Модульно штыревое заземление — секреты и ошибки монтажа в частном доме.

Содержание

Среди различных возможностей сделать жилье безопасным, особое место занимает заземление в частном доме: схема электросети любого современного дома не будет утверждена, если в ней не будет предусмотрено подключения к заземляющему контуру.

Существует несколько вариантов и схем заземления частного дома, плюс четкие требования ПУЭ (правила устройства электроустановок) – все это надо знать и понимать, чтобы электричество в доме было безопасным.

Зачем нужно заземление в частном доме: принцип действия

Заземление в частном доме считается важной частью системы электроснабжения. Его монтируют с такими целями:

  • Защита обитателей дома от поражения электротоком (при касании прибора с нарушенной изоляцией электропроводки);
  • Корректная работа современных электрических устройств;
  • Безопасная эксплуатация газового оборудования;
  • Эффективная работа молниезащиты.

Принцип действия системы основан на элементарных законах физики, которые говорят, что электрический ток всегда движется в сторону наименьшего сопротивления.

При повреждении изоляции прибора ток выходит (замыкается) на корпус. Такая ситуация чревата сбоями в функционировании и поломкой, не говоря об опасности для человека получить чувствительный разряд, случайно дотронувшись рукой до поверхности.

При наличии заземления ток распределяется с учетом величины сопротивления тела и заземляющего контура дома (в обратно пропорциональной зависимости).

Тщательно продуманное защитное заземление образует электрическую цепь с сопротивлением, значительно меньшим, чем сопротивление человеческого тела. Ток, проходящий через человека, не окажет опасного воздействия, а основной заряд уйдёт в грунт.

Главным элементом заземления частного дома служит контур заземления – ПУЭ определяет его как металлические проводники и электроды-заземлители (стержни или трубы), заглубленные в грунт.

Внутренняя электропроводка по современным стандартам выполняется трехжильным проводом (фаза + ноль + заземление). Провода защитного заземления соединяют контур с электроустройствами.

Чтобы обеспечить безопасность при грозах, используют предназначенные для этого устройства — разрядники, рассчитанные на большие величины токов и напряжений.

Современные системы заземления и рекомендации ПУЭ

В настоящее время существуют три системы заземления электросети, TN, TT и IT. Преимущественно в быту используется одна из разновидностей первой из них – TN-C, TN-S, TN-C-S.

Расшифровка аббревиатур

Первая буква говорит о способе заземления источника питания, вторая характеризует заземление потребителя.

  • I – токоведущие части источника изолированы от земли;
  • N – потребитель присоединен к точке заземления источника (занулен).
  • С – проводники N (нулевой рабочий) и РЕ (нулевой защитный) объединены в один общий проводник PEN;
  • S – функции проводников N и РЕ разделены.

Подвиды системы TN (TN-C, TN-S, TN-C-S) различаются по способу подключения проводников N и PE.

Система TN-C

В этом случае один проводник (N и PE объединены на всем протяжении электросети) исполняет как рабочие, так и защитные функции.

Такой способ организации системы повсеместно встречается в старом жилом фонде, он прост в исполнении и экономичен. Но отсутствие отдельного защитного заземления часто приводит к короткому замыканию при аварийной ситуации (скачках напряжения). По современным нормам, отраженным в требованиях ПУЭ, система заземления TN-C запрещена для новых построек. При этом нет обязательного требования модернизировать старые (если не делается капитальный ремонт).

Система TN-S

Здесь проводники N и PE разделены, напряжения на корпусах электроприборов не появляется. Система безопасна и хорошо защищает человека, домашнее электрооборудование и здание. Основной недостаток – высокая себестоимость обустройства.

Система TN-C-S

Комбинированная система. На выходе от источника питания проводники N и PE объединены в одном проводнике. На входе в здание добавляется защитный проводник PE.

При решении вопроса, какое заземление лучше для частного дома, следует обратиться к своду ПУЭ. Он рекомендует подсистему TN-C-S как основную для большинства потребителей; она проста в организации и надежнее других защищает от пожара вследствие короткого замыкания.

Элементы контура, варианты заземления и необходимые материалы

Системы защитного заземления (заземляющие устройства) принято делить на следующие элементы:

  • заземлитель (контур заземления); встречается естественный и искусственный вариант;
  • заземляющие проводники.

Согласно ПУЭ предпочтительным будет использование естественного заземлителя (металлический забор или трубопровод), если его сопротивление соответствует установленным нормам. В противном случае разрешено использовать искусственный заземлитель. Для его сооружения необходимы:

  • Металл для заземлителя (труба, гладкая арматура, стальной уголок, прут, лента).
  • Провод из стали, меди или алюминия достаточного сечения.
  • Крепежный материал (металлические уголки, хомуты, муфты).
  • Крепления и изоляция из пластика.

Модульно-штыревое заземление

Контур заземления загородного дома можно организовать на основе модульно-штыревого способа. Система крайне устойчива к коррозии, при монтаже не используется сварка. Штыревое заземление собирается из стальных стержней длиной до 1,5 м с резьбовым соединением. Омеднённые (или с верхним слоем из нержавеющей стали) штыри забиваются в грунт вибромолотом (перфоратором) со специальной насадкой. Электроды (штыри) монтируются на большую глубину, поэтому параметры контура не зависят от сезонных изменений. Комплект обычно приобретается в готовом виде у организации, которая занимается установкой. Высокая стоимость такого контура оправдана его долговечностью: срок эксплуатации омеднённых стержней достигает 30 лет, из нержавеющей стали – 50 лет.

Контур из черного металла

Такая конструкция имеет ограниченный срок службы (5-10 лет, из-за коррозии); с течением времени сопротивление контура значительно ухудшается. Допускается использование черного металлопроката с антикоррозионным покрытием, но надо обращать внимание, чтобы такое покрытие не было диэлектриком.

Требования к сопротивлению заземляющего устройства.

Заземление для частного дома имеет смысл, если сопротивление контура минимально. В таком случае (когда сопротивление человека намного превышает сопротивление контура) через тело пройдет неощутимый заряд, а оставшийся потенциал уйдет в землю.

Сопротивление определяется типом, количеством и глубиной заложения заземляющих элементов, а также свойствами грунта. Оптимальными считается суглинистые и глинистые почвы с влажностью 20-40%.

Чтобы убедиться, что заземляющее устройство выполняет свои функции, проводится измерение сопротивления.

Что делать при замене старой проводки с заземлением TN-C

В большинстве домов старого жилого фонда устанавливалась двухпроводная система электроснабжения. Даже если устанавливалось заземление, то оно выполнялось по схеме TN-C, которая использует один-единственный «нулевой» проводник для исполнения двух задач – рабочей (для функционирования электроприборов и устройств) и защитной (для сохранения оборудования электрических сетей).

По сути, такая система надежно оберегает электрическую цепь в целом, но оставляет практически без защиты запитываемые бытовые электроприборы и их владельцев. Кроме того, в сырую погоду такое подключение может приводить к проскакиванию напряжений даже при защитном отключении – по подобным причинам известны случаи летальных исходов.

При возведении новых домов эта система не допускается; там, где она сохранилась, рекомендуется по возможности переходить систему TN-C-S (на входе в здание провод PEN повторно заземляется с последующим разделением на PE и N). При аварийной ситуации проводник N отсоединяется от сети, уберегая бытовые электроприборы и их хозяев от проблем.

Переход на систему TN-C-S в домах с изношенной электропроводкой оправдан соображениями безопасности.

Зачем при наличии заземления нужно УЗО

УЗО (устройство защитного отключения) представляет собой быстродействующий выключатель, работающий в паре с контуром заземления и реагирующий на утечку тока разрывом цепи.

Схема без заземления и УЗО

Когда изоляция проводника нарушается, фаза появляется на металлическом корпусе электрического прибора. Если току некуда уйти дальше, то при контакте человека с корпусом электроприбора, разряд пойдет через тело. Последствия будут зависеть от множества факторов и результаты могут быть разные – от испуга до перебоев в работе сердца.

Без наличия заземления фаза на поверхности прибора с поврежденной проводкой будет оставаться, пока не выключится вводной автомат.

УЗО в схеме без защитного проводника (TN-C)

В такой системе при нарушении изоляции проводника УЗО сразу не сработает, так как не возникнет ток утечки. Но как только человек прикоснется к поврежденному прибору, то часть тока уйдет в тело и УЗО сработает.

Даже без наличия заземления ток будет течь через тело человека только в течение времени, необходимого для срабатывания УЗО – обычно это десятые доли секунды. Как итог – возможны болезненные ощущения, но фатального исхода скорее всего удастся избежать.

Схема с защитным проводником (TN-S и TN-C-S) и УЗО

Если электроприбор контактирует с контуром заземления и подключен через УЗО, то в случае замыкания фазного проводника на металлический корпус электроприбора, сразу же появляется утечка тока (который уходит в землю). УЗО срабатывает и разрывает цепь.

Газовый котел и УЗО

В первую очередь надо понимать, что заземление газового котла в частном доме должно выполняться в обязательном порядке — исключений не существует.

Заземление газового котла и установка УЗО выполняются одновременно. Это необходимое условие при подключении газа к жилому дому, так как на корпусе газового котла во время работы образуется поверхностное напряжение.

Заземление газового котла в частном доме позволит избежать поломки дорогостоящего электронного оборудования и предотвратить возгорание, причиненное статическим электричеством. Эта мера, учитывая высокую взрывоопасность газа, служит дополнительной защитой от пожара.

Какие проводятся работы при монтаже заземления

Весь процесс создания заземляющего контура делится на следующие этапы:

  • После определения безопасной глубины конструкции (там, где грунт всегда влажный) выкапывается траншея.
  • Металлические стержни (заземляющие электроды) заглубляются в грунт.
  • Собирается контур заземления: стержни, расположенные в ряд или в форме фигуры (обычно треугольник), соединяют лентой или трубами, свариваются последовательно.
  • Контур дополнительно приваривается к токоотводу стальной лентой.
  • Готовый заземлитель подключается к электрощиту, траншея засыпается.

При монтаже, грамотные специалисты учитывают некоторые важные нюансы:

  • Контур должен располагаться ниже линии промерзания грунта. В противном случае, когда вода в земле превратится в лед, то грунт перестанет проводить ток и заземление не будет работать.
  • Заземляющие электроды нельзя окрашивать, так как слой краски это диэлектрик и контакта контура с землей не будет.

Заключение

Все, что стало привычным в повседневной жизни – холодильник, СВЧ-печь, гидромассажная кабина – не должно нести опасность. Грамотно спроектированное заземление в загородном доме, когда контур системы и корпуса приборов являются одним целым, должно обеспечивать безопасное электроснабжение, без риска для людей и их окружения.

Мой рассказ будет состоять из трёх частей.

В первой части я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования. Во второй части будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений. Третья часть в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт. Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.

В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

Материал для контура заземления

Контур заземления состоит из вертикальных и горизонтальных заземлителей. Материал из которого не рекомендуется делать вертикальные заземлители:

  • ⚡рифленая арматура
  • ⚡круглая сталь диаметром менее 10мм

Из чего можно делать:

Конец уголка или круглой стали срезают на угол в 30 градусов. Это наиболее оптимальный угол для вхождения стали в землю.

Размеры и расстояния для заземляющих электродов

Обязательные условия которые необходимо соблюдать при устройстве заземления в частном доме:

  • ⚡длина электрода, который забивается в землю. Он должен быть минимум 2,5-3 метра
  • ⚡длина электрода, который забивается в землю. Он должен быть минимум 2,5-3 метра

Изначально лучше брать электрод длиной 3м. Так как в процессе забивания его кувалдой, будет расплющиваться та часть, по которой наносится удар. В конце Вам придется болгаркой несколько сантиметров такого расплющенного электрода срезать.

  • ⚡расстояние между электродами. Оно также должно быть 2,5-3 метра
  • ⚡расстояние между электродами. Оно также должно быть 2,5-3 метра

Вне зависимости от того, какого вида у Вас контур — в виде треугольника или прямой линии. Это связано с явлением растекания тока от заземлителей. Если электроды будут забиты ближе чем 2,5м то получается нет никакой разницы, сколько электродов Вы забили.

Работать они будут почти как один электрод.

  • ⚡заглубление траншеи от планировочной отметки земли — 0,7-0,8м
  • ⚡заглубление траншеи от планировочной отметки земли — 0,7-0,8м

Траншея — это место для укладки полосы, связывающей электроды. При меньшем углублении траншеи, полоса будет подвержена воздействию осадков и быстрому процессу коррозии. При большем углублении — опять возникает риск воздействия сырости от грунтовых вод.

  • ⚡расстояние контура заземления от фундамента дома — не менее 1м
  • ⚡после раскопки траншеи ее подсыпают песком для лучшего отвода воды от горизонтального заземлителя.

Заглубление электродов

Когда весь материал и траншеи готовы приступают к процессу забивания электрода. Для облегчения процесса в яму подливают немного воды. Вертикальный электрод можно забивать двумя способами:

Первоначально верхний конец электрода будет на большой высоте. Поэтому потребуется стремянка.

Забивать до конца весь электрод в землю не надо. Минимум 20см оставляйте на поверхности, так как в этом месте нужно будет приварить полосу. Длина сварочного шва — не менее 6-10см. Сам шов прокрашивается.

Ни в коем случае не красьте горизонтальные и вертикальные заземлители.

Тем самым Вы увеличите сопротивление заземления и ухудшите связь с землей.

Чтобы улучшить контур заземления, можно его соединить с уже существующими металлическими конструкциями заглубленными в земле — например с забором.

Соединение заземления с электрощитом

Когда контур сделан, его необходимо соединить с электрощитом. Здесь уже можно использовать не полосу, а проволоку диаметром 10мм. С горизонтальным заземлителем ее связывают сваркой, а с корпусом щита при помощи болтового соединения.

Также Вы можете вывести полосу горизонтального заземлителя на поверхность возле щита, и приварив к полосе болт, медным проводником сечением 10мм2 соединить контур с щитовой. Болтовое соединение должно быть на поверхности и доступно для ревизии.

Проверив надежность соединения сварочных швов, траншею засыпают землей. На этом монтаж контура заземления окончен.

Представлено 4 товара

Заземление играет ключевую роль в защите электрических цепей — оно является элементом защиты от поражения электрическим током, защищает от воздействия помех и молний, ​​а также обеспечивает правильную работу электрических устройств в нормальных условиях.

Измерение сопротивления заземления направлено на определение наивысшего ожидаемого значения заземления, чтобы проверить, соблюдены ли условия защиты от поражения электрическим током, перенапряжения и молнии в контексте применимых технических требований.

Заземляющее устройство состоит из заземлителя и соединяющих проводов (или шин).

Заземлитель, в виде металлической трубки или прута, закапывается в землю и обеспечивает контакт между заземляющим устройством и грунтом. Соединительные провода предназначаются для соединения заземлителя с металлическими частями электроустановок, изолированных от токонесущих элементов.

Общее сопротивление заземляющего устройства определяется главным образом сопротивлением заземлителя растеканию тока в земле, или, как часто говорят, сопротивлением растекания контура защитного заземления. Величина этого сопротивления зависит от конструкции заземлителя (в частности, от площади его соприкосновения с грунтом) и от удельного сопротивления грунта.

Последнее зависит в свою очередь от времени года и состояния погоды, поэтому сопротивление растеканию тока может изменяться в широких пределах. Общее сопротивление заземляющего устройства включает и сопротивление соединяющих проводов. Однако в отличие от сопротивления заземлителя это сопротивление практически не изменяется в течение года и не зависит от состояния погоды.

Из сказанного следует, что для проверки технического состояния заземляющего устройства необходимо прежде всего измерить сопротивление заземлителя растеканию тока. Эта задача обычно решается с помощью специальных приборов — измерителей заземлений.

Простые приборы, с помощью которых можно измерять сопротивление заземление, могут проводить технический тест

К популярным типам устройств этого типа относятся токовые клещи для безэлектродных методов измерения, простые тестеры-измерители и усовершенствованные модели, которые могут сочетать в одном устройстве несколько методов измерения сопротивления заземления — трехпроводный и четырехпроводный технический метод (метод вольтметра и амперметра), двухпроводный метод при отсутствии свободного места для второго штыря, компенсационный метод, импульсный метод, измерение сопротивления заземляющих устройств опор ВЛ, измерение удельного сопротивления почвы (грунта).

Наиболее часто используется классический технический метод с трех или четырехпроводным подключением (трехзажимный и четырехзажимный). Оба способа подключения могут быть реализованы в одном измерительном приборе. Заземляющие устройства молниезащиты чаще всего тестируются импульсным методом.

Fluke 1621 — это простой в использовании тестер заземления

Тестер сопротивления заземления Extech 382-252:

Современные приборы позволяют производить измерения методом компенсации, при котором полностью исключается зависимость показаний приборов от сопротивлений вспомогательного заземлителя и зонда.

Самое главное в этом вопросе — знание методов измерения. Но что такое метод измерения? Это серия действий, которые выполняются для определения результата измерения. На практике могут использоваться различные типы методов измерения, в зависимости от природы измеряемой величины и необходимой точности измерений.

Подробно обо всех основных методах измерения, используемых на практике смотрите здесь: Как выполняется измерение сопротивления заземления

Простые измерительные приборы (тестеры) считаются простейшими приборами для измерения сопротивления заземления. Некоторые модели предназначены для контроля заземления автоцистерн, железнодорожных цистерн, судов и самолетов во время погрузки и заправки.

Полезным решением является метод измерения с двумя зажимами, а в некоторых случаях измерение без необходимости использования вспомогательных щупов, вбитых в землю

Многофункциональные измерительные приборы для электроустановок пользуются большой популярностью у электриков. Несмотря на то, что они небольшие, они позволяют измерять основные параметры электроустановок.

Функциональность этого типа устройства определяется способностью выполнять измерения электрических величин, таких как полное сопротивление петли короткого замыкания, сопротивление заземления, полного сопротивления сети.

Многие современные приборы могут также проводить измерение сопротивления изоляции с номинальным напряжением при помощи переменного или увеличивающегося испытательного напряжения при малоомных измерениях, определять непрерывность проводников защитного заземления и системы уравнивания потенциалов.

Современные измерительные приборы высоко ценятся. В некоторых технически продвинутых устройствах предусмотрены все известные методы измерения сопротивления заземления.

Некоторые модели позволяют точно измерять полное сопротивление петли короткого замыкания L-PE цепей в сетях с УЗО без необходимости блокировки выключателя (измерение с током 15 мА, разрешение 0,01). На рынке также доступны модели, благодаря которым пользователь получает возможность записывать переменные ток и напряжения, а также измерять мощность и проверять последовательность фаз.

Такие приборы можно использовать для проведения диагностических работ при техническом обслуживании электрооборудования во всех сетях переменного и постоянного тока с напряжением 1000 В.

Интересными решениями являются многофункциональные измерительные приборы, которые также выполняют функции анализатора качества электроэнергии. Функции, связанные с измерением и записью напряжений, токов, активной, реактивной и полной мощности, косинуса φ, определением частоты и коэффициента искажения для тока и напряжения, а также гармоник напряжений и токов, а также аномалий напряжения, безусловно, окажутся полезными.

Фотографии для статьи предоставлены компанией Fluke. Также использованы фотографии компании Sonel.

Fluke предлагает обширную линейку цифровых мультиметров, анализаторов электроэнергии, тепловизионных камер, тестеров сопротивления изоляции, аксессуары и интегрированные портативные диагностические инструменты из серии ScopeMeter.

Они используются все большим числом электриков, сервисных техников, инженеров по промышленным системам, монтажников и специалистов по техническому обслуживанию. Эти инструменты дают им возможность быстро диагностировать современные и сложные системы и быстро обнаруживать имеющиеся проблемы.

Задача

Произвести расчет молниезащиты и заземления бетонного завода.

Расчет сопротивления заземляющего устройства

По предоставленным заказчиком данным грунт мерзлый: суглинок, щебенистый и дресвяный.

Расчетное удельное сопротивление грунта принимается по удельному сопротивлению мерзлого дресвяного грунта равному 1898 Ом∙м.

Предупреждение. В случае ошибочности и ограниченности предоставленных заказчиком данных о грунте приведённый расчёт заземляющего устройства считается неверным. В случае отличия удельного сопротивления грунта от расчетного необходимо выполнить расчет с действительным значением. При превышении нормируемого сопротивления заземляющего устройства необходимо внести изменения в конструкцию.

Расчет выполняется по формулам, приведенным на странице Расчет заземления.

Ниже указаны расчетные формулы уже с подставленными данными.

Расчетное сопротивление заземляющего устройства составляет 9,38 Ом, что меньше требуемого сопротивления 10 Ом в соответствии с ПУЭ 7 изд, пункт 1. 103.

Комплектующие для молниезащиты и заземления бетонного завода

№АртикулНаименованиеКоличество, шт. Система молниезащиты1. ZZ-201-010-3Молниеприёмник-мачта ZANDZ вертикальный 10 м с комплектом из 3х креплений к стене (нерж. сталь)22. ZZ-202-002ZANDZ Зажим к молниеприёмнику D42 мм для токоотводов (нержавеющая сталь)23. ZZ-502-008-125Проволока ZANDZ стальная оцинкованная (D 8 мм / S 50 мм²; бухта 125 м) 14. GL-11747AGALMAR Зажим на крышу, покрытую металлическим профилем / профнастилом, для токоотвода (крашенная оцинкованная сталь)905. GL-11703AGALMAR Зажим к фасаду/стене для токоотвода с возвышением (высота 15 мм; оцинк. сталь с покраской)306. GL-11562AGALMAR Зажим контрольный для соединения токоотводов проволока + полоса (крашенная оцинкованная сталь)2Заземляющее устройство7. ZZ-100-102ZANDZ Комплект электролитического заземления (горизонтальный; 3 метра)88. ZZ-005-064ZANDZ Зажим для подключения проводника (до 40 мм)119. ZZ-502-304-52Полоса ZANDZ стальная оцинкованная (30*4 мм; бухта 52 м)110. ZZ-502-304-6Полоса ZANDZ стальная оцинкованная (30*4 мм; отрез 6 м)211. ZZ-007-030ZANDZ Лента гидроизоляционная4

У вас возникли вопросы по молниезащите и заземлению бетонного завода в вечной мерзлоте? Обращайтесь в Технический Центр ZANDZ!

Изменение параметров заземлителей с течением времени

Потребность в том, чтобы периодически проверять сопротивление заземления, вызвана изменениями его реального значения с течением времени и в зависимости от климатических условий.

Последнее обстоятельство связано с их зависимостью от множества факторов, основными из которых являются:

  • Ухудшение контакта в зонах сопряжения металлических элементов из-за повышенной влажности.
  • Изменение состояния грунта в месте его обустройства в засушливые и знойные дни.
  • Старение (износ) металлоконструкций и подводящих проводников, которые согласно ГОСТ должны иметь определенную толщину.

Проверять сопротивления заземления можно любым допустимым нормативами способом с привлечением подходящих для этих целей измерительных приборов. Рассмотрим самые известные из этих методик более подробно.

Измерения переходного сопротивления

При измерении параметров контура заземления особое внимание уделяется так называемым «переходным» зонам, образующимся по всей площади непосредственных сочленений элементов конструкции (включая их контакт с почвой и сам грунт). Для этих участков вводится понятие «переходного сопротивления», в значительной мере влияющего на суммарное значение. Все рассмотренные выше методы измерения касались и этой части общего сопротивления системы (за исключения сопротивления материала заземляющих проводников и штырей).

По его величине можно судить о скорости стекания опасного заряда в землю, а также о тех препятствиях, которые встречаются на пути. В действующих системах эта составляющая вносит ощутимый вклад в формирование общего показателя для всего ЗК.

Как измерять переходное сопротивление

Перед тем как измерять заземление в переходных зонах потребуется приготовить специальный прибор, называемый миллиомметром. Для проведения этих испытаний сгодится любой другой прибор для измерения заземления из той же серии (иногда для этого используются универсальные аппараты М-416). Независимо от типа выбранного прибора для этих целей должна использоваться только сертифицированная измерительная техника, прошедшая государственную поверку. В противном случае проведенные на приборе измерения не будут считаться соответствующими действующим нормам и ГОСТам.

При проведении таких замеров прибор, выбранный в качестве измерительного устройства с заряженным питающим аккумулятором, подключается своими зажимными клеммами по обе стороны контролируемого соединения. Независимо от типа элементов контура переходное сопротивление между ними не должно превышать 0,05 Ома. Если проведенное таким методом измерение переходного сопротивления заземления дало неудовлетворительный результат – эксплуатацию установки прекращают до выявления причин и их устранения. Схема измерений переходной проводимости представлена на фото ниже.

Перед тем как проверить контур заземления – необходимо ознакомиться с существующими методиками его расчета. В подавляющем большинстве случаев они сводятся к простейшим вычислениям по закону Ома (путем деления измеренного напряжения на снятые в соответствующей цепи токовые показания).

Дополнительная информация: Перед расчетом удельного сопротивления заземления важно учесть все звенья цепочки стекания аварийного тока, включая контактные зоны.

Полученный в итоге результат полностью характеризует конструкцию на ее соответствие нормируемым показателям.

Как часто замеряется

Сроки проверки заземления электроустановок устанавливаются согласно следующим требованиям нормативам:

  • Визуальные осмотры – каждые полгода.
  • Поверка качества соединений металлических элементов в их стыках – раз в год.

Возможны и внеплановые проверки переходного сопротивления заземлителя, которые проводятся обычно после реставрации контура, а также при внесении в его конструкцию серьезных коррективов. Испытания также могут проводиться и при сдаче вновь запускаемой системы заземления в эксплуатацию.

При организации очередных или внеочередных проверок необходимо руководствоваться общими положениями по расчету удельного сопротивления заземления.

Сопротивление повторного заземления

Повторное заземление является важнейшим элементом комплексной системы защиты от поражения электрическим током. Оно устанавливается на приемной стороне питающей линии при наличии в подводке в ней нулевого провода РЕ или РЕN.

Важно! Это требование справедливо для сетей, работающих по схеме ТN с глухо заземленной нейтралью.

Как правило, в качестве повторного заземления используются как естественные, так и искусственно созданные элементы. Однако сопротивление естественных заземлителей зависят от очень многих факторов (включая климатические условия), так что с течением времени оно постоянно меняет свое значение.

В связи с этим при обустройстве этого типа заземлений предпочтение отдается искусственно созданным системам, имеющим вполне конкретные показатели.

Заземляющий провод такого устройства выводится от ЗК в сторону вводного щитка с установленной в ней главной заземляющей шиной (ГЗШ).

Необходимость в повторном заземлении своими руками монтируемом на стороне потребителя, объясняется следующими причинами:

  • Его наличие исключает опасные ситуации, возникающие в питающей сети при обрыве нейтрального или заземляющего провода, идущего от силовой подстанции (фото выше).
  • В данном случае оно может работать как самостоятельное заземление, обеспечивающее безопасные условия эксплуатации электроустановок на стороне потребителя.
  • При нем в квартире или частном доме можно обустроить электропроводку с третьей (заземляющей) жилой.

Наличие повторного заземления специально оговаривается в ПУЭ, отдельные положения которых предписывают его обязательную установку и испытание.

Какая периодичность измерений

Перед тем как замерить сопротивление заземления тем или иным способом – важно учесть требования ПУЭ в части периодичности проведения этих испытаний. Согласно основным положениям этого документа они могут проводиться в следующих формах:

  • плановые обследования;
  • внеочередные проверки;
  • пусковые испытания.

Периодичность каждой из этих разновидностей проверок определяется теми целями, которые они перед собой ставят. Периодичность проверок сопротивления изоляции станционного оборудования обычно согласуется с обследованием самого ЗК. Рассмотрим различные их виды более подробно.

Плановые проверки

Сроки проведения плановых мероприятий оговариваются инструкцией РД-34. 121-87, а также требованиями ПУЭ. Из этих документов можно узнать, какова периодичность визуального осмотра видимых частей устройств заземления, которая согласно им организуется не реже одного раза в полгода. Помимо этого из этих же нормативов следует, что не реже чем раз в 12 лет должны проводиться обследования конструкции со вскрытием грунта вокруг нее. Измерение сопротивления контуров заземления согласно тем же документам должно проводиться не реже раза в 6 лет.

Ответственными за проведение таких проверок являются лица, уполномоченные на это соответствующими органами. Владелец частного дома должен заранее оформить заявку на их проведение с последующей оплатой. По завершении испытаний он обязан предоставить в местную энергетическую службу протокол измерений сопротивлений контактов между элементами ЗК.

Внеочередные

Внеочередные измерения параметров контура должны проводиться в следующих внештатных ситуациях:

  • После внесения в конструкцию изменений, не предусмотренных проектом, но влияющих на сопротивление растеканию току (измерение заземления в частном доме должно проводиться при переносе его на другое место).
  • После аварийного разрушения и последующего восстановления ЗК.
  • По завершении ремонтных работ.

Периодичность их проведения по понятным причинам не регламентируются.

Пусковые или вводные

Пусковые или вводные проверки заземления и измерения сопротивления организуются сразу же по окончании монтажа защитного контура (то есть накануне сдачи его представителю местной энергетической службы). Для этого потребуется пригласить специалиста от электрической лаборатории или другой организации, имеющей лицензию на право проведения таких испытаний.

По итогам проверки оформляется акт приемки, являющийся основанием для последующего пуска устройства в эксплуатацию и подтверждением того, что все питающие линии в частных домах заземлены.

Условия проведения испытаний

При организации мероприятий по проверке заземления важно обратить внимание на те условия, в которых предполагается их проведение. Они должны учитываться еще на стадии подготовки испытаний, а по их окончании вноситься в особый журнал. Согласно требованиям действующих нормативов (ПУЭ, в частности) для этого желательно выбирать летнюю пору с солнечной сухой погодой, позволяющей получить наиболее близкие к реальности результаты. Это объясняется тем, что в такое время грунт поддерживается в достаточно сухом состоянии, соответствующем реальным условиям эксплуатации защитного сооружения.

При проведении контрольных замеров допустимых сопротивлений в осеннюю сырую погоду, например, полученные результаты будут в значительной степени искажены. Это объясняется тем, что пропитанный влагой грунт существенно увеличивает показатель проводимости почвы. Для того чтобы избежать всех этих сложностей и получить значение близкое к реальной величине – проще всего воспользоваться услугами профессионалов. Для этого необходимо обратиться в специальную электротехническую лабораторию, имеющую лицензию на проведение соответствующих работ.

Специалисты по прибытию на место выявят все факторы и организуют испытания защитного оборудования в соответствие с требованиями действующих нормативов. По завершении всего испытательного цикла ими же будет оформлен протокол измерения сопротивления заземления образец которого представлен ниже.

Подготовительный этап

Измерение сопротивления заземляющих устройств производится в летний или зимний период, когда сопротивление грунта достигает максимального значения. Если испытываются вновь смонтированные установки, в этом случае результаты измеряемого сопротивления корректируются с помощью повышающего коэффициента, учитывающего степень высыхания или промерзания грунта.

При наличии в электроустановке небольшого количества оборудования, проверка сопротивления устройства заземления осуществляется непосредственно на корпус этого оборудования. Если же оборудование имеется в большом количестве, а заземляющая сеть достаточно разветвленная, выполняются раздельные измерения сопротивлений – заземлителя и заземляющих проводников. Таким образом, проверяется металлическая связь контура заземления с корпусами электрооборудования. Данная процедура выполняется с использованием вспомогательного заземлителя, подключаемого совместно с испытываемым заземлителем к измерительному прибору.

Для того чтобы измерить падение напряжения на объекте испытаний, во время прохождения через него тока, в зоне с нулевым потенциалом размещается зонд. На точность измерений сопротивления влияет взаимное расположение основного и вспомогательного заземлителей и расстояние между ними.

На схемах отмечен специальный размер d, который в каждом случае будет следующим:

  • Заземляющие сетки и заземлители, представляющие собой контур с вертикальными электродами. Размер d будет величиной самой большой диагонали.
  • Заземлители, представляющие собой вертикальные электроды, объединенные горизонтальной полосой. Величина d будет длиной этой полосы.
  • То же самое, когда заземлитель является одиночной горизонтальной полосой.
  • Если же заземлители состоят из железобетонных фундаментов зданий или стальных полос, используемых для выравнивания потенциалов, то величиной d считается максимальный размер здания в плане.

Разнос электродов должен выбираться в таком направлении, чтобы они находились не ближе 10 метров от металлоконструкций, расположенных под землей. Если подземные коммуникации присутствуют в большом количестве, может возникнуть необходимость в проведении сразу нескольких измерений. При этом выбираются различные направления лучей и разные расстояния между зондами. После нескольких измерений, наиболее точным значением будет считаться самый плохой результат.

Забивание электродов осуществляется в грунт с естественной плотностью, на минимальную глубину 0,5 метра. В случае высокого удельного сопротивления грунта, места забивки вспомогательных заземлителей увлажняются водой, а также кислотным или солевым раствором.

Какова средняя периодичность проверки состояния заземления

Периодичность проверки заземления оборудования и труб основывается на правилах эксплуатации выбранных технических устройств. Для зданий подходят индивидуальные правила, которые включают общие рекомендации по осмотру контура заземления. Сроки измерений указываются в специальных справочных материалах, которые будут использованы при выполнении профилактических мероприятий.

Как правило, чтобы поддерживать электрическую сеть в рабочем состоянии, достаточно проводить визуальный осмотр участков заземления раз в полгода. Периодичность глубокого исследования сопротивления переносного электрооборудования или дымовых труб составляет раз в год. При этом подразумевается и обследование грунта возле заземленного оборудования.

Ответственность за выполнение проверок в планируемые сроки лежит на собственнике или на работнике, которого назначил собственник. Выполнять проверку заземления переносного оборудования должны только профессионалы. Они смогут оценить качество соединения заземляющей установки с выбранным объектом, проверить целостность изоляции. Благодаря современному оборудованию они смогут найти обрыв на соединениях и выполнить ремонт.

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий