Формула магнитного потока
Однородное магнитное поле (МП), существующее в некотором объёме, называется так, потому что оно одинаково во всех его точках. Если рассмотреть определённую плоскость, расположенную под прямым углом к магнитным линиям поля, то количество линий, пронизывающих её, можно вычислить. Поток магнитной индукции, формула которого выведена немецким физиком Вильгельмом Вебером, является искомой величиной.
Что такое магнитный поток
Магнитные потоки, определимые с помощью специальных приборов – флюксметров, измеряются и в лабораторных, и в полевых условиях. Приборы ещё называют веберметрами. Особенностью такого измерительного аппарата магнитоэлектрической системы (МЭС) является то, что ток подводится к перемещающейся бескаркасной рамке через спирали, не имеющие момента противодействия (безмоментные).
Внимание! В тот момент, когда ток отсутствует, указатель прибора не имеет фиксированного положения в пределах шкалы.
Прибор состоит из следующих деталей, отмеченных на рис. выше:
- испытуемый постоянный магнит – 1;
- рамка измерительная – 2;
- рамка прибора – 3;
- магнит прибора – 4;
- рамка корректирующего устройства – 5;
- головка регулировки корректирующей рамки – 6;
- переключатель «работа – коррекция» – 7.
Флюксметр не может измерять слабые МП из-за низкой чувствительности.
Теорема Гаусса для магнитной индукции
Великий немецкий учёный Карл Гаусс, который отличился в математике, физике и астрономии, вывел закон (теорему) в области магнетизма. Он доказал, что, в отличие от электрического поля, создаваемого электрическими зарядами, МП не создаётся зарядами магнитными. Их попросту не существует в классической электродинамике.
Квантование магнитного потока
В 1961 году практически было установлено, что, если направить магнитный поток через закольцованный сверхпроводник, по которому протекает электричество, то величина Φ будет кратной кванту потока Φ0 = h/2e = 2. 067833758*10-15Вб. Это значение в системе СИ.
Такой эксперимент выполнили американцы Дивер и Фейрбенк. Они выполнили квантование, используя трубку полой конструкции, пропуская по ней круговые токи сверхпроводящей природы. Их результат квантовой размерности оказался в два раза меньше. Это было обусловлено тем, что электроны в сверхпроводящей ситуации разбивались на пары. Частицы образовывали двойки с зарядом 2е. Именно движение этих пар составляет природу сверхпроводящего тока.
Постоянные магниты
Источником магнитного поля (МП) могут служить постоянные магниты. Они изготавливаются из магнетита. В природе он известен как оксид железа. Это минерал чёрной окраски, имеющий молекулярное строение FeO·Fe2O3. Свойства магнитов известны с давних времён. Магниты имеют два полюса – северный и южный.
Постоянные магниты можно классифицировать по следующим критериям:
- материал, из которого изготовлен магнит;
- форма;
- сфера использования.
Магниты с постоянными полюсами изготавливаются из различных материалов:
- ферритов – прессованных изделий из порошков оксида железа и оксидов иных металлов;
- редкоземельных – нодимовых (NdFeB), самариевых (SmCo), литых (сплавы металлов), полимерных (магнитопласты).
Форма магнитов самая различная:
- цилиндрическая (прямоугольная);
- подковообразная;
- кольцеобразная;
- дискообразная.
Важно! В зависимости от формы изменяется месторасположение полюсов, соответственно, и направление магнитных линий у поля.
Постоянные магниты нашли широкое применение в различных отраслях народного хозяйства:
- МРТ – медицинский прибор для диагностики человеческого организма;
- приводы жёстких дисков в современных компьютерах;
- в радиотехнике, при изготовлении динамиков;
- производство декоративных украшений с применением магнитов на полимерной основе.
В двигателях постоянного тока такие магниты вмонтированы в корпус индуктора.
Электромагниты
Следующей разновидностью устройства, предназначенного для создания МП, является электромагнит. При протекании через его обмотку электрического тока сердечник становится магнитом. Следственно, электромагнит состоит из следующих частей:
- сердечник (магнитопровод);
- обмотка.
Это своеобразная катушка индуктивности, называемая соленоидом.
Сердечник может быть выполнен из ферримагнитного материала или листового набора электротехнической стали.
Обмотка намотана проводом из алюминия или меди, покрытого изоляцией.
Электромагниты (ЭМ) можно классифицировать по следующим параметрам:
- магниты постоянного тока – нейтральные;
- магниты постоянного тока – поляризованные;
- устройства переменного тока.
Нейтральные ЭМ – создание магнитного потока происходит так, что величина притяжения увеличивается с повышением силы тока и не подчиняется направлению движения электронов.
Поляризованные ЭМ в своём составе содержат:
- рабочую обмотку – для создания рабочего Φ;
- постоянный магнит – для наведения поляризующего Φ.
Обмотки ЭМ переменного тока питаются синусоидальным током, поэтому их Φ меняется по периодическому закону.
Электромагнитная индукция
Майкл Фарадей открыл явление, определённое как электромагнитная индукция. В 1831 году было замечено, что, если изменять магнитный поток Φ, который пронизывает контур, выполненный из замкнутого проводника, то в нём индуцируется электроток.
Правило правой руки
Определить, в каком направлении будет двигаться индукционный ток, помогает «правило правой руки». Расшифровка такого метода, придуманного для запоминания, состоит в следующем:
- правая рука помещается в МП так, чтобы ладонь располагалась под углом 90° к магнитным силовым линиям;
- большой палец направляется в сторону движения проводника.
Индукционный ток движется туда, куда смотрят четыре пальца руки.
Магнитный поток: формула
Определение величины Φ возможно с помощью математического вычисления. Формула магнитного потока имеет вид:
Φ = B*S*cos α,
- B – вектор магнитной индукции (ВМИ);
- S – площадь контура;
- cos α – угол между ВМИ и перпендикуляром (нормалью) к пересекаемой поверхности.
Здесь, В – это модуль вектора магнитной индукции.
Формула скорости изменения магнитного потока
По скорости изменений магнитных потоков через контур определяют величину ЭДС, индуцируемой в контуре. Сама скорость Ei будет определяться по формуле:
Ei = — ∆ Φ/∆t,
- ∆ Φ = Φ2 – Φ1 – изменение потока (Вб);
- ∆t – изменение времени (с).
Единица измерения скорости – Вб/с.
Открытие Фарадеем закона электромагнитной индукции позволило использовать работу магнитного потока для создания электрических машин: генераторов и двигателей, как постоянного, так и переменного тока. В них, в зависимости от конструкции, или постоянный магнит изменяет своё положение относительно рамки, или рамка вращается в МП. Так или иначе, возникает ЭДС, её значение зависит от Φ.
Видео
Суть магнитного потока отображается известной формулой: Ф = BS cos α. В ней Ф является магнитным потоком, S — поверхность контура (площадь), В — вектор магнитной индукции. Угол α образуется за счет направления вектора магнитной индукции и нормали к поверхности контура. Отсюда следует, что максимального порога магнитный поток достигнет при cos α = 1, а минимального — при cos α = 0.
Во втором варианте вектор В будет перпендикулярен к нормали. Получается, что линии потока не пересекают контур, а лишь скользят по его плоскости. Следовательно, определять характеристики будут линии вектора В, пересекающие поверхность контура. Для расчета в качестве единицы измерения используется вебер: 1 вб = 1в х 1с (вольт-секунда). Еще одной, более мелкой единицей измерения служит максвелл (мкс). Он составляет: 1 вб = 108 мкс, то есть 1 мкс = 10-8 вб.
Для исследования Фарадеем были использованы две проволочные спирали, изолированные между собой и размещенные на катушке из дерева. Одна из них соединялась с источником энергии, а другая — с гальванометром, предназначенным для регистрации малых токов. В тот момент, когда цепь первоначальной спирали замыкалась и размыкалась, в другой цепи стрелка измерительного устройства отклонялась.
Проведение исследований явления индукции
В первой серии опытов Майкл Фарадей вставлял намагниченный металлический брусок в катушку, подключенную к току, а затем вынимал его наружу (рис. 1, 2).
В случае помещения магнита в катушку, подключенную к измерительному прибору, в цепи начинает протекать индукционный ток. Если магнитный брусок удаляется из катушки, индукционный ток все равно появляется, но его направление становится уже противоположным. Следовательно, параметры индукционного тока будут изменены по направлению движения бруска и в зависимости от полюса, которым он помещается в катушку. На силу тока оказывает влияние быстрота перемещения магнита.
Во второй серии опытов подтверждается явление, при котором изменяющийся ток в одной катушке, вызывает индукционный ток в другой катушке (рис. 3, 4, 5). Это происходит в моменты замыкания и размыкания цепи. От того, замыкается или размыкается электрическая цепь, будет зависеть и направление тока. Кроме того, эти действия есть ни что иное, как способы изменения магнитного потока. При замыкании цепи он будет увеличиваться, а при размыкании — уменьшаться, одновременно пронизывая первую катушку.
В результате опытов было установлено, что возникновение электрического тока внутри замкнутого проводящего контура возможно лишь в том случае, когда они помещаются в переменное магнитное поле. При этом, поток может изменяться во времени любыми способами.
Электрический ток, появляющийся под действием электромагнитной индукции, получил название индукционного, хотя это и не будет током в общепринятом понимании. Когда замкнутый контур оказывается в магнитном поле, происходит генерация ЭДС с точным значением, а не тока, зависящего от разных сопротивлений.
Данное явление получило название ЭДС индукции, которую отражает формула: Еинд = — ∆Ф/∆t. Ее значение совпадает с быстротой изменений магнитного потока, пронизывающего поверхность замкнутого контура, взятого с отрицательным значением. Минус, присутствующий в данном выражении, является отражением правила Ленца.
Правило Ленца в отношении магнитного потока
Известное правило было выведено после проведения цикла исследований в 30-х годах 19 века. Оно сформулировано в следующем виде:
Направление индукционного тока, возбуждаемого в замкнутом контуре изменяющимся магнитным потоком, оказывает влияние на создаваемое им магнитное поле таким образом, что оно в свою очередь создает препятствие магнитному потоку, вызывающему появление индукционного тока.
Когда магнитный поток увеличивается, то есть становится Ф > 0, а ЭДС индукции снижается и становится Еинд < 0, в результате этого появляется электроток с такой направленностью, при которой под влиянием его магнитного поля происходит изменение потока в сторону уменьшения при его прохождении через плоскость замкнутого контура.
Если поток снижается, то наступает обратный процесс, когда Ф < 0 и Еинд > 0, то есть действие магнитного поля индукционного тока, происходит увеличение магнитного потока, проходящего через контур.
Физический смысл правила Ленца заключается в отражении закона сохранения энергии, когда при уменьшении одной величины, другая увеличивается, и, наоборот, при увеличении одной величины другая будет уменьшаться. Различные факторы влияют и на ЭДС индукции. При вводе в катушку поочередно сильного и слабого магнита, прибор соответственно будет показывать в первом случае более высокое, а во втором — более низкое значение. То же самое происходит, когда изменяется скорость движения магнита.
На представленном рисунке видно, как определяется направление индукционного тока с применением правила Ленца. Синий цвет соответствует силовым линиям магнитных полей индукционного тока и постоянного магнита. Они расположены в направлении полюсов от севера к югу, которые имеются в каждом магните.
Изменяющийся магнитный поток приводит к возникновению индукционного электрического тока, направление которого вызывает противодействие со стороны его магнитного поля, препятствующее изменениям магнитного потока. В связи с этим, силовые линии магнитного поля катушки направлены в сторону, противоположную силовым линиям постоянного магнита, поскольку его движение происходит в сторону этой катушки.
Для определения направления тока используется с правой резьбой. Он должен ввинчиваться таким образом, чтобы направление его поступательного движения совпадало с направлением индукционных линий катушки. В этом случае направления индукционного тока и вращения рукоятки буравчика будут совпадать.
Здесь , — единичный вектор нормали к площадке площадью dS
, В n
— проекция вектора В
на направление нормали, — угол между векторами В
и n
(рис. 28).
Рис. Поток вектора магнитной индукции через площадку
Магнитный поток Ф B
через произвольную замкнутую поверхность S
равен
Отсутствие в природе магнитных зарядов приводит к тому, что линии вектора В
не имеют ни начала, ни конца. Поэтому поток вектора В
через замкнутую поверхность должен быть равен нулю. Таким образом, для любого магнитного поля и произвольной замкнутой поверхности S
выполняется условие
Формула (6. 28) выражает теорему Остроградского — Гаусса
для вектора
:
Подчеркнем еще раз: эта теорема является математическим выражением того факта, что в природе отсутствуют магнитные заряды, на которых начинались бы и заканчивались линии магнитной индукции, как это имело место в случае напряженности электрического поля Е
точечных зарядов.
Это свойство существенным образом отличает магнитное поле от электрического. Линии магнитной индукции замкнуты, поэтому число линий, входящих в некоторый объем пространства, равно числу линий, выходящих из этого объема. Если входящие потоки брать с одним знаком, а выходящие — с другим, то суммарный поток вектора магнитной индукции через замкнутую поверхность будет равен нулю.
Рис. Вебер (1804–1891) — немецкий физик
Отличие магнитного поля от электростатического проявляется также в значении величины, которую мы называем циркуляцией
— интеграла от векторного поля по замкнутому пути. В электростатике равен нулю интеграл
взятый по произвольному замкнутому контуру. Это связано с потенциальностью электростатического поля, то есть с тем фактом, что работа по перемещению заряда в электростатическом поле не зависит от пути, но лишь от положения начальной и конечной точек.
Посмотрим, как обстоит дело с аналогичной величиной для магнитного поля. Возьмем замкнутый контур, охватывающий прямой ток, и вычислим для него циркуляцию вектора В
, то есть
Как было получено выше, магнитная индукция, создаваемая прямолинейным проводником с током на расстоянии R
от проводника, равна
Рассмотрим случай, когда контур, охватывающий прямой ток, лежит в плоскости, перпендикулярной току, и представляет собой окружность радиусом R
с центром на проводнике. В этом случае циркуляция вектора В
по этой окружности равна
Можно показать, что результат для циркуляции вектора магнитной индукции не меняется при непрерывной деформации контура, если при этой деформации контур не пересекает линий тока. Тогда в силу принципа суперпозиции циркуляция вектора магнитной индукции по пути, охватывающем несколько токов, пропорциональна их алгебраической сумме (рис. 30)
Рис. Замкнутый контур (L) с заданным направлением обхода. Изображены токи I 1 , I 2 и I 3 , создающие магнитное поле. Вклад в циркуляцию магнитного поля вдоль контура (L) дают только токи I 2 и I 3
Если выбранный контур не охватывает токов, то циркуляция по нему равна нулю.
При вычислении алгебраической суммы токов следует учитывать знак тока: положительным будем считать ток, направление которого связано с направлением обхода по контуру правилом правого винта. Например, вклад тока I
2 в циркуляцию — отрицательный, а вклад тока I
3 — положительный (рис. 18). Воспользовавшись соотношением
между силой тока I
через любую замкнутую поверхность S
и плотностью тока , для циркуляции вектора В
можно записать
где S
— любая замкнутая поверхность, опирающаяся на данный контур L.
Такие поля называются вихревыми. Поэтому для магнитного поля нельзя ввести потенциал, как это было сделано для электрического поля точечных зарядов. Наиболее наглядно разницу потенциального и вихревого полей можно представить по картине силовых линий. Силовые линии электростатического поля похожи на ежей: они начинаются и кончаются на зарядах (либо уходят в бесконечность). Силовые линии магнитного поля никогда не напоминают «ежей»: они всегда замкнуты и охватывают текущие токи.
Для иллюстрации применения теоремы о циркуляции найдем другим методом уже известное нам магнитное поле бесконечного соленоида. Возьмем прямоугольный контур 1-2-3-4 (рис. 31) и вычислим циркуляцию вектора В
по этому контуру
Рис. Применение теоремы о циркуляции В к определению магнитного поля соленоида
Второй и четвертый интегралы равны нулю в силу перпендикулярности векторов и
Мы воспроизвели результат (6. 20) без интегрирования магнитных полей от отдельных витков.
Полученный результат (6. 35) можно использовать для нахождения магнитного поля тонкого тороидального соленоида (рис. 32).
Рис. Тороидальная катушка: линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r 1 ≤ r < r 2 изображена на рисунке
Правило правой руки или буравчика:
Направление силовых линий магнитного поля и направление создающего его тока связаны между собой известным правилом правой руки или буравчика, которые ввел еще Д. Максвелл и иллюстрируется следующими рисунками:
Мало кто знает, что буравчик — это инструмент для бурения-сверления отверстий в дереве. Поэтому более понятно можно это правило назвать правилом винта, шурупа или штопора. Однако хвататься за провод как на рисунке иногда опасно для жизни!
Магнитная индукция B
:
Магнитная индукция
— является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряженности электрического поля E. Вектор магнитной индукции всегда направлен по касательной к магнитной линии и показывает ее направление и силу. За единицу магнитной индукции в B
= 1Тл принимается магнитная индукция однородного поля, в котором на участок проводника длиной в l
= 1 м, при силе тока в нем в I
= 1 А, действует со стороны поля максимальная сила Ампера — F
= 1 H. Направление силы Ампера определяется по правилу левой руки. В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл).
Напряженность магнитного поля H
:
Еще одной характеристикой магнитного поля является напряженность
, которая является аналогом вектора электрического смещения D
в электростатике. Определяется по формуле:
Напряженность магнитного поля — величина векторная, является количественной характеристикой магнитного поля и не зависит от магнитных свойств среды. В системе СГС напряженность магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м).
Магнитный поток Ф:
Магнитный поток Ф — скалярная физическая величина, характеризующая число линий магнитной индукции, пронизывающих замкнутый контур. Рассмотрим частный случай. В однородном магнитном поле
, модуль вектора индукции которого равен ∣В
∣, помещен плоский замкнутый контур
площадью S. Нормаль n
к плоскости контура составляет угол α с направлением вектора магнитной индукции B. Магнитным потоком через поверхность называется величина Ф, определяемая соотношением:
В общем случае магнитный поток определяется как интеграл вектора магнитной индукции B
через конечную поверхность S.
Стоит отметить, что магнитный поток через любую замкнутую поверхность равен нулю (теорема Гаусса для магнитных полей). Это означает, что силовые линии магнитного поля нигде не обрываются т. магнитное поле имеет вихревую природу, а также что невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле. В СИ единицей магнитного потока является Вебер (Вб), в системе СГС — максвелл (Мкс); 1 Вб = 10 8 Мкс.
Индуктивность — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.
Иначе, индуктивность — коэффициент пропорциональности в формуле самоиндукции.
В системе единиц СИ индуктивность измеряется в генри (Гн). Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать ЭДС самоиндукции в один вольт.
Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году. Говоря просто, индуктивность это свойство проводника с током накапливать энергию в магнитном поле, эквивалентна емкости для электрического поля. Она не зависит от величины тока, а только от формы и размеров проводника с током. Для увеличения индуктивности проводник наматывают в катушки
, расчету которых и посвящена программа
Магнитный поток (поток линий магнитной индукции)
через контур численно равен произведению модуля вектора магнитной индукции на площадь, ограниченную контуром, и на косинус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной этим контуром.
Формула работы силы Ампера при движении прямого проводника с постоянным током в однородном магнитном поле.
Таким образом, работа силы Ампера может быть выражена через силу тока в перемещаемом проводнике и изменение магнитного потока через контур, в который включен этот проводник:
Индуктивность контура.
Индуктивность
— физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:
где Ф — магнитный поток через контур, I — сила тока в контуре.
Единицы измерения индуктивности в системе СИ:
Энергия магнитного поля.
Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.
Электромагнитная индукция.
Электромагнитная индукция
— явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.
Опыты Фарадея. Объяснение электромагнитной индукции.
Если подносить постоянный магнит к катушке или наоборот (рис. 1), то в катушке возникнет электрический ток. То же самое происходит с двумя близко расположенными катушками: если к одной из катушек подключить источник переменного тока, то в другой также возникнет переменный ток, но лучше всего этот эффект проявляется, если две катушки соединить сердечником
По определению Фарадея общим для этих опытов является следующее: если поток вектора индукции, пронизывающий замкнутый, проводящий контур, меняется, то в контуре возникает электрический ток.
Это явление называют явлением электромагнитной индукции
, а ток – индукционным. При этом явление совершенно не зависит от способа изменения потока вектора магнитной индукции.
Формула э. электромагнитной индукции.
ЭДС индукции
в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.
Правило Ленца.
Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.
Самоиндукция, ее объяснение.
Самоиндукция
— явление возникновения ЭДС индукции в эл. цепи в результате изменения силы тока.
Замыкание цепи
При замыкании в эл. цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл. поле, направленное против тока, т. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны). В результате Л1 загорается позже, чем Л2.
Размыкание цепи
При размыкании эл. цепи ток убывает, возникает уменьшение м. потока в катушке, возникает вихревое эл. поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает.
в электротехнике явление самоиндукции проявляется при замыкании цепи (эл. ток нарастает постепенно) и при размыкании цепи (эл. ток пропадает не сразу).
Формула э. самоиндукции.
ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.
Первое и второе положения теории электромагнитного поля Максвелла.
Всякое перемещенное электрическое поле порождает вихревое магнитное поле. Переменное электрическое поле было названо Максвеллом, так как оно, подобно обычному току, вызывает магнитное поле. Вихревое магнитное поле порождается как токами проводимости Iпр (движущимися электрическими зарядами), так и токами смещения (перемещенным электрическим полем Е).
Первое уравнение Максвелла
Всякое перемещенное магнитное поле порождает вихревое электрическое (основной закон электромагнитной индукции).
Второе уравнение Максвелла:
Электромагнитное излучение.
Электромагни́тные во́лны, электромагни́тное излуче́ние
— распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.
Волна
— это колебания, распространяющиеся в пространстве в течение времени. Механические волны могут распространяться только в какой-нибудь среде (веществе): в газе, в жидкости, в твердом теле. Источником волн являются колеблющиеся тела, которые создают в окружающем пространстве деформацию среды. Необходимым условием для появления упругих волн является возникновение в момент возмущения среды препятствующих ему сил, в частности, упругости. Они стремятся сблизить соседние частицы, когда они расходятся, и оттолкнуть их друг от друга в момент сближения. Силы упругости, действуя на удаленные от источника возмущения частицы, начинают выводить их из равновесия. Продольные волны
характерны только газообразным и жидким средам, а вот поперечные
– также и твердым телам: причина этого заключается в том, что частицы, составляющие данные среды, могут свободно перемещаться, так как жестко не зафиксированы, в отличие от твердых тел. Соответственно, поперечные колебания принципиально невозможны.
Продольные волны возникают тогда, когда частицы среды колеблются, ориентируясь вдоль вектора распространения возмущения. Поперечные волны распространяются в перпендикулярном вектору воздействия направлении. Короче: если в среде деформация, вызванная возмущением, проявляется в виде сдвига, растяжения и сжатия, то речь идет о твердом теле, для которого возможны как продольные, так и поперечные волны. Если же появление сдвига невозможно, то среда может быть любой.
Каждая волна распространяется с какой-то скоростью. Под скоростью волны
понимают скорость распространения возмущения. Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:
Длина́ волны́
— расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой «проходит» за интервал времени, равный периоду колебаний, поэтому
Волновое число
(также называемое пространственной частотой
) — это отношение 2π
радиан к длине волны: пространственный аналог круговой частоты.
Определение
: волновым числом k называется быстрота роста фазы волны φ
по пространственной координате.
Плоская волна
— волна, фронт которой имеет форму плоскости.
Фронт плоской волны неограничен по размерам, вектор фазовой скорости перпендикулярен фронту. Плоская волна является частным решением волнового уравнения и удобной моделью: такая волна в природе не существует, так как фронт плоской волны начинается в и заканчивается в , чего, очевидно, быть не может.
Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Волновое уравнение для функции записывается в виде:
· — оператор Лапласа;
· — искомая функция;
· — радиус вектора искомой точки;
· — скорость волны;
· — время.
Волновая поверхность
— геометрическое место точек, испытывающих возмущение обобщенной координаты в одинаковой фазе. Частный случай волновой поверхности — волновой фронт.
А) Плоская волна
– это волна, волновые поверхности которой представляют собой совокупность параллельных друг другу плоскостей.
Б) Сферическая волна
– это волна, волновые поверхности которой представляют собой совокупность концентрических сфер.
Луч
— линия, нормальной и волновой поверхности. Под направлением распространения волн понимают направление лучей. Если среда распространения волны однородная и изотропная, лучи прямые (причём, если волна плоская — параллельные прямые).
Понятием луч в физике обычно пользуются только в геометрической оптике и акустике, так как при проявлении эффектов, не изучаемых в данных направлениях, смысл понятия луч теряется.
Энергетические характеристики волны
Среда, в которой распространяется волна, обладает механической энергией, складывающейся из энергий колебательного движения всех ее частиц. Энергия одной частицы с массой m 0 находится по формуле: Е 0 = m 0 Α 2 ω
2 /2. В единице объема среды содержится n = p
/m 0 частиц (ρ
— плотность среды). Поэтому единица объема среды обладает энергией w р = nЕ 0 = ρ
Α 2 ω
2 /2.
Объемная плотность энергии
(W р)- энергия колебательного движения частиц среды, содержащихся в единице ее объема:
Поток энергии
(Ф) — величина, равная энергии, переносимой волной через данную поверхность за единицу времени:
Интенсивность волны или плотность потока энергии
(I) — величина, равная потоку энергии, переносимой волной через единичную площадку, перпендикулярную направлению распространения волны:
Электромагнитная волна
— процесс распространения электромагнитного поля в пространстве.
Условие возникновения
электромагнитных волн. Изменения магнитного поля происходят при изменении силы тока в проводнике, а сила тока в проводнике изменяется при изменении скорости движения электрических зарядов в нем, т. при движении зарядов с ускорением. Следовательно, электромагнитные волны должны возникать при ускоренном движении электрических зарядов. При скорости заряда, равной нулю, существует только электрическое поле. При постоянной скорости заряда возникает электромагнитное поле. При ускоренном движении заряда происходит излучение электромагнитной волны, которая распространяется в пространстве с конечной скоростью.
Электромагнитные волны распространяются в веществе с конечной скоростью. Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε 0 и μ 0 – электрическая и магнитная постоянные: ε 0 = 8,85419·10 –12 Ф/м, μ 0 = 1,25664·10 –6 Гн/м.
Скорость электромагнитных волн в вакууме (ε = μ = 1):
Основными характеристиками
электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны зависит от скорости распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше.
Электромагнитное излучение принято делить по частотам диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.
Интерференция волн. Когерентные волны. Условия когерентности волн.
Оптическая длина пути (о. ) света. Связь разности о. волн с разностью фаз колебаний, вызываемых волнами.
Амплитуда результирующего колебания при интерференции двух волн. Условия максимумов и минимумов амплитуды при интерференции двух волн.
Интерференционные полосы и интерференционная картина на плоском экране при освещении двух узких длинных параллельных щелей: а) красным светом, б) белым светом.
1) ИНТЕРФЕРЕНЦИЯ ВОЛН
— такое наложение волн, при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других, в зависимости от соотношения между фазами этих волн.
Необходимые условия
для наблюдения интерференции:
1) волны должны иметь одинаковые (или близкие) частоты, чтобы картина, получающаяся в результате наложения волн, не менялась во времени (или менялась не очень быстро, что бы её можно было успеть зарегистрировать);
2) волны должны быть однонаправленными (или иметь близкое направление); две перпендикулярные волны никогда не дадут интерференции (попробуйте сложить две перпендикулярные синусоиды!). Иными словами, складываемые волны должны иметь одинаковые волновые векторы (или близконаправленные).
Волны, для которых выполняются эти два условия, называются КОГЕРЕНТНЫМИ. Первое условие иногда называют временной когерентностью
, второе — пространственной когерентностью.
Рассмотрим в качестве примера результат сложения двух одинаковых однонаправленных синусоид. Варьировать будем только их относительный сдвиг. Иными словами, мы складываем две когерентные волны, которые отличаются только начальными фазами (либо их источники сдвинуты друг относительно друга, либо то и другое вместе).
Если синусоиды расположены так, что их максимумы (и минимумы) совпадают в пространстве, произойдет их взаимное усиление.
Если же синусоиды сдвинуты друг относительно друга на полпериода, максимумы одной придутся на минимумы другой; синусоиды уничтожат друг друга, то есть произойдет их взаимное ослабление.
Математически это выглядит так. Складываем две волны:
здесь х 1
и х 2
— расстояния от источников волн до точки пространства, в которой мы наблюдаем результат наложения. Квадрат амплитуды результирующей волны (пропорциональный интенсивности волны) дается выражением:
Максимум этого выражения есть 4A 2
, минимум — 0; всё зависит от разности начальных фаз и от так называемой разности хода волн :
При в данной точке пространства будет наблюдаться интерференционный максимум, при — интерференционный минимум.
В нашем простом примере источники волн и точка пространства, где мы наблюдаем интерференцию, находятся на одной прямой; вдоль этой прямой интерференционная картина для всех точек одинакова. Если же мы сдвинем точку наблюдения в сторону от прямой, соединяющей источники, мы попадем в область пространства, где интерференционная картина меняется от точки к точке. В этом случае мы будем наблюдать интерференцию волн с равными частотами и близкими волновыми векторами.
2)1. Оптической длиной пути называется произведение геометрической длины d пути световой волны в данной среде на абсолютный показатель преломления этой среды n.
Разность фаз двух когерентных волн от одного источника, одна из которых проходит длину пути в среде с абсолютным показателем преломления , а другая – длину пути в среде с абсолютным показателем преломления :
где , , λ – длина волны света в вакууме.
3)Амплитуда результирующего колебания зависит от величины, называемой разностью хода
волн.
Если разность хода равна целому числу волн, то волны приходят в точку синфазно. Складываясь, волны усиливают друг друга и дают колебание с удвоенной амплитудой.
Если разность хода равна нечетному числу полуволн, то волны приходят в точку А в противофазе. В этом случае они гасят друг друга, амплитуда результирующего колебания равна нулю.
В других точках пространства наблюдается частичное усиление или ослабление результирующей волны.
В 1802 г. английский ученый Томас Юнг
поставил опыт, в котором наблюдал интерференцию света. Свет из узкой щели S
, падал на экран с двумя близко расположенными щелями S 1
и S 2. Проходя через каждую из щелей, световой пучок расширялся, и на белом экране световые пучки, прошедшие через щели S 1
и S 2
, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.
Осуществление интерференции света от обычных источников света.
Интерференция света на тонкой пленке. Условия максимумов и минимумов интерференции света на пленке в отраженном и в проходящем свете.
Интерференционные полосы равной толщины и интерференционные полосы равного наклона.
1)Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей (керосина или масла на поверхности воды), в мыльных пузырях, бензине, на крыльях бабочек, в цветах побежалости, и т.
2) интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённыхобъективов. Луч света, проходя через плёнку толщиной , отразится дважды — от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, отчего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при , где — длина волны. Если нм, то толщина плёнки равняется 550:4=137,5 нм.
Расчет линейных магнитных цепей
В ряде устройств их магнитные цепи работают на практически прямолинейном участке основных кривых намагничивания, т. могут рассматриваться как линейные. В линейной магнитной цепи магнитная проницаемость участков постоянна и, следовательно, их магнитное сопротивление также является величиной постоянной. Решение как прямой, так и обратной задачи требует предварительного определения магнитного сопротивления участков цепи.
Расчет неразветвленной магнитной цепи постоянного сечения выполняется аналогично тороиду ; здесь l — также длина средней линии. Необходимо отметить, что наличие магнитного рассеяния приводит к неравномерному распределению потока вдоль магнитной цепи и расчет крайне затрудняется. В дальнейшем рассматривается только приближенный учет рассеяния.
Если разветвленная магнитная цепь (рис. 1, а и 5. 2, а) представляет собой соединение призматических или цилиндрических участков, выполненных из материалов с различной ц, вычисление магнитных сопротивлений участков производится однозначно. Если материал всей цепи один и тот же, разделение ее на участки в известных пределах произвольно; средние линии показаны пунктиром. После определения сопротивлений участков можно весьма наглядно
изобразить магнитную цепь наподобие электрической, как это сделано
на рис. 1, б для магнитной цепи рис. 1, а с двумя н. и на рис. 2, б для магнитной цепи рис. 2, а с одной н.
В таких цепях должны быть указаны положительные направления н. и магнитных потоков. Если не все направления известны, ими следует задаться с тем, чтобы в результате расчета определить правильные направления. Расчет линейной цепи как для прямой, так и для обратной задачи выполняется подобно расчету электрической цепи аналогичными методами — по зависимостям, аналогичным законам Кирхгофа, методами преобразования магнитных цепей, контурных потоков, наложения, взаимности и узловых магнитных напряжений. Так, для цепи рис. 2, пользуясь методом преобразования, можно написать:
Расчет нелинейных магнитных цепей
Неразватвленная нелинейная (ферромагнитная) цепь:
В электротехнике самое широкое применение нашли магнитные цепи из ферромагнитных материалов, так как они имеют относительно малое магнитное сопротивление. Это позволяет при заданном магнитном потоке соответственно уменьшить н. при тех же размерах магнитопровода или размеры магнитопровода при той же н. Ферромагнитные цепи нелинейны, так как их магнитная проницаемость является функцией напряженности поля. К таким цепям можно применять методы расчета, аналогичные тем, которые были изложены в гл. 4-для электрических нелинейных цепей.
Далее рассматривается наиболее простой, но весьма важный для практики графо-аналитический метод расчета обратной задачи, для неразветвленной магнитной цепи. Пусть задана та индукция Вв, которую надо получить в воздушном зазоре электромагнита с участками магнитопровода, выполненными из разных материалов (рис. Требуется найти необходимую н.
По заданным размерам магнитопронода проводится средняя линия пути потока во всех участках и определяется длина каждого из них. Длина d воздушного зазора должна быть задана. Затем определяется полезный поток в воздушном зазоре
где SB — его сечение, принимаемое равным сечению полюсов, т. участков l и 5. Поток Фм в магнитопроводе за счет рассеяния у краев воздушного зазора несколько больше:
Фм = σФВ,
где σ — коэффициент рассеяния; величина его зависит от формы
магнитопровода и лежит в пределах от 1,1 до 1,4. По индукции в каждом из k участков магнитопровода
находят напряженность поля Нк для каждого из участков по основным кривым намагничивания В (Н) соответствующих материалов (рис.
Для воздушного зазора напряженность поля
Затем для отдельных участков магнитопровода и для воздушного зазора находят н.
и их суммированием — полную н. Для магнитной цепи рис. 3, так как участки l и 5, а также 2 и 4 одинаковы, полная н.
По найденной н. и по заданному напряжению U, питающему обмотку, приближенно может быть найдено число витков w. Так как длина витков обмотки различна — внутренних меньше, наружных больше, то расчет начинается с определения длины среднего витка lср по известным размерам магнитопровода и выбранному расположению обмотки. Тогда из закона Ома
(где р — удельное сопротивление материала обмотки) определяется сечение провода
По сортаменту проводов выбирают ближайшее большее сечение Sc провода и определяют сечение провода с изоляцией Sиз. После этого можно найти число витков по отношению площади окна (за вычетом сечения каркаса катушки и пр. ) к сечению провода с изоляцией S0
где а — коэффициент заполнения, учитывающий воздушные промежутки, остающиеся между проводами при намотке катушки; его величина лежит в пределах от 0,7 до 0,85 и зависит от формы сечения провода (для круглого меньше, для прямоугольного больше). Затем из приведенного выражения определяется плотность тока в обмотке:
Если полученная плотность тока превышает допустимую по нагреву, то это значит, что размеры магнитной цепи (площадь окна) не позволяют получить заданную индукцию.
Прямая задача расчета этой магнитной цепи — нахождение индукции в воздушном зазоре по заданной н. — решается графическим методом. В соответствии с указанной в аналогией, вольтамперным характеристикам U (I) электрических цепей соответствуют ампервеберные характеристики F (Ф) магнитных цепей.
Построение характеристик Fk(Фk) для отдельных участков магнитной цепи производят по кривым намагничивания Вк(Нк) материала участка. Для этого ординаты Вк кривой намагничивания умножают на площадь сечения участка Sk и откладывают BkSk = Фk по оси абсцисс; абсциссы кривой намагничивания Нк умножают на длину участка Iк и откладывают Hklk = Fk по оси ординат.
Для воздушного зазора получается прямая линия, в уравнении которой учитывается, что рассеяние увеличивает реальное сечение потока по сравнению с сечением SB полюсов, примерно в σ раз, т. ординаты прямой Вв = умножают на SBσ и откладывают по оси абсцисс, а абсциссы Нв умножают на длину воздушного зазора d и откладывают HBd =FB по оси ординат.
Для магнитной цепи рис. 3 по ампервеберным характеристикам отдельных участков (одинаковые участки l и 5, а также 2 и 4 можно объединить), суммированием н. F (ординат) для разных значений потока (абсцисс) строится ампервеберная характеристика F (Ф) всей цепи (рис.
При этом целесообразно начать построение для предельного значения потока Фm, которое можно вычислить для заданной н. F’, если пренебречь магнитным сопротивлением магнитопровода по сравнению с магнитным сопротивлением RmB воздушного зазора:
Затем по кривой F(Ф) для заданного значения н. F’ находится значение Ф’, а затем искомая индукция в воздушном зазоре