Магнетрон — специальный электронный прибор, в котором генерирование сверхвысокочастотных колебаний (СВЧ-колебаний) осуществляется модуляцией электронного потока по скорости. Магнетроны значительно расширили область применения нагрева токами высокой и сверхвысокой частоты.
Магнетрон — специальный электронный прибор, в котором генерирование сверхвысокочастотных колебаний (СВЧ-колебаний) осуществляется модуляцией электронного потока по скорости. Магнетроны значительно расширили область применения нагрева токами высокой и сверхвысокой частоты.
Менее распространены основанные на том же принципе амплитроны (платинотроны), клистроны, лампы бегущей волны.
Магнетрон является наиболее совершенным генератором сверхвысоких частот большой мощности. Это хорошо эвакуированная лампа с электронным потоком, управляемым электрическим и магнитным полями. Они позволяют получать весьма короткие волны (до долей сантиметра) при значительных мощностях.
В магнетронах используется движение электронов во взаимно перпендикулярных электрическом и магнитном полях, создаваемых в кольцевом зазоре между катодом и анодом. Между электродами подается анодное напряжение, создающее радиальное электрическое поле, под действием которого вырываемые из подогретого катода электроны устремляются к аноду.
Анодный блок помещается между полюсами электромагнита, который создает в кольцевом зазоре магнитное поле, направленное по оси магнетрона. Под действием магнитного поля электрон отклоняется от радиального направления и движется по сложной спиральной траектории. В пространстве между катодом и анодом образуется вращающееся электронное облако с языками, напоминающее ступицу колеса со спицами. Пролетая мимо щелей объемных резонаторов анода, электроны возбуждают в них высокочастотные колебания.
Рис. 1. Анодный блок магнетрона
Каждый из объемных резонаторов представляет собой колебательную систему с распределенными параметрами. Электрическое поле концентрируется у щелей, а магнитное поле сосредоточено внутри полости.
Вывод энергии из магнетрона осуществляется при помощи индуктивной петли, помещаемой в один или чаще два соседних резонатора. По коаксиальному кабелю энергия подводится к нагрузке.
Рис. 2. Устройство магнетрона
Нагрев токами СВЧ осуществляется в волноводах круглого или прямоугольного сечения или в объемных резонаторах, в которых возбуждаются электромагнитные волны простейших форм ТЕ10(Н10) (в волноводах) или ТЕ101 (в объемных резонаторах). Нагрев может осуществляться и излучением электромагнитной волны на объект нагрева.
Питание магнетронов осуществляется выпрямленным током с упрощенной схемой выпрямителя. Установки очень малой мощности могут питаться переменным током.
Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.
Рис. 2. Магнетрон в СВЧ-печи
Простота устройства и относительно невысокая стоимость магнетронов в сочетании с высокой интенсивностью нагрева и разнообразием применения токов СВЧ открывают перед ними большие перспективы применения в различных областях промышленности, сельского хозяйства (например, в установках диэлектрического нагрева) и в быту (СВЧ-печи).
Работа магнетрона
Итак, магнетрон это электронная лампа специальной конструкции, служащая для генерации колебаний ультравысоких частот (в диапазоне дециметровых и сантиметровых волн). Ее особенностью является применение постоянного магнитного поля (для создания нужных путей движения электронов внутри лампы), откуда магнетрон и получил свое название.
Многокамерный магнетрон, идея которого была впервые предложена М. А. Бонч-Бруевичем и осуществлена советскими инженерами Д. Е. Маляровым и Н. Ф. Алексеевым, представляет собой сочетание электронной лампы с объемными резонаторами. Этих объемных резонаторов в магнетроне делается несколько, почему этот тип и получил название многокамерного или многорезонаторного.
Принцип устройства и работы многокамерного магнетрона заключается в следующем. Анод прибора представляет собой массивный полый цилиндр, во внутренней поверхности которого сделан ряд полостей с отверстиями (эти полости и являются объемными резонаторами), катод расположен по оси цилиндра.
Магнетрон помещается в постоянное магнитное поле, направленное вдоль оси цилиндра. На вылетающие из катода электроны со стороны этого магнитного поля действует сила Лоренца, которая искривляет пути электронов.
Магнитное поле подбирается таким, чтобы большинство электронов двигалось по искривленным путям, не касающимся анода. Если в камерах прибора (объемных резонаторах) происходят электрические колебания (небольшие колебания в объемах всегда возникают по разным причинам, например, в результате включения анодного напряжения), то переменное электрическое поле существует не только внутри камер, но и снаружи, около отверстий (щелей).
Электроны, пролетая вблизи анода, попадают в эти поля и в зависимости от направления поля либо ускоряются, либо тормозятся в них. Когда электроны ускоряются полем, то они отбирают энергию от резонаторов, наоборот, когда они тормозятся, то отдают часть своей энергии резонаторам.
Если бы число электронов, которые ускоряются и тормозятся, было бы одинаково, то в среднем они не отдавали бы резонаторам энергии. Но электроны, которые тормозятся, после этого имеют меньшую скорость, чем та, которую они получили при движении к аноду. Поэтому они уже не обладают достаточной энергией, чтобы вернуться к катоду.
Наоборот, те электроны, которые ускорялись полем резонаторов, обладают после этого энергией, большей, чем нужно для того, чтобы вернуться к катоду. Следовательно, электроны, которые, попав в поле первого резонатора, ускоряются в нем, вернутся на катод, а те, которые затормозятся в нем, не вернутся па катод, а будут двигаться по криволинейным путям около анода и попадать в поле следующих резонаторов.
При соответствующей скорости движения (которая определенным образом связана с частотой колебаний в резонаторах) эти электроны будут попадать в поле второго резонатора при такой фазе колебаний в нем, что и в поле первого резонатора, поэтому в поле второго резонатора они также будут тормозиться.
Таким образом, при соответствующем подборе скорости электронов, т. е. анодного напряжения (а также и магнитного поля, которое не изменяет величины скорости электронов, по изменяет ее направление), можно добиться такого положения, что отдельный электрон будет либо ускоряться полем только одного резонатора, либо тормозиться полем нескольких резонаторов.
Поэтому в среднем электроны будут больше энергии отдавать резонаторам, чем забирать от них, т. е. колебания, происходящие в резонаторах, будут нарастать и в конце концов в них установятся колебания с постоянной амплитудой.
Рассмотренный нами упрощенно процесс поддержания колебаний в резонаторах сопровождается еще одним важным явлением, т. к. электроны, для того чтобы они тормозились полем резонатора, должны влетать в это поле при определенной фазе колебаний резонатора, то очевидно, что они должны двигаться не равномерным потоком (т. к. тогда они влетали бы в поле резонаторов в любые, а не в определенные моменты времени, а в виде отдельных сгустков.
Весь поток электронов для этого должен представлять собой как бы звезду, в которой электроны движутся внутри отдельных лучей, а вся звезда в целом вращается вокруг оси магнетрона с такой скоростью, что ее лучи в нужные моменты подходят к каждой камере. Процесс образования отдельных сгустков в электронном потоке называется фазовой фокусировкой и осуществляется автоматически под действием переменного поля резонаторов.
Современные магнетроны способны создавать колебания вплоть до самых высоких частот сантиметрового диапазона (волны до 1 см и даже короче) и отдавать мощность до нескольких сот ватт при непрерывном излучении и нескольких сот киловатт при импульсном излучении.
Украина
Харьковская область, г. Харьков
Конструкция и устройство магнетрона — главного компонента СВЧ-печей:
Простыми словами, магнетрон — это мощная электронная лампа, генерирующая микроволны при взаимодействии потока электронов с магнитным полем. То есть, магнетрон создает микроволны и является обязательной составляющей всех микроволновых печей. Это, можно смело сказать — «сердце» микроволновой печи.
Термин «магнетрон» был предложен А. Халлом (A. Hull), который в 1921 году, впервые опубликовал результаты теоретических и экспериментальных исследований работы прибора в статическом режиме и предложил ряд конструкций магнетрона. Генерирование электромагнитных колебаний в дециметровом диапазоне волн посредством магнетрона открыл и запатентовал в 1924 чехословацкий физик А. Жачек.
Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд. Магнетроны обладают высоким КПД (до 80 %), то есть, способны преобразовывать до 80% подводимой к ним электроэнергии в СВЧ-поле.
Магнетрон — это мощная электронная лампа, генерирующая микроволны при взаимодействии потока электронов с магнитным полем. Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.
Ремонт и замена магнетронов в Харькове
Самые распространённые поломки магнетронов это:
— обрыв нити накала;
— потеря эмиссии;
— пробой проходных конденсаторов фильтра;
— падение питающего напряжения.
Чтобы самому приобрести магнетрон для домашней микроволновой печи, необходимо изучить и разобраться в маркировке, выяснить, какие бывают их виды, и их параметры. Для разных моделей микроволновок можно устанавливать магнетрон других фирм изготовления. Главное, чтобы он подходил по мощности, в настоящее время не проблема приобрести его в торговой сети. Исключение составляют модели, которые уже сняты с производства.
Однако, даже если вы разобрались в устройстве микроволновки, то не рекомендуется заниматься заменой деталей в домашних условиях, так как этим должны заниматься квалифицированные специалисты, способные обеспечить безопасную работу устройства. К тому же, сделать это самостоятельно будет довольно проблематично.
Ремонт магнетрона микроволновки рекомендуется доверять только квалифицированным специалистам!
По вопросам ремонта или замены магнетрона звоните нам по телефонам:
+38 (095) 071-73-14
+38 (097) 461-55-80
- сверхвысокочастотное;
- электрическое;
- магнитное.
Из чего состоит магнетрон
Все приборы, генерирующие СВЧ волны, независимо от их выходных характеристик, имеют идентичную конструкцию. Схема магнетрона состоит из следующих частей:
- анодного блока, представляющего собой толстостенный цилиндр из металла, в стенках которого имеются отверстия (резонаторы), необходимые для образования кольцевой колебательной системы;
- цилиндрического катода, во внутренней полости которого встроен подогреватель;
- электромагнита или внешнего магнита, создающего магнитное поле;
- проволочной петли, которая крепится к резонатору и служит для вывода энергии.
Резонаторы устройства выполняют замедляющую функцию. В них происходит столкновение электромагнитных волн с пучком электронов. В результате этого взаимодействия высокочастотное поле получает от электронов часть их энергии, вывод которой осуществляется посредством петли связи, закрепленной на анодном блоке.
Устройство будет работать бесперебойно только при условии, что разница между рабочей и резонансной частотами составит как минимум 10%. При небольшой разнице частот применяется разнорезонаторная колебательная система, в которой четные и нечетные резонаторы различаются по размеру.
Приборы работают от выпрямленного тока по простой схеме выпрямления. Устройства небольшой мощности способны работать от переменного тока. Рабочая частота тока магнетронов может достигать 100 ГГц, мощностью до нескольких десятков киловатт в постоянном режиме, и до 5 мегаватт в режиме импульсов.
Магнетроны называются электронные приборы, в которых образуются колебания сверхвысокой частоты при помощи модуляции потока электронов. Магнитные и электрические поля в нем действуют с большой силой. Наиболее распространенная модификация магнетрона – это многорезонаторный.
Впервые магнетрон был создан в Америке в 1921 году. С течением времени эксперименты с ним продолжались. В результате появилось множество видов магнетронов, использующихся в радиоэлектронике. В 1960 году приборы стали использоваться в печах сверхвысокой частоты для домашнего применения. Менее распространены клистроны, платинотроны, которые основаны на этом же принципе действия.
Устройство и принцип работы
1 — Анод
2 — Катод
3 — Накал
4 — Резонансная полость
5 — Антенна
Магнетроны резонансного типа состоят из:
- Анодный блок . Представляет собой толстостенный металлический цилиндр с полостями в стенках. Эти полости являются объемными резонаторами, которые создают колебательную кольцевую систему.
- Катод . Он имеет цилиндрическую форму. Внутри него размещен подогреватель.
- Внешние электромагниты или постоянные магниты . Они создают магнитное поле, которое параллельно оси прибора.
- Проволочная петля . Она применяется для вывода сверхвысоких частот, и закреплена в резонаторе.
Резонаторы создают кольцевую систему колебаний. Возле них пучки электронов воздействуют на электромагнитные волны. Так как эта система выполнена замкнутой, то она способна возбудиться только на определенных частотах колебаний. При нахождении рядом с рабочей частотой других частот, случается перескакивание частоты и нарушается стабильность работы устройства.
Чтобы исключить такие отрицательные эффекты магнетроны с одинаковыми резонаторами оснащаются разными связками, либо используются магнетроны с отличающимися размерами резонаторов.
Магнетроны разделяют по виду резонаторов:
- Лопаточные.
- Щель-отверстие.
- Щелевые.
В магнетронах применяется движение электронов в перпендикулярных магнитных и электрических полях, созданных в зазоре кольца между анодом и катодом. Между ними подается напряжение (анодное), которое образует радиальное электрическое поле. Под воздействием этого поля электроны вырываются из нагретого катода и устремляются к аноду.
Анодный блок находится между полюсов магнита, образующего магнитное поле, которое направлено вдоль оси магнетрона. Магнитное поле действует на электрон и отклоняет его на спиральную траекторию. В промежутке между анодом и катодом создается вращательное облако, похожее на колесо со спицами. Электроны возбуждают в объемных резонаторах колебания высокой частоты.
Отдельно каждый резонатор является колебательной системой. Магнитное поле концентрируется внутри полости, а электрическое поле сосредоточено у щелей. Энергия выводится из магнетрона с помощью индуктивной петли. Она размещена в соседних резонаторах. Электроэнергия подключается к нагрузке коаксиальным кабелем.
Нагревание токами высокой частоты производится в волноводах различного сечения, либо в объемных резонаторах. Также нагревание может производиться электромагнитными волнами.
Приборы работают от выпрямленного тока по простой схеме выпрямления. Устройства небольшой мощности способны работать от переменного тока. Рабочая частота тока магнетронов может достигать 100 ГГц, мощностью до нескольких десятков киловатт в постоянном режиме, и до 5 мегаватт в режиме импульсов.
Устройство магнетрона довольно простое. Его стоимость невысока. Поэтому такие качества в сочетании с повышенной эффективностью нагревания и разнообразным использованием высокочастотных токов открывают большие возможности использования в разных сферах жизни.
Основные виды магнетронов
- Многорезонаторные устройства . Они содержат анодные блоки с несколькими резонаторами. Блоки состоят из различного вида резонаторов. В диапазоне 10 см длины волны магнетрон обладает КПД 30%. Выход излучения высокой частоты осуществляется сбоку в щель резонатора.
- Обращенные устройства . Они бывают двух исполнений: коаксиальные и обычные. Такие магнетроны способны выдать импульсы высокой частоты 700 наносекунд с энергией 250 джоулей. Коаксиальный вид магнетрона содержит стабилизирующий резонатор. В нем имеются отверстия во внешней стенке, а также ферритовые стержни с подмагничивающими катушками.
Сфера использования магнетронов
- В устройствах радаров антенна подключена к волноводу. Она, по сути, является щелевым волноводом, или рупорным коническим облучателем вместе с отражателем в виде параболы (тарелка). Управление магнетрона осуществляется с помощью коротких мощных импульсов напряжения. В итоге образуется короткий импульс энергии с малой длиной волны. Малая часть такой энергии поступает снова на антенну и волновод, и далее к чувствительному приемнику. Сигнал обрабатывается и поступает на электронно-лучевую трубку на экран радара.
- В бытовых микроволновых печах волновод имеет отверстие, которое не создает препятствие радиочастотным волнам в рабочей камере. Важным условием работы микроволновки является условие, чтобы при работе печи в камере находились какие-либо продукты. При этом микроволны поглощаются продуктами, и не возвращаются на волновод. Стоячие волны в микроволновой печи могут искрить. При долгом искрении магнетрон может выйти из строя. Если в микроволновке мало продуктов для приготовления, то лучше дополнительно поместить в камеру стакан с водой для лучшего поглощения волн.
1 — Магнетрон
2 — Высоковольтный конденсатор
3 — Высоковольтный диод
4 — Защита
5 — Высоковольтный трансформатор
- В радиолокационных станциях используются коаксиальные магнетроны с быстрым изменением частоты. Это позволяет расширить тактико-технические свойства локаторов.
Выбор и приобретение магнетрона
Чтобы самому приобрести магнетрон для домашней микроволновой печи, необходимо изучить и разобраться в маркировке, выяснить, какие бывают их виды, и их параметры.
Наиболее малую мощность имеет магнетрон 2М 213. Его мощность составляет 700 ватт при нагрузке и 600 ватт номинальная.
Приборы средней мощности в основном изготавливают на 1000 ватт. Марка такого магнетрона – 2М 214.
Наибольшая мощность магнетрона у модели 2М 246.
Показатель мощности у них равен 1150 ватт. Перед приобретением необходимо сопоставить цену магнетрона со стоимостью всей печи, и не забыть о стоимости работ по ремонту. Возможно, что не будет смысла в ремонте.
Можно ли магнетрон заменить самостоятельно
Для разных моделей микроволновок можно устанавливать магнетрон других фирм изготовления. Главное, чтобы он подходил по мощности, в настоящее время не проблема приобрести его в торговой сети. Исключение составляют модели, которые уже сняты с производства.
Однако, даже если вы разобрались в устройстве микроволновки, то не рекомендуется заниматься заменой деталей в домашних условиях, так как этим должны заниматься квалифицированные специалисты, способные обеспечить безопасную работу устройства. К тому же, сделать это самостоятельно будет довольно проблематично.
Работа микроволновки
Пища имеет в составе воду, которая состоит из заряженных частиц. Продукты в микроволновой печи разогреваются посредством воздействия на них волн высокой частоты. Молекулы воды выступают в качестве диполя, так как проводят волны электрического поля.
В центре анодного блока высверлено широкое круглое отверстие, через которое подключается источник питания посредством специальных выводов к катоду (подогреваемая нить накала), который проходит вдоль центральной оси анода. Вывод высокочастотных колебаний устанавливается в одном из резонаторов. Торцы цилиндра герметично закрыты медными крышками, а внутри обеспечивается вакуум высокой степени. Эффективное охлаждение блока обеспечивается ребристыми радиаторами, расположенными на его поверхности.
Магнетроны применяются для получения колебаний высокой частоты. Они незаменимы в электронике и радиотехнике; устанавливаются в радиолокационных стациях, для высокочастотного нагрева, для ускорения заряженных частиц. В основе действия магнетрона лежит взаимодействие сильных электрических и магнитных полей, результатом чего является генерация колебаний высоких частот. Наиболее популярных видом магнетрона является многорезонаторный магнетрон.
Конструкция многорезонаторного магнетрона
сновой является анодный блок, который представляет собой толстостенный полый медный цилиндр, в стенках которого вырезаны полости, соединённые с центральным пространством щелями. Эти полости представляют собой кольцевую систему объёмных резонаторов.
В центре анодного блока высверлено широкое круглое отверстие, через которое подключается источник питания посредством специальных выводов к катоду (подогреваемая нить накала), который проходит вдоль центральной оси анода. Вывод высокочастотных колебаний устанавливается в одном из резонаторов. Торцы цилиндра герметично закрыты медными крышками, а внутри обеспечивается вакуум высокой степени. Эффективное охлаждение блока обеспечивается ребристыми радиаторами, расположенными на его поверхности.
Принцип действия магнетрона
Весь анодный блок устанавливается в сильное магнитное поле, которое создаётся постоянными магнитами. Между катодом и анодом устанавливается высокое электрическое напряжение, при этом положительный полюс прикладывается к аноду. Электроны, которые вылетают из катода под действием электрического поля, двигаются в радиальном направлении к аноду, однако под влиянием магнитного поля меняют траекторию движения.
При определённых величинах магнитного и электрического полей удаётся добиться такого состояния, когда электроны, описывая окружность, в итоге пройдя рядом с анодом, вновь возвращаются на катод, а на анод попадает только незначительная часть вылетевших электронов. Большая часть их возвращается обратно в область катода.
При некоторых условиях динамического равновесия, возвращающиеся в область катода электроны заменяются вылетевшими вновь. Поскольку электроны постоянно перемещаются от катода к аноду, возле последнего рядом со щелями объёмных резонаторов устанавливается постоянно вращающийся заряд кольцеобразной формы. По мере движения по окружности центральной полости анодного блока электроны возбуждают в каждом резонаторе незатухающие высокочастотные колебания.
Выводятся эти колебания посредством витка проводов, расположенного в полости одного из резонаторов, которые затем передаются в коаксиальную линию или волновод.
Во время работы магнетрон выделяет большое количество тепла, поэтому на его корпус устанавливается радиатор. Поскольку перегрев является основной причиной выхода из строя магнетрона, то для его защиты применяются и другие методы:
Диагностика неисправностей и причины их появления
Замена магнетрона может потребовать довольно существенных финансовых затрат, поэтому прежде чем покупать новое устройство, необходимо произвести диагностику старого, чтобы убедиться, что оно действительно неисправно. Проверка может быть выполнена в домашних условиях с помощью обычного тестера. Для этого потребуется:
- Отключить микроволновку от электросети.
- Снять защитную крышку и провести визуальный осмотр детали.
- «Прозвонить» основные элементы печатной платы при помощи тестера или «мультиметра».
- Провести осмотр термореле.
По окончании диагностики можно сделать выводы о неисправности тех или иных деталей. К основным причинам выхода из строя магнетрона можно отнести следующие:
Тут можно вспомнить школьного физика, который справедливо говорил, что наука пригодится.
Основные неисправности
Во многих случаях магнетрон не поддаётся ремонту. Но прежде чем покупать новый, необходимо разобраться в причинах поломки. Возможно, удастся сэкономить, заменив всего одну деталь.
Как видите, поправимых случаев мало, но они есть. Прежде чем начать ремонт, проверьте систему на работоспособность.
Диагностика
Внимание! Ни в коем случае не включайте в сеть прибор, который вы вытащили из корпуса печки! Это может нанести непоправимый вред вашему здоровью и окружающим. Перед тем как разобрать микроволновку, проверьте, как работает источник питания. Возможно, виновато слабое напряжение в электрической сети. Если питание соответствует норме, проведите тщательный осмотр с тестером.
Первая проверка на исправность — визуальная. Посмотрите, не сгорел ли колпачок антенны, нет ли деформации, пробоин, следов гари на корпусе, фильтре. Обратите внимание на целостность магнитов. Это поможет определить, где находится причина поломки. Если внешних признаков повреждения нет, можно прозвонить магнетрон мультиметром.
- Включите тестер, установите режим 200 Ом. Прикоснитесь щупами к выводам. Целостная обмотка оказывает низкое сопротивление (приблизительно 0,5 Ом), вы услышите писк или звон.
- Ничего не происходит — значит, оборвалась нить накала.
- Чтобы прозвонить проходной конденсатор тестером, настройте самый большой режим измерения. Одним щупом прикоснитесь к любому из контактов, а вторым — к корпусу. Если всё в порядке — ничего не произойдёт, прибор покажет «∞» — бесконечность.
Заряд пробивает на корпус? Скорее всего, повреждена ёмкость конденсатора.
Важно! Применение специальных аппаратов для диагностики не всегда гарантирует точность данных.
На рисунке выше изображена схема работы электровакуумного диода. На части «А» рисунка, составлена электрическая цепь состоящая из диода, батареи питания «В», и ключа «К». Ключ «К» разомкнут – следовательно, напряжение на аноде отсутствует «Ua = 0». Если нет напряжения, то ток анода тоже будет равен нулю «Ia = 0». На нить накала подано напряжение «Un» следовательно, катод диода разогрет, и самые активные электроны уже готовы покинуть его. Но своей энергии им для этого не хватает, поэтому они все еще находятся возле катода.
На рисунке выше изображена схема работы электровакуумного диода. На части «А» рисунка, составлена электрическая цепь состоящая из диода, батареи питания «В», и ключа «К». Ключ «К» разомкнут – следовательно, напряжение на аноде отсутствует «Ua = 0». Если нет напряжения, то ток анода тоже будет равен нулю «Ia = 0». На нить накала подано напряжение «Un» следовательно, катод диода разогрет, и самые активные электроны уже готовы покинуть его. Но своей энергии им для этого не хватает, поэтому они все еще находятся возле катода.
Магнитное поле ни как не действует на не подвижный электрон. Но если электрон, движущийся по прямой траектории под действием электрического поля, попадает в магнитное поле, то последнее влияет на траекторию движения электрона, отклоняя ее вдоль своих силовых линий. Таким образом, электрон двигавшийся по прямой, под действием магнитного поля начинает двигаться по дуге.
Это очень краткое описание работы магнетрона. Для тех, кто хотел бы познакомиться с принципом его действия поближе, даю ссылки на более подробные описания.
Рисунок 1: МИ 29Г — магнетрон сантиметрового диапазона длин волн
Магнетрон
Рисунок 1: МИ 29Г — магнетрон сантиметрового диапазона длин волн
Рисунок 1: МИ 29Г — магнетрон сантиметрового диапазона длин волн
Магнетрон
В дециметровом и сантиметровом диапазонах волн эффективным генераторным прибором является многорезонаторный магнетрон .
Магнетрон это прибор для генерации электромагнитных колебаний сверхвысокой частоты (СВЧ), основанный на взаимодействии электронов, движущихся в магнитном поле по криволинейным траекториям с возбуждаемым электромагнитным полем.
Устройство магнетронов
Типичный многорезонаторный магнетрон представляет собой устройство (рис. 2), в центре которого вдоль оси расположен цилиндрический катод с подогревателем, окруженный многорезонаторной системой, выполненной в медном анодном блоке. Магнитная индукция направлена вдоль оси магнетрона. Анодное напряжение Ua между анодом и катодом создает электрическое поле, перпендикулярное магнитному.
Рисунок 3: Простейшая эквивалентная схема резонаторa
Рисунок 3: Простейшая эквивалентная схема резонаторa
Рисунок 3: Простейшая эквивалентная схема резонаторa
Магнетроны обладают высоким КПД (до 80 %).
Характеристики [ править ]
Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.
Магнетроны обладают высоким КПД (до 80 %).
Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.
Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.
Также может быть микроволновая печь со встроенными рецептами приготовления блюд. Чтобы запустить процесс приготовления, нужно указать вид продукта, количество, рецепт. Готовые программы дают возможность выбрать оптимальный режим, точное время приготовления.
8 октября исполняется 65 лет с того дня, как была запатентована технология микроволновой печи.
Микроволновая печь (сверхвысокочастотная печь, СВЧ-печь) является одним из самых популярных бытовых электроприборов и предназначена для быстрого приготовления, подогрева пищи и для размораживания продуктов. Ее создатель – житель штата Массачусетс Перси Спенсер – запатентовал свое изобретение 8 октября 1945 г.
По легенде, идея создания микроволновой печи пришла ему в голову после того, как он, постояв у магнетрона (электронная лампа, генерирующая микроволновое электромагнитное излучение), обнаружил, что лежавший в его кармане шоколадный батончик растаял. По другой версии, он заметил, что нагрелся бутерброд, положенный на включенный магнетрон.
Первые СВЧ-печки, предназначавшиеся для армейских столовых и больших ресторанов, были шкафами высотой 175 см и весом 340 кг. Более компактные домашние печки начали производиться с 1955 г.
Первая серийная бытовая микроволновая печь была выпущена японской фирмой Sharp в 1962 г. Первоначально спрос на новое изделие был невысок. В СССР микроволновые печи выпускал завод ЗИЛ.
Принцип действия микроволновой печи строится на обработке продукта, помещенного внутрь прибора, микроволнами (СВЧ-излучение). Эти волны и нагревают пищу.
Микроволны являются одной из форм электромагнитной энергии, как и световые волны или радиоволны. Это очень короткие электромагнитные волны, которые перемещаются со скоростью света (299,79 км/с).
В отсутствие электрического поля молекулы расположены хаотически. В электрическом поле они выстраиваются строго по направлению силовых линий поля, «плюсом» в одну сторону, «минусом» в другую. Стоит полю поменять направление на противоположное, как молекулы тут же переворачиваются на 180 градусов.
Магнетрон, который содержит каждая микроволновая печь, преобразует электрическую энергию в сверх-высокочастотное электрическое поле частотой 2450 мегагерц (МГц) или 2,45 гигагерц (ГГц), которое и взаимодействует с молекулами воды в пище.
Микроволны «бомбят» молекулы воды в пище, заставляя их вращаться с частотой в миллионы раз в секунду, создавая молекулярное трение, которое и нагревает еду.
Это трение наносит значительный ущерб молекулам пищи, разрывая или деформируя их. Проще говоря, микроволновая печь вызывает распад и изменения молекулярной структуры продуктов питания в процессе излучения.
Микроволны работают только в относительно небольшом поверхностном слое пищи, не проникая внутрь глубже, чем на 1-3 см. Поэтому нагрев продуктов происходит за счет двух физических механизмов – прогрева микроволнами поверхностного слоя и последующего проникновения тепла в глубину продукта за счет теплопроводности.
При выборе СВЧ печи следует ориентироваться на ее основные характеристики, среди которых – объем камеры, тип управления, наличие гриля, мощность и некоторые другие. Объем камеры определяется по количеству продуктов, вмещающихся в микроволновую печь.
Управление в микроволновых печах бывает трех типов – механическое (самый простой тип управления), кнопочное и сенсорное.
В зависимости от выполняемых функций микроволновки делят на три типа: СВЧ с микроволнами, с грилем и микроволновые печи с грилем и конвекцией.
Что касается дополнительных функций микроволновых печей, то к самым распространенным относятся функции двойного излучения (для равномерного приготовления продукта по объему) и auto-weight, означающая, что электронные датчики взвесят продукт и выберут время приготовления.
Некоторые модели СВЧ печей имеют диалоговый режим, когда на дисплее высвечиваются рекомендации во время приготовления блюда.
Также может быть микроволновая печь со встроенными рецептами приготовления блюд. Чтобы запустить процесс приготовления, нужно указать вид продукта, количество, рецепт. Готовые программы дают возможность выбрать оптимальный режим, точное время приготовления.
Некоторые модели оснащаются портом связи для доступа в интернет. Это дает возможность загружать новые рецепты блюд и получать информацию о его калорийности.
В число принадлежностей к СВЧ-печи могут входить многоуровневая решетка для тарелок, позволяющая разогреть одновременно несколько блюд, и решетка для гриля.
Материал подготовлен на основе информации открытых источников
Источник — http://elremont.in.ua/magnetron.html
Источник — http://principraboty.ru/chto-takoe-magnetron-princip-ego-raboty/
Источник — http://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/magnetrony/
Источник — http://pue8.ru/vybor-elektrooborudovaniya/503-printsip-raboty-i-ustrojstvo-magnetrona.html
Источник — http://technosova.ru/dlja-kuhni/mikrovolnovka/princip-raboty-magnetrona/
Источник — http://cosmo-frost.ru/svch/magnetron-v-mikrovolnovke-zachem-nuzhen-kak-proverit-i-pochinit/
Источник — http://yourmicrowell.ru/rabota-magnetrona-korotko/
Источник — http://www.radartutorial.eu/08.transmitters/tx08.ru.html
Источник — http://wp.wiki-wiki.ru/wp/index.php/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D1%80%D0%BE%D0%BD
Источник — http://ria.ru/20101008/282500783.html