения условий эксплуатации.
Проверять люминесцентную лампу (светильник) лучше всего удается при наличии работоспособного аналога. Надо обеспечить удобный доступ ко всем его компонентам. Таким способом можно правильно провести анализ неисправности и дать рекомендации по устранению даже при самостоятельном ремонте. Расскажем, как проверить в домашних условиях лампу дневного света.
Как проверить стартер
ЛДС не горит, а мерцает — такое случается при неисправности стартера. Чтобы проверить его работоспособность, невозможно проводить тестирование мультиметром, так как контакты стартера при выключенном напряжении разомкнуты.
Проверить эту деталь можно лампой накаливания мощностью 40 Вт, которую подключают последовательно через стартер к сети. При исправном стартере лампа светится и через некоторые промежутки времени на мгновение гаснет. Процесс сопровождается щелчками контактов. При неисправном стартере ЛДС не горит или светится без моргания тусклым светом.
Перегрев лампы
Высокая температура, вредна любому электроприбору, и лампы тут не исключение. При чрезмерном нагреве, на который лампа не рассчитана, повреждается её конструкция, меняются её характеристики, что приводит к быстрому выходу из строя.
Причин перегрева несколько, довольно подробно я уже рассказывал о них в статье «Почему перегревается лампа», там же вы найдёте и подробное описание действий, которые помогут вовремя диагностировать перегрев и исправить его.
Ремонт люминесцентных светильников
Люминесцентные лампы имеют конструкцию, легко поддающуюся ремонту. При наличии определённых навыков делать это несложно даже без привлечения специалистов.
Ремонт люминесцентных ламп можно провести самостоятельно. Задавшись целью вернуть к жизни люминесцентный светильник собственными силами, требуется точно разбираться в принципе его работы. В конструкцию светильника, кроме собственно лампы, включены дополнительные элементы: пускорегулирующая аппаратура, стартер, дроссель.
Стартер является неоновой лампой с биметаллическими электродами. Во время включения на люминесцентный светильник подаётся напряжение и в стартере создаётся разряд, способствующий замыканию электродов. До момента включения электроды находятся в разомкнутом состоянии. Во время этого процесса цепь несет ток большой емкости, разогревающий находящийся в колбе газ и биметаллические электроды стартера.
При размыкании электродов стартера, совершается скачок напряжения, снабжающий дроссель. Под воздействием увеличенного напряжения промежуток, заполненный газовой смесью, пробивается, после чего следует загорание. Дроссель подсоединен последовательно и напряжение от сети делится пополам.
Стартер подсоединяется параллельно и во время работы светового прибора получает напряжение. Количества напряжения недостаточно для вторичного соединения электродов стартера. Поэтому последний работает только при включении светового прибора с лампой дневного света.
Дроссель, кроме формирования разряда увеличенного напряжения, контролирует ток во время включения осветительного прибора и позволяет достичь стабильности, когда она будет гореть.
Как продлить срок службы лампы дневного света
Многие радиолюбители научились продлевать сроки эксплуатации перегоревших ламп дневного света. В данном случае осуществляется включение с ростом напряжения, подающегося на электроды.
Это помогает получить при включении некий пик напряжения, превышающий показатель в 1000 В. Значения хватает для того, чтобы запустить процесс холодной ионизации ртутных паров и создать необходимый разряд в газовой среде. Результатом является стабильное свечение даже при сгоревшей спирали.
Ограничить ток можно при помощи резистора или лампы накаливания. Подобный подход позволяет избежать быстрого перегорания люминесцентной лампы в процессе эксплуатации. Намотка резистора может быть реализована самостоятельно при помощи нихромовой проволоки.
Ремонт светодиодных люстр
Для работы светодиодных приборов применяют трансформаторы. Чтобы проверить исправность этого компонента, используют мультиметр
Если трансформатор исправен, обращают внимание на работу диодов. Проверку выполняют с помощью 9-ваттной батарейки и резистора
Каждый светодиод проверяют последовательно. Если неисправный диод найден, выполняется замыкание. По окончании ремонтных работ конструкцию собирают в обратном порядке.
Когда недавно установленные светодиодные лампы начинают мерцать, проблема кроется в несовместимости с диммером. Некоторые виды диодных лампочек не будут исправно работать с этим устройством. Совместимы с ним лишь диммируемые светодиодные лампы.
Не горит лампа холодильника
Сложный бытовой прибор требует профессионального подхода в ремонте, что предлагает наш сервисный центр. Во избежание дополнительных неполадок от самостоятельного устранения повреждения лучше отказаться. При поломке понадобится:
- Возвращение работоспособности розетке или вилке;
- Замена светодиода;
- Установка нового терморегулятора;
- Устранение повреждения геркона.
Наши специалисты имеют большой опыт работ. Для удобства клиентов, все ремонтные работы выполняются на дому. Вызов мастера возможен в день обращения. Для обращения вам достаточно позвонить по телефону (8452) 585-222 или оставить онлайн заявку на нашем сайте. Обращение к профессионалам позволит быстро решить вопрос. Мы работаем во всех районах города. Выезд мастера для ремонта холодильников в Саратове в Заводском районе, и любом другом, осуществляется без доплат.
Целостность спиралей-электродов
При неполадках часто случаются причины, которые не всегда видны невооруженным глазом. В этом случае нужно прозвонить изделие мультиметром или проверить индикатором. Его переключатель нужно установить в положение, измеряющее сопротивление. Диапазон – самый малый из всех возможных. Щупами касаются штырьков и смотрят на табло. Если спираль порвана или сгоревшая – на табло светится 0, если она целая – цифры 3-16 Ом. Порванная или сгоревшая нихромовая нить не восстанавливаются, изделие требуется заменить.
Неисправность выключателя света или защитного автомата
Отдельной причиной частого перегорания ламп, является целый ряд неисправностей с выключателями света или автоматическими защитными выключателями, через которые запитано освещение.
И хотя эта проблема лишь разновидность уже представленных здесь причин перегорания ламп, то, насколько часто она встречается, заставило выделить её в отдельный пункт.
Если причиной сгоревшей лампы является именно выключатель или любой другой коммутационный аппарат в цепи питания, это достаточно просто выявить по определенным косвенным признакам – в конце статьи будет ссылка на материал, где подробно описана инструкция, как найти причины их выхода из строя и исправить их.
Имя говорит о многом
Яркая упаковка и обещания многих лет беспрерывной работы чаще всего и становятся тем моментом, на который и ловятся доверчивые покупатели. А вместе с тем количество фирм выпускающих LED лампы растет как на дрожжах, все больше и больше. Тем более что основной, самый дорогой элемент лампы светодиод в Поднебесной за последний год подешевел на 30%. Такой наплыв на рынок неизвестных производителей с предложениями дешевой продукции неизвестного происхождения значительно увеличивает риск того что лед лампа прослужит недолго.
Для известных мировых и отечественных производителей, выпуск качественной продукции всегда является приоритетом, поэтому и для корпусов, и для элементной базы подбираются только высококачественные комплектующие, поэтому и полная гарантия 5 лет, правда, и цена соответствующая. Как правильно выбрать led лампу.
Основная проблема всех лед ламп которую пытаются решить все производители это мерцание лампочки. Соответственно чем он меньше тем лампа более качественней и подходит для использовании в жилых помещениях. Его можно обнаружить направив камеру мобильного телефона, на экране не должно быть полосок.
Неисправности люминесцентных светильников
Причинами не включения светильника с одной лампой или светильника состоящего из двух ламп и более, когда не включается одна из ламп светильника, могут быть в следующем:
- неисправность самой лампы;
- нет контакта с дросселем;
- нет контакта со стартером;
- разрыв в провода.
Электрическую цепь светильника и установить где именно находится разрыв, — можно проверить пробником. После того как Вы приобрели светильник, проверьте все контактные соединения светильника.
Пример из практики. В помещении полностью провел электрику с установкой и подключением люминесцентных светильников с двумя лампами, через определенное время светильники некоторые стали работать с одной лампой. Когда стал проверять контактные соединения светильников, оказалась причина в следующем, — ненадежное контактное соединение одного из проводов с с дросселем. Там где не было контакта с дросселем,- лампа не включалась.
Ремонт люминесцентных светильников-с электронным балластом
Люминесцентные потолочные встраиваемые светильники Армстронг с электронным балластом просты в своем исполнении и удобны тем, что при снятии и установке — не требуют каких либо усилий.
светильник встраиваемый потолочный Армстронг
электронный балласт блок питания FINTAR
Привожу пример из своей практики. Необходимо было устранить неисправность потолочного встраиваемого светильника Армстронг.
Для этого, светильник нужно было снять с потолка и проверить электрические соединения. В результате проведенной диагностики было установлено, что элементы электроники состоящие в электронном балласте FINTAR вышли из строя, — перегорели.
Именно такого блока питания в продаже не было, пришлось приобрести другой подобный электронный балласт для светильника на четыре люминесцентные лампы — Navigator.
электронный балласт Navigator
Если внимательно посмотреть на два блока питания, электрические схемы подключения люминесцентных ламп разные.
Возникает вопрос: Как подключить люминесцентные лампы потолочного светильника к другому блоку питания?
Как подключить люминесцентные лампы
Соединения проводов с патронами люминесцентных ламп в этом примере нужно выполнять только по электрической схеме вновь устанавливаемого блока питания.
Соответственно схему контактных соединений проводов пришлось переделывать, в одном месте отрезать, в другом нарастить провод. При изменении схемы соединений, провода предварительно соединяются скруткой и изолируются изоляционной лентой.
После всех выполненных соединений и убедившись в том, что при подключении светильника к внешнему источнику электрической энергии розетке — все четыре люминесцентные лампы загораются, — изоляционная лента убирается в месте соединений проводов.
На один из проводов надевается отрезок кембрика. Соединенные медные провода протравливаются паяльной кислотой и затем на место соединения — паяльником наносится небольшой слой олова паяние проводов.
протравливание соединений проводов паяльной кислотой с последующим паянием
паяние соединенных проводов
Далее, после того как выполнено паяние двух проводов, — на место соединения надевается кембрик вместо изоляционной ленты.
изоляция соединений проводов кембриком вместо изоляционной ленты
Такой способ соединения проводов с последующей изоляцией кембриком — более прост и надежен. Если соединить два провода просто в скрутку без паяния и затем изолировать изоляционной лентой, — соединение будет в дальнейшем подвергаться окислению и нагреванию проводов.
Нумерация контактных соединений проводов с электронным балластом — идет сверху вниз. То есть первое и второе контактное соединение проводов должно соответствовать подключению двух люминесцентных ламп с одной стороны и так далее. При соединении, нужно внимательно смотреть по электрической схеме блока питания и следовать данному выполнению таких соединений.
контактное соединение проводов к электронному блоку питания электронному балласту
На концы оголенных проводов предварительно перед соединением к электронному блоку питания, наносится также небольшой слой олова, — для качественного соединения.
Сложного здесь в общем то ничего нет и подобную неисправность Вы сможете легко устранить.
На этом пока все.
Как проверить емкость конденсатора тестером
При неисправности конденсатора в схеме КПД светильника снижается до 40%. Для изделий мощностью 36-40 Вт устанавливается конденсатор, имеющий емкость 4,5 мкФ. Если она ниже нормы – КПД снижается, при более высокой емкости лампа начинает мерцать. Для проведения измерений конденсатор должен прозваниваться тестером. При касании щупами выводов рабочей детали прибор показывает бесконечное сопротивление. Если оно меньше 2 Мом – это признак большой утечки тока.
Вибрации или сотрясения
Если на светильник, и соответственно, лампу в нём, воздействует источник постоянной или периодически возникающей вибрации, либо же лампа сотрясается от удара по ней, пусть даже разового, это значительно снижает срок службы лампы и приводит к значительному более частому её перегоранию.
Конечно, в большей степени эта причина актуальна для ламп накаливания и галогенок, которые в настоящее время используются для освещения всё реже и реже. Но ресурс и других, современных типов ламп, также снижается от тряски, хоть и не так быстро.
Как вы понимаете, чтобы раз и на всегда решить проблему с выгорающими лампами недостаточно знать причины, почему это происходит. Вы должны уметь определять, что именно приводит к поломкам и знать, как это можно исправить.
Поэтому, вам настоятельно рекомендую прямо сейчас перейти к изучению следующего материала, который так и называется «ЧТО ДЕЛАТЬ ЕСЛИ ПЕРЕГОРАЮТ ЛАМПЫ?». В нём то мы и рассмотрим подробно каждую из причин, привозящих к выходу из строя освещения, вы узнаете, как этого избежать или исправить.
Сломался предохранитель
Это вторая распространенная причина, по которой не горит лампочка ближнего света одной из фар автомобиля. Рассмотрим, как самостоятельно устранить ее:
- блок с предохранителями электрических цепей необходимо вскрыть;
- если перегорел один из предохранителей, его нужно определить (обычно это несложно) с помощью схемы;
- неисправный предохранитель нужно заменить на новый.
Уточним, что если на вашем автомобиле часто сгорают предохранители, нужно искать пробой в проводке. Тогда, с помощью специального прибора необходимо прозвонить провода, чтобы определить, где нарушена их целостность. Если самостоятельно сделать это невозможно, нужно обратиться к электрику, который сможет найти причину частых поломок. На самом деле это довольно серьезная проблема, при которой нельзя откладывать ремонт в долгий ящик, так как пробои в проводке могут привести к короткому замыканию и возгоранию машины.
Люминесцентный светильник своими руками
- Корпус. Его можно изготовить из подручного материала. По сути, корпус – это просто деталь прямоугольной формы, из материала не поддерживающего горение (металл, текстолит, электротехническая пластмасса и т.п.). Можно использовать старый корпус от отслужившего свой срок «древнего» светильника.
- ЭПРА – электронный пускорегулирующий аппарат. Его еще называют «электронный дроссель». По сравнению с обычным дросселем, ЭПРА имеет ряд преимуществ при той же цене: мгновенный старт ламп, отсутствие мерцания ламп, малая зависимость яркости ламп от перепадов напряжения питания. В данной статье рассказывается о светильнике на основе ЭПРА 2×36 Вт.
- Патроны G13 из расчета два патрона на одну лампу.
- Моножильные медные провода сечением 0,2-0,5 кв.мм. Можно использовать и многопроволочные (гибкие), залудив концы.
- Подходящие винтики, гаечки для крепления всех деталей на корпусе.
- Крепление патронов на необходимом расстоянии друг от друга, в зависимости от длины лампы и желаемого расстояния между лампами.
- Крепления ЭПРА. Так как ЭПРА при работе нагревается, то располагать его рекомендуется так, чтобы ЭПРА получал минимум дополнительного нагрева от работающей лампы. Зона минимального нагрева лампы находится ближе к ее центру.
- Подключение патронов к ЭПРА с помощью заранее заготовленных проводов нужной длины и согласно схеме подключения, которая обычно нарисована на корпусе ЭПРА. В патроны провода просто вставляются и удерживаются внутри пластинчатой пружиной. По этой причине, лучше использовать моножильные провода , так как многопроволочные провода (без предварительного облуживания) воткнуть практически невозможно.
- Крепление светильника к потолку или стене. Подключение светильника к сети питания 220 В.
Несмотря на то, что наличие защитного стекла для ламп низкого давления не является обязательным, лампы желательно прикрыть подходящим прозрачным материалом, во избежание случайного повреждения стеклянной колбы лампы. Фотографии изготовленного светильника и рисунок со схемой подключения прилагаются.
Для надежности, корпус светильника (слева, справа и между патронов) был усилен металлическими уголками.
Патрон G13. Вариант для винтового крепления к боковой поверхности.
Патрон G13. Вариант для бокового крепления с помощью защелок.
Патрон G13. Вариант для нижнего крепления с помощью защелок.
Подключение ЭПРА. Поясняющий рисунок.
ЭПРА на светильнике. ЭПРА расположен между лампами, ближе к их центру (в зоне минимального нагрева).
Подключение патрона G13.
Типовой патрон G13 для люминесцентной лампы подключается без применения инструментов, достаточно снять изоляцию с провода на длину около 1 см и вставить его до упора в отверстие. Провод должен быть однопроволочным и допустимого сечения (согласно спецификации на патрон). В случае применения многопроволочного провода, его нужно облудить или опрессовать в гильзовый наконечник. Внутри патрона провод удерживается плоскопружинным контактом, изготовленным из упругого цветного металла. Патрон G13, как правило, имеет четыре отверстия для ввода проводов – по два на каждый контакт. Таким образом есть возможность не только завести провод в патрон, но и выполнить ответвление провода от патрона, что нередко требуется. При необходимости извлечь провод, необходимо тонким шилом нажать на специальный рычажок внутри корпуса, контакт при этом изгибается, высвобождая провод.
Время показало, что данный самодельный люминесцентный светильник хорошо запускается и работает в диапазоне температур окружающего воздуха от -10°… +30°C, более экстремальные температурные испытания не проводились. Светильник нечувствителен к высокой запыленности помещения и перепадам сетевого напряжения (которые могут происходить, например, во время пользования сварочным аппаратом или запуска мощного электрооборудования), отлично подходит для организации качественного освещения в мастерской или гараже. Чтобы свет был более приятен для глаз, есть смысл установить в светильник лампы разных цветовых температур (как на фотографиях выше).
Крепление изделия
Обычно крепление патрона в люстрах или светильниках проводится за дно корпуса. Давать весовую нагрузку на провода недопустимо. Для фиксации в люстре снизу имеется отверстие, в которое вставляется пластиковая втулка. В нее запускается проводка и фиксируется с помощью болта. Более надежным креплением является металлическая трубка. Через нее пропускаются провода. Расположенные на ней гайки позволяют вести установку плафонов и колпаков люстры.
Для установки плафонов для ламп или настенных светильников имеются специальные патроны. С наружной стороны у них нарезана резьба. Прижим навесных элементов осуществляется при помощи пластмассовых втулок, которые наворачиваются на резьбовую часть патрона.
Виды устройств для проведения замеров
Практически во всех многофункциональных приборах для замеров существует возможность измерить значение импеданса. По своему принципу работы и функциональности выпускаемые устройства могут быть цифровыми и аналоговыми. При этом важными их характеристиками являются погрешность и диапазон измерения.
Перед началом работы с тестером нужно убедиться в исправности его элементов питания. Если на цифровом типе прибора высвечивается индикация с мигающей батарейкой, это означает что батарейку необходимо заменить. Для стрелочного прибора сигналом о замене питающих элементов будет невозможность установить стрелку в нулевое положение.
Для правильного получения результата необходимо не только использовать настроенный прибор, но и проследить за окружающей температурой. Как известно из законов физики, при нагревании величина сопротивления у проводников увеличивается, а у полупроводников уменьшается. Оптимальной температурой считается 20 градусов по Цельсию.
Принцип работы
Работа любого омметра (включая и современные цифровые измерители) базируется на основном постулате электротехники – законе Ома. Согласно его условиям, чем больше сопротивление, тем меньше проходящий через него ток – при неизменном напряжении питания.
Омметру для работы необходим источник питания. Образуется запитанная электрическая цепь, в которой прибор, учитывая напряжение питания и ток, протекающий через замеряемый элемент, определяет сопротивление.
В современных цифровых мультиметрах используется батарейка на 9 вольт.
В Китае можно заказать никель-кадмиевую аккумуляторную батарейку на 8,4 В – 7 перезаряжаемых элементов по 1,2 В, упакованных в корпус такого же размера, ёмкостью до 200 миллиампер-часов – она даст близкое к 9 В питание, отчего прибор не выдаст существенную погрешность.
Такой способ – выход для тех, кто часто по работе замеряет сопротивление резисторов, спиралей и обмоток, «прозванивает» кабельные линии и т. : после примерно 1000 замеров обычная батарейка «села» бы.
Цифровой мультиметр
Главной особенностью цифрового мультиметра является наличие экрана, на нём наглядно отображается измеряемая величина. В основе принципа действия устройства лежит сравнение измеряемого сигнала с опорным, для этого используется аналого-цифровой преобразователь.
Для проведения измерения тестер подключается набором проводов к измеряемому элементу. На одном конце каждого из проводов находится штекер, предназначенный для установки в гнездо измерителя, а на другом контактный щуп. Порядок измерения сопротивления резистора электронным мультиметром можно представить в виде следующих действий:
- Нажтием на кнопку ON/OFF включается устройство.
- Подключаются щупы к двум концам резистора, обратные концы проводов к разъёмам Ω и СОМ.
- Переключателем устанавливается примерное сопротивление.
- В случае когда на индикаторе высвечивается единица, переключатель следует переставить на одну позицию вверх, т. е. увеличить предел измерения.
- Если при снятии показаний на экране отображаются цифры, отличные от единицы, это и будет значение сопротивления.
Таким же образом можно измерить и сопротивление p-n перехода полупроводника. Цифровым прибором удобно измерить постоянное сопротивление, но он бесполезен, когда понадобится узнать его переменную величину. Для таких измерений предпочтительно использовать стрелочный прибор.
Стрелочный прибор
Самые первые измерительные приборы снабжались стрелочным устройством. Это устройство представляло собой электромеханическую головку. Конструктивно она выполнена в виде рамки, находящейся в магнитном поле. На эту головку через различные сопротивления подаётся электрический сигнал. В зависимости от силы тока стрелка в рамке отклоняется, устанавливаясь в определённое положение. Диапазон отклонения стрелки проградуирован, согласно этим значениям и вычисляется требуемая величина.
Технические возможности аналогового тестера во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Главным его достоинством является инерционность и невосприимчивость к помехам во время измерения постоянного напряжения и величины сопротивления.
Стрелочные приборы идеально подходят для отображения динамики сигнала. Тестер мгновенно показывает его изменение. Вместе с тем такой прибор обладает большой погрешностью при измерениях в высокоомных цепях, и имеется некоторая сложность в интерпретации результатов измерения.
Включение прибора осуществляется согласно инструкции, указанной на обратной стороне крышки элементов питания. Кнопкой переключения выбирается режим работы для постоянной, переменной величины или сопротивления (соответственно «—», «~», «Ω»). Для пары измерения используется двойное нажатие. Галетный переключатель диапазонов вычисления устанавливается на фиксированное значение, соответствующее предполагаемому показателю измерения.
Перед измерением величины сопротивления тестер настраивается путём вращения ручки нуля до тех пор, пока стрелка не установится на значение «∞». При выборе диапазона измерения «Ω» значения сопротивления маркируются не максимальными числами в этом диапазоне, а имеют такой вид: х1, х10, х100. Это означает, что полученное значение будет измеряться в Ом, кОм, и МОм. Измерение активного сопротивления производится от установленного в устройстве источника постоянного тока (батарейки).
Включив и подготовив тестер, нужно приложить щупы к исследуемому объекту. Согласно показаниям стрелки на измерительной шкале появится результат, который затем умножается на множитель диапазона.
Использование мегомметра
Мегомметр является специализированным устройством для измерения. Перед началом измерений необходимо строго придерживаться требований ПУЭ (правила устройства электроустановок). К основным правилам относят:
- Измерения проводятся на пределе тестера, превышающего возможное наибольшее значение сопротивления. Если такое значение неизвестно, то начинают с максимально возможного предела, который для улучшения точности результата уменьшают до минимально возможного.
- Перед тем как проверить сопротивление тестером, потребуется убедиться в обесточивании проверяемого объекта.
- Все элементы с пониженной изоляцией, конденсаторы, полупроводники закорачиваются перед началом тестирования.
- На время проведения замеров испытуемый объект заземляется.
- После окончания измерений, особенно для устройств с большой ёмкостью (например, провода большой протяжённости), перед отсоединением щупов устройства необходимо снять остаточный заряд путём замыкания на заземление.
- Снятие показаний сопротивления изоляции силовых и осветительных проводок происходит при выключенных выключателях, снятых предохранителях, извлечённых лампах.
- Строго запрещается измерять изоляцию вблизи линий, находящихся под высоким напряжением и во время грозы.
Мегомметр является сложным устройством, состоящим из генератора тока и измерительной головки. Также в состав входят: токоограничивающие резисторы, клеммные колодки, корпус из диэлектрика и переключатель режимов.
Прибор имеет три клеммы для внешнего подключения проводов. К одной подключается земля, к другой линия, а к третьей экран. Куда подключается какой провод — указано в инструкции к прибору.
Клеммы земли и линии задействуются при любых операциях по снятию показаний изоляции относительно контура земли, а экранный контакт нужен для уменьшения влияния токов утечки. Такие токи появляются при замерах между двумя жилами провода, расположенными параллельно друг другу. Экранный контакт подключается специальным проводом, идущим в комплекте к устройству.
После подключения всех щупов на приборах старого образца понадобится покрутить ручку, что обеспечит работу внутреннего генератора и подачу напряжения на тестируемый объект. В современных устройствах вместо ручки используется кнопка, а питание берётся от устанавливаемых аккумуляторов или гальванических батарей. Величина напряжения генератора может лежать в диапазоне от 100 вольт до 2,5 кВ. Как только напряжение подано, для стрелочного прибора снимаются показания стрелки на шкале, соответствующей выбранному диапазону, а для цифрового типа прибора снимаются показания в виде цифр на индикаторе.
Настройки прибора перед измерениями
Итак, друзья давайте поближе познакомимся с самим прибором. В моем случает это цифровой мультиметр DT9208A. В стандартном комплекте идет одна пара щупов для силовых измерений и термопара для измерения температуры, которой я еще ни разу не пользовался.
На передней панели имеется круговой переключатель. Именно с помощью этого переключателя выполняется выбор рабочего режима и диапазона измерений. Переключатель работает как «трещетка» и фиксируется в каждом новом положении.
Вся круговая панель разбита не сектора и имеет разноцветную маркировку (это в моем случае). Иногда сектора обводят отдельными линиями, как бы отделяя необходимый параметр.
Сектор измерения сопротивлений расположен вверху и разбит на семь диапазонов: 200, 2k, 20k, 200k, 2M, 20M, 200M. Приставки «k» и «M» означают кило (10 в 3-й степени) и мега (10 в 6-й степени) соответственно.
Для работы необходимо переключатель установить на нужную позицию сектора. Нас интересует сопротивление, соответственно, перед тем как измерить сопротивление мультиметром нужно выставить переключатель в сектор обозначенный значком «Ω».
Для удобства работы с прибором щупы имеют разную расцветку. Разницы нет, куда вставлять какой щуп но общепринятым правилом считается что черный щуп вставляется в клемму обозначенную «com» (сокращенно от common — общий), а красный щуп вставляется в клемму обозначенную «VΩCX+».
Перед выполнением любых измерений необходимо проверить работоспособности самого прибора, так как может оказаться обрыв в измерительной цепи (например, плохой контакт щупов). Для этого концы щупов закорачивают между собой. Если прибор исправен и в цепи нет обрыва, то на дисплее появятся нулевые показания. Возможно, показания будут не нулевыми, а тысячные части Ом. Это связано с сопротивлением проводов измерительных проводов и переходным сопротивлением между щупами и их клеммами.
При разомкнутых щупах на дисплее будет отображаться «1» (единица) с отметкой диапазона измерений.
Такими несложными действиями выполняется подготовка мультиметра для измерения сопротивления.
Некоторые мультиметры оснащаются полезной опцией, называемой «прозвонкой». Если установить переключатель режимов работы на значок диода, при замыкании щупов звучит сигнал (зуммер). Это позволяет проверять исправность цепей и прямые переходы полупроводников сопротивлением до 50 Ом на слух, не отвлекаясь на дисплей.
Как определить исправность СМД-резисторов
SMD-резисторы являются компонентами поверхностного монтажа, основным отличием которых, является отсутствие отверстий в плате. Компоненты устанавливаются на токоведущие контакты печатной платы. Преимуществом СМД-компонентов являются их малые габариты, что даёт возможность уменьшить вес и размеры печатных плат.
Проверка SMD-резисторов мультиметром усложняется из-за мелкого размера компонентов и их надписей. Величина сопротивления на СМД-компонентах указывается в виде кода в специальных таблицах, например обозначение 100 или 10R0 соответствует 10 Ом, 102 указывает 1 кОм. Могут встречаться четырёхзначные обозначения, например 7920, где 792 является значением, а 0 — это множитель, что соответствует 792 Ом.
Резистор поверхностного монтажа можно проверить мультиметром, путём его полного выпаивания из схемы, при этом оставив припаянным один из концов на плате и приподняв другой при помощи пинцета. После этого проводится измерение.
Внешний осмотр
Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент. Яркий пример того, как может сгореть резистор
Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.
Какие установить настройки
Прежде чем снимать показания мультиметромом, необходимо убедиться в том, что его аккумуляторы заряжены. Режим нужно выбрать соответствующий «прозвону» электропроводки, концы щупов мыкают (соприкасают) друг с другом. Прибор будет издавать звуки, по громкости которых можно определить, насколько пригодна его батарейка.
В зависимости от модификации прибора режим прозвона может обозначаться разными символами – встречается колокольчик, точка со скобками (радиоволны). При проверке электрических цепей или радиодеталей мультиметр издает определенные звуки, «звонит», отсюда и сленговое название данной операции.
Для того чтобы проверить резистор с помощью мультиметра, нужно поставить переключатель прибора в положение, соответствующее номинальному сопротивлению элемента, который вы собираетесь проверять. Значения нанесены на переднюю панель устройства, можно различить их градацию по диапазонам. Нужно правильно выбрать диапазон, иначе величина сопротивления не совпадет, и результат проверки не будет достоверным. Например, при сопротивлении 1 кОм прибор нужно ставить в режим Ω – 20 кОм.
Для того чтобы проверить радиодеталь, щупы прибора подносят к ее выводам вне зависимости от того, соблюдена полярность или нет.
Проверка на обрыв резистора
Действия производятся в следующем порядке:
- Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1». Рис. 5. Установка режима (1) и подключение щупов (2 и 3)
- Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).
Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.
Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.
Прозвон резистора
Резистор можно и нужно прозванивать. Прозвонить можно и без выпаивания элемента с платы. Прозванивание элемента на обрыв производится следующим образом:
- Включить мультиметр и выключить прибор, если прозвонка осуществляется без выпаивания;
- Мультиметром без учета полярности прикоснуться к выводам электрорезистора;
- Зафиксировать значение. Если оно равно единице, то это свидетельствует о неисправности и произошел обрыв, а сам элемент следует заменить.
При невыпаивании следует учитывать тот факт, что если схема сложная, то, возможно, придется делать прозвонку через обходные пути и цепи. О 100 % неисправности элемента сказать можно лишь тогда, когда хотя бы одна из его ножек выпаяна.
Выполнение прозвонки электрорезистора.
Полярность резистора
Многие интересуются тем, как узнать полярность резистора, чтобы точно определить, каким контактом выхода и куда его вставлять. Чтобы не вводить людей в заблуждение, сразу можно сказать, что полярности у электрорезистора нет и быть не может. Данный радиоэлемент бесполярен. Считается, что резисторы неполярны и подключаться к печатной плате могут при любом положении своих выводов, в любой их комбинации. Как и с предохранителем, проверять работоспособность резистора можно в любой комбинации контактов мультиметра и выводов, а порядок его припайки к электрическим схемам разницы не имеет.
Важно лишь учитывать и проверять номинальную сопротивляемость элемента перед припоем, так как потом в случае появившихся неисправностей сделать это будет тяжелее за счет влияния на измерение других элементов и цепей платы.
Маркировка номиналов резисторов.
Меряем сопротивление
Это наиболее простая и пожалуй, самая востребованная в быту функция мультиметра. Для того чтобы померить сопротивление переводим стрелку в раздел Ω и выбираем необходимую нам уставку.
Важно. Перед тем как мерить сопротивление, обязательно просмотрите что на элементе нет никакого напряжения. Иначе функция измерения сопротивления мультиметра выйдет из строя.
После этого прислоняем концы к измеряемому элементу и смотрим какое сопротивление он дает. Если вы увидели надпись OVER то значит уставка крайне мала и требуется переместить стрелку на диапазон выше.
Метод измерения электрического сопротивления – как работает прибор
Принцип, по которому выполняется измерение электрического сопротивления мультиметром, основан на самом главном законе электротехники — законе Ома. Формула известна нам из школьного курса физики, говорит следующее: сила тока, протекающая по участку цепи прямо пропорциональна напряжению (ЭДС) и обратно пропорциональна сопротивлению на этом участке I (сила тока) = U (напряжение) / R (сопротивление).
По сути измерения выполняются косвенным методом. Если приложить к щупам прибора измеряемое сопротивление, например Rх, ток протекающий в цепи будет зависеть только от него. Зная силу тока и напряжение можно легко вычислить сопротивление.
Проверка лампочек накаливания мультиметром
А теперь давайте рассмотрим практическое применение мультиметра в бытовых условиях. Часто дома возникают такие неприятные ситуации как неисправность освещения. Причем причина может быть самой неординарной от перегорания самой лампочки до неисправности светильника или выключателя освещения либо куда хуже повреждение в распределительной коробке.
Наиболее частые неисправности, конечно же, является перегорание лампочки, поэтому прежде чем ковырять распредкоробку, нужно проверить целостности лампочки. Визуально осмотром целостности нити не всегда удается выявить неисправность. Тем более, не обязательно может произойти перегорание нити. Реже случается короткое замыкание в цоколе и токовых вводах (электродах).
Поэтому с помощью обычного тестера можно легко проверить не только домашнюю лампу накаливания, но и фару автомобиля или мотоцикла.
Как измерить мультиметром сопротивление нити? Нужно установить минимальный предел измерения «Ω». Одним щупом надо прикоснуться к корпусу цоколя, другой кончик прижать к верхнему контакту цоколя. Как можно видеть сопротивление рабочей лампы накаливания мощностью 100 Вт составляет 36,7 Ом.
Если при измерениях на дисплее мультиметра будет отображаться «1», а для аналоговых (стрелочных) приборов показание «бесконечность» это будет свидетельствовать о внутреннем обрыве/перегорании нити в лампе.
На этом все дорогие друзья, надеюсь, в данной статье был полностью раскрыт вопрос как измерить сопротивление мультиметром. Если остались вопросы задавайте их в комментариях. Если статья была для вас интересной буду признателен за репост в соц. сетях.
Как проверить резистор мультиметром
Варистор — это электронный прибор, имеющий два контакта и обладающий нелинейно-симметричной вольт-амперной характеристикой. Термин «варистор» произошёл от латинских слов variable — «изменяемый» и resisto — «резистор». По своей сути он является полупроводниковым резистором, способным изменять своё сопротивление в зависимости от приложенного к его выводам напряжения.
Изготавливаются такого типа резисторы путём спекания при высокой температуре полупроводника и связующего материала.
В качестве полупроводника используется карбид кремния, находящийся в порошкообразном состоянии, или оксид цинка, а связующего вещества — стекло, лак, смола.
Полученный после спекания элемент подвергается металлизации с дальнейшим формированием выводов. По своей конструкции приборы выполняются в форме, похожей на диск, таблетку, цилиндр, или плёночного вида.
Принцип работы элемента подразумевает его включение параллельно цепи питания. После его срабатывания и уменьшения напряжения на входе он самовосстанавливается до первоначального значения. Из-за малой инерционности это происходит мгновенно.
Основные параметры
Перед тем как проверить варистор на исправность, необходимо понимать не только принцип его действия, но и знать, какими характеристиками он обладает. Как и любой электронный элемент, варистор имеет ряд характеристик, которые позволяют его использовать в различных схемах.
Основным параметром является вольт-амперная характеристика (ВАХ). Она наглядно показывает, как меняется ток при той или иной величине напряжения.
Изучая ВАХ, можно увидеть что варистор, обладая симметрично-двунаправленной характеристикой, работает как в прямой, так и обратной зоне синусоиды, напоминая стабилитрон.
Кроме ВАХ, при исследовании варистора отмечаются следующие характеристики:
- Um — наибольшее допустимое рабочее напряжение для тока переменной или постоянной величины.
- P — мощность, которую может рассеять на себе элемент без ухудшения своих параметров.
- W — допустимая энергия в джоулях, которую может поглотить радиоэлемент при воздействии одиночного импульса.
- Ipp — наибольшее значение импульсного тока, для которого определена форма импульса.
- Co — ёмкость, значение которой измеряется у варистора в нормальном состоянии.
Но на практике особое внимание уделяется в основном параметру Um. Эта характеристика показывает уровень напряжения, при котором происходит пробой элемента и начинает течь ток.
Виды устройств
Существует класс низковольтных варисторов и высоковольтных. Первые выпускаются с рабочим напряжением до двухсот вольт и силой тока до одного ампера. Вторые же имеют рабочее напряжение до двадцати киловольт. Маломощные элементы используются в качестве защиты от скачка напряжения, возникающего в бытовой сети, а мощные применяются на трансформаторных подстанциях и в системах защиты от грозы.
Маркировка элементов
Независимо от производителя существует стандарт маркировки варисторов. На сам элемент принято наносить цифробуквенный код, в котором зашифровываются основные параметры. Например, для дискового типа это обозначение выглядит как S6K210, где:
- S — материал, из которого изготовлен варистор;
- 6 — диаметр корпуса элемента, указывается в миллиметрах;
- K — величина допуска отклонения;
- 210 — значение рабочего напряжения, выраженное в вольтах.
Для планарного типа используется такая же маркировка, только первыми буквами ставится CN, обозначающая тип изделия.
На схемах радиоэлемент графически обозначается как перечёркнутый прямоугольник. На перечёркивающей палочке делается полочка, над которой ставится буква U. Подписывается на схемах элемент латинскими буквами RU.
Методы проверки мультиметром
Кроме мультиметра, понадобится:
- паяльник;
- припой;
- флюс;
- даташит.
Измерение сопротивления элемента можно проводить и без его выпаивания из схемы, но для получения достоверных данных следует отсоединить от платы хотя бы один его вывод.
Вся подготовка сводится к тому, что полупроводниковый элемент сначала визуально осматривается на отсутствие: расколов, почернений, трещин.
Если сразу видно лопнувший корпус, то проверку можно дальше не проводить. Такой варистор явно неисправен.
Паяльник, флюс и припой понадобится для того, чтобы отпаять один из выводов элемента или даже снять его целиком, а после проверки при необходимости запаять обратно. Даташит на элемент представляет собой официальный документ, выпускаемый производителем. В нём указываются все основные данные и характеристики.
Даташит используется для того, чтобы точно знать, какое рабочее сопротивление в состоянии покоя у радиодетали. Если при замере мультиметром сопротивление варистора не отличается более чем на 10%, то он считается исправным.
Если сопротивление значительно меньше указанного в даташите, то его понадобится заменить.
Измерения стрелочным прибором
Перед тем как приступить к проверке варистора, стрелочный мультиметр понадобится настроить. Для этого выполняется его калибровка. Её суть сводится к выставлению нулевого положения стрелки путём вращения специальной ручки при замыкании щупов друг с другом.
Для этого кнопкой переключения выбирается режим работы, соответствующий значку «Ω», а галетный переключатель устанавливается на самый большой предел измерения сопротивления тестером.
Чаще всего он обозначается как «х100», что соответствует мегаомам. Измерение сопротивления происходит от установленного в устройстве источника питания (батарейки).
Поэтому, если выставить стрелку в ноль не получается, то батарейку понадобится заменить.
Проводя непосредственно измерения, одним щупом тестера дотрагиваются до одного вывода варистора, а другим — до другого. В итоге возможно три исхода:
- Стрелка отклонится до нуля или покажет сопротивление в районе килоомов. Делается вывод о неисправности элемента (пробой).
- Результат измерений лежит в пределах сотни мегаом. Такое показание указывает на исправность варистора.
- При прикасании к выводам радиоэлемента стрелка никак на это не реагирует. Возможные причины в следующем: диапазона работы прибора не хватает для измерения величины сопротивления варистора, неисправен прибор, неисправен радиоэлемент (обрыв).
Цифровой тестер
Используя цифровой мультиметр, проверить варистор на работоспособность будет немного проще, чем аналоговым. Это связано с тем, что цифровой тестер в своей конструкции имеет жк-дисплей, на котором наглядно отображается измеренное сопротивление.
В основе работы тестера такого тип лежит аналого-цифровой преобразователь, принцип работы которого построен на сравнение измеряемого сигнала с опорным.
Следует отметить, что, если при включении тестера на экране высвечивается значок мигающей батарейки, то элемент питания понадобится заменить.
Порядок измерения сопротивления варистора можно представить в виде следующих действий:
- Переключателем устанавливается максимальный предел измерения сопротивления. Обычно этот предел указывается числом и буквой. Если написаны просто числа, то единица измерения — Ом, буква K после числа обозначает килоом, буква M — мегаом.
- Щупы фиксируются на двух выводах варистора, а обратные концы проводов со штекерами вставляются в гнёзда тестера, обозначенные Ω и СОМ. Так как полярность приложенного сигнала к варистору значения не имеет, то и неважно, какой провод подключается к тому или иному выводу элемента. Хотя принято, что в разъём СОМ вставляется шнур чёрного цвета.
- Устройство включается путём нажатия на тестере кнопки ON/OFF.
- Если на индикаторе высвечивается единица, то это обозначает, что выбран малый предел измерений.
- Если на экране отображаются цифры отличные от единицы, то это и есть величина измеряемого сопротивления.
При трактовке результата измерений следует учитывать ещё и допуск. Каждый радиоэлемент имеет свой показатель допуска.
Например, если допуск составляет 10 процентов, а внутреннее сопротивление варистора указано как 100 МОм, то полученные результаты должны находиться в пределах от 90 до 110 МОм.
Если выявляется, что измеренное сопротивление элемента находится ниже или выше этого диапазона, то его можно считать неисправным.
Применение реостата
В тестовой схеме к одному из выводов варистора подключается подвижный контакт реостата, а к другому — плавкий предохранитель. Щупы мультиметра фиксируются параллельно выводам полупроводникового элемента, а он сам переключается в режим измерения напряжений. На свободную пару контактов подаётся разность потенциалов, величина которой превышает значение пробоя компонента.
С помощью движимого контакта реостата плавно изменяется напряжение до момента срабатывания варистора. Этот момент определяется по вольтметру. Первоначально показания мультиметра будут расти, а после резко сбросятся до нуля. При этом предохранитель перегорит. Максимальное зафиксированное ненулевое значение и будет являться пороговым напряжением.
Важно отметить, что при измерении, особенно с помощью реостата, возможно поражение организма электрическим током. Поэтому нельзя забывать о технике безопасности, следует неуклонно её соблюдать.
Замена и проверка варистора + видео
- Если при ремонте кондиционера вы обнаружили на плате сгоревший предохранитель не спешите его тут же менять, вначале выясните причину по которой он сгорел.
- Скорее всего это произошло из-за скачков напряжения в сети.
- При измерении в сети напряжение питания оно постоянно колеблется,причём не всегда в пределах безопасных для кондиционеров.
Плюс к этому в сети всегда присутствуют короткие импульсы напряжением в несколько киловольт.
Происходит это из-за постоянного отключения и включения индуктивной и ёмкостной нагрузки (электродвигатели,трансформаторы и т. ), а также из-за атмосферного электричества.
Кондиционеры, как и любую другую электронную технику защищают на этот случай варисторами. Точнее электронную начинку кондиционера-плату управления.
Стандартная схема подключения варистора
параллельно защищаемой нагрузке подключают варистор VA1, а перед ним ставят предохранитель F1:
Принцип действия варистора
По сути варистор представляет собой нелинейный полупроводниковый резистор, проводимость которого зависит от приложенного к нему напряжения.
При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток.
Таким образом он фильтрует короткие импульсы, если же импульс будет более длинным, и ток идущий через варистор превысит номинальный ток срабатывания предохранителя, то он попросту сгорит, обесточив и защитив нагрузку.
Маркировка варисторов
Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке. Например маркировка варисторов CNR:
- CNR-серия, полное название CeNtRa металлоксидные варисторы
- 07- диаметр 7мм
- D — дисковый
- 390 — напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
- K — допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.
Как же найти на плате варистор?
По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.
На фото варистор указан красной стрелкой.
Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.
Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.
- VA1- это варистор, а синяя деталь рядом это конденсатор-С70.
- Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.
После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый. Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание — на строящемся объекте, на крыше, например. Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.
Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.
Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF — плюмбум фри).
В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.
- Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.
- Ещё обратите внимание, что большинство плат — двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.
- После замены варистора остаётся только поставить новый предохранитель и установить плату на место.
Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0. 5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.
- Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:
- Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.
Как проверить варистор мультиметром?
- Проверка по сопротивлению
- Проверка по ёмкости
- Заключение
Проверка варистора с помощью тестера или мультиметра – это полезный навык для радиолюбителей и людей, которые сами с руками и любят заняться ремонтом сломанной техники самостоятельно. Речь об этом пойдет в данной статье. Для чего предназначен варистор и что он делает, достаточно подробно расписано в данной статье – статья о варисторе.
Но немного вспомним: варистор предназначен для защиты переменных либо постоянных цепей от перенапряжения. Он стоит параллельно защищаемой цепи и в обычном состоянии имеет высокое сопротивление.
При достижении порогового напряжения, которое зависит от марки варистора, у него понижается сопротивление с очень большого, до очень маленького. Варистор поглощает это перенапряжение и рассеивает его в атмосфере в виде тепла.
Тем самым он удаляет из схемы излишек энергии, тем самым защищает цепь от выхода из строя.
Теперь приступим к проверке. Перед тем как использовать тестер осмотрите внимательно радиоэлемент. Возможно на нем будут следы подгорания, сколы или он вовсе разломался.
Внимательный осмотр избавит вас от лишнего труда, хоть проверка с помощью прибора не занимает много усилий, но все же.
Так же варистор может терять свои свойства в течении времени, от внешних условий и в процессе старения – на это тоже стоит обратить внимание.
Проверка по сопротивлению
Теперь переключим наш мультиметр в режим измерения сопротивления на максимальное значение и измерим сопротивление варистора. Если тестер показывает единицу, либо очень высокое сопротивление(МоМы) – то варистор исправен. Но если там низкое сопротивление, то такой радиоэлемент использовать не стоит, иначе в аварийном режиме может сгореть вся схема.
Будет интересно➡ Как проверить трансформатор при помощи мультиметра
Проверка по ёмкости
Если ваш прибор обладает такой функций как проверка емкости, то вы можете попробовать второй метод проверки исправности варистора, но для этого нужно иметь справочник.
У каждого варистора есть своя емкость. Смотрим указанную для вашей модели и сравниваем справочное значение в реальным.
Если емкость примерно такая (не стоит забывать о отклонениях), как указана в описании, то варистор тоже исправен.
Заключение
Мы разобрали два варианта как прозвонить варистор с помощью тестера. Кроме мультиметра можно использовать приборы для измерения сопротивления или емкости. Как видно, ничего сложного в этом нет.