На чем основан принцип работы электродвигателя

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.

Любой электрический двигатель состоит из двух основных элементов, один из которых является неподвижным, такой элемент называется статором. Второй элемент является подвижным, эта часть двигателя называется ротором. Ротор электрического двигателя может быть выполнен в двух вариантах, а именно может быть короткозамкнутым и с обмоткой. Хотя последний тип на сегодняшний день является достаточно большой редкостью, поскольку сейчас повсеместно используются такие устройства, как частотные преобразователи.

Принцип работы электродвигателя — разновидности и типы

На сегодняшний день наиболее распространенными считаются двигатели, которые имеют магнитоэлектрический тип. Есть еще тип электродвигателей, которые называют гистерезисные, однако они не являются распространенными. Первый тип электродвигателей, магнитоэлектрического вида, могут подразделяться еще на два подтипа, а именно электродвигатели постоянного тока и двигатели переменного тока.

Первый вид двигателей осуществляет свою работу от постоянного тока, эти типы электродвигателей используются тогда, когда возникает необходимость регулировки скоростей. Данные регулировки осуществляются посредством изменений напряжения в якоре. Однако сейчас существует большой выбор всевозможных преобразователей частот, поэтому такие двигатели стали применяться все реже и реже.

Двигатели переменного тока соответственно работают посредством действия тока переменного типа. Здесь так же имеется своя классификация, и двигатели делятся на синхронные и асинхронные. Их основным различием становится разница во вращении необходимых элементов, в синхронном движущая гармоника магнитов движется с той же скоростью, что и ротор. В асинхронных двигателях наоборот, ток возникает за счет разницы в скоростях движения магнитных элементов и ротора.

Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).

Электродвигатель – это просто устройство для эффективного преобразования электрической энергии в механическую.

В основе этого преобразования лежит магнетизм. В электродвигателях используются постоянные магниты и электромагниты, кроме того, используются магнитные свойства различных материалов, чтобы создавать эти удивительные устройства.

Существует несколько типов электродвигателей. Отметим два главных класса: AC и DC.

Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).

Электродвигатели класса DC (Direct Current) требуют для работы источник постоянного тока или напряжения (такой источник Вы можете найти в любой батарейке).

Универсальные двигатели могут работать от источника любого типа.

Не только конструкция двигателей различна, различны способы контроля скорости и вращающего момента, хотя принцип преобразования энергии одинаков для всех типов.

Электродвигатели используются повсюду. Даже дома вы можете обнаружить огромное количество электродвигателей. Электродвигатели используются в часах, в вентиляторе микроволновой печи, в стиральной машине, в компьютерных вентиляторах, в кондиционере, в соковыжималке и т. д. и т. п. Ну а электродвигатели, применяемые в промышленности, можно перечислять бесконечно. Диапазон физических размеров – от размера со спичечную головку до размера локомотивного двигателя.

Показанный ниже промышленный электродвигатель работает и на постоянном, и на переменном токе. Его статор – это электромагнит, создающий магнитное поле. Обмотки двигателя поочередно подключаются через щетки к источнику питания. Одна за другой они поворачивают ротор на небольшой угол, и ротор непрерывно вращается.

Двигатели постоянного тока по наличию щеточно-коллекторного узла подразделяют на:

Основные характеристики электродвигателей:

— номинальная частота вращения вала,

По принципу возникновения вращающего момента электродвигатели можно разделить на магнитоэлектрические (наиболее распространенные) и гистерезисные.

По типу потребляемой энергии магнитоэлектрические двигатели подразделяют на: двигатели постоянного тока и двигатели переменного тока, универсальные двигатели (могут питаться обоими видами тока).

Двигатели переменного тока по принципу работы делят на синхронные и асинхронные.

Двигатели переменного тока по количеству фаз подразделяют на:

— однофазные (запускаются вручную, либо с помощью имеющейся пусковой обмотки или фазосдвигающей цепи),

— двухфазные (в т. ч. конденсаторные),

— трёхфазные (наиболее распространены),

Двигатели постоянного тока по наличию щеточно-коллекторного узла подразделяют на:

По степени защищенности различают:

— открытые (без приспособлений для защиты от попадания внутрь пыли, газов, посторонних предметов, от случайного прикосновения к вращающимся и токоведущим частям);

— каплезащищенные (с приспособлениями для защиты внутренних частей от попадания вертикально падающих капель воды);

— закрытые (внутренняя полость отделена от внешней среды защитной оболочкой), к ним относят также герметически закрытые электродвигатели;

— взрывозащищенные (применяют во взрывоопасных помещениях).

По методу монтажа различают вертикальные, фланцевые, интегрированные электродвигатели и т. п.

Самыми распространенными в современной промышленности, сельском хозяйстве, строительстве и ЖКХ являются асинхронные электродвигатели. Они нашли широкое применение благодаря высокой надежности, простоте обслуживания и возможности работы непосредственно от сети переменного тока. Основная часть стандартных асинхронных двигателей, выпускаемых в России, рассчитана на напряжение сети 380 В при частоте 50 Гц.

Ниже приведены правила маркировки асинхронных трехфазных короткозамкнутых двигателей:

Пример обозначения: АИР ( B , C , E ) 100 L ( S , M ) ( A , B , C ) 2 IM 1081 У3 S 1 IP 54

АИР, ДАТ, 5А, АИММ и т.д. – обозначение серии, наименование завода-изготовителя,

B – встраиваемые, C – с повышенным скольжением, E — однофазные

100, 90, 80, 71, 63, 56, 112 и т.д. – габарит – высота оси вращения

L – ( long ), S – ( short ), M – ( middle ) – установочный размер по длине корпуса

A , B , C – обозначение длины магнитопровода статора (сердечника)

2, 4, 6, 8 – число полюсов

1031, 2081, 3081 – конструктивное исполнение по виду монтажа

У3 – климатическое исполнение по ГОСТ 15150-69

S 1 – режим работы

IP 54 – степень защиты по ГОСТ 17494-87

Синхронные электродвигатели отличаются от асинхронных значительно большей мощностью и полезной нагрузкой. Они способны развивать мощность до 20 000 кВт. Синхронные двигатели применяют в машиностроении, автономном электроснабжении, в качестве силовых машин в компрессорных установках высокой производительности.

Для отдельных отраслей промышленности выпускают специализированные двигатели, например электробуровые, краново-металлургические и др.

Применение энергосберегающих электродвигателей

В наличии в Промснабе представлены электродвигатели асинхронные, взрывозащищенные, крановые, многоскоростные, однофазные, электродвигатели повышенного скольжения. Также у нас представлены комплектующие к электродвигателям, шкивы и втулки. Мы предлагаем вам широкий выбор профильной для Промснаба продукции по выгодным ценам.

По всем вопросам звоните и пишите пожалуйста нашему менеджеру:

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Любой трёхфазный асинхронный электродвигатель служит для преобразования электрической энергии в механическую. Асинхронный электродвигатель благодаря своей простате, высокой надёжности и низкой стоимости получил большое распространение. Данный тип двигателя присутствует повсюду, ведь их выпускают около 90% от общего числа выпускаемых двигателей.

Трёхфазный асинхронный двигатель с короткозамкнутым ротором изобрёл в 1889 году величайший русский учёный и инженер Доливо—Добровольский Михаил Осипович.

Любой трёхфазный асинхронный электродвигатель служит для преобразования электрической энергии в механическую. Асинхронный электродвигатель благодаря своей простате, высокой надёжности и низкой стоимости получил большое распространение. Данный тип двигателя присутствует повсюду, ведь их выпускают около 90% от общего числа выпускаемых двигателей.

Принцип работы асинхронного электродвигателя основан на физическом взаимодействии магнитного поля статора с током наведенным этим полем в обмотках ротора. Обмотка статора выполнена в виде трех катушек сдвинутых в пространстве друг относительно друга на 120 0 .

Электрический ток, проходя через обмотку статора создает вращающееся магнитное поле, которое пересекая замкнутую обмотку ротора наводит в ней ток.

Результатом взаимодействия вращающегося магнитного поля статорных обмоток и токов ротора является вращающий электромагнитный момент который и приводит ротор в движение. Таким образом ротор электродвигателя способен выполнить механическую работу передав свой крутящий момент какому либо механизму (насосу, вентилятору и т.д.). Приведенным выше способом происходит превращение в электродвигателе электрической энергии в механическую.

Материалы, близкие по теме:

где: f — частота тока в станах СНГ частота тока составляет 50 Гц (Герц); p — количество пар полюсов.

В данной статье рассмотрены следующие вопросы:

  1. Устройство трехфазного электродвигателя.
  2. Принцип работы трехфазного электродвигателя.
  1. Устройство электродвигателя 380 В

    Наибольшее распространение в промышленности, сельском хозяйстве и быту среди трехфазных электродвигателей получили асинхронные электродвигателя с короткозамкнутым ротором благодаря их простоте устройства, надежности и дешевизне. Поэтому на примере именно такого электродвигателя мы и будем рассматривать их устройство и принцип работы.

    Асинхронный электродвигатель состоит из двух основных частей: статора и ротора.

    Статор — неподвижная часть электродвигателя. Он состоит из следующих элементов:

    • станина (корпус) которая, как правило, выполняется ребристой для лучшего охлаждения, т.к. в процессе работы сердечник статора с обмотками нагреваются. Так же станина имеет лапы для крепления электродвигателя.
    • сердечник статора — набирается из отдельных листов электротехнической стали для уменьшения потерь на вихревые токи (токи Фуко) и имеет зубчатую форму (пазы) и имеет следующий вид:

    • обмотки статора — выполняются медными проводами которые укладываются в пазы сердечника, концы обмоток для подключения к электрической сети выводятся в клемную коробку.

    Ротор — вращающаяся часть электродвигателя. Ротор состоит из следующих элементов:

    • вал — выполняется из стали служит для передачи механической энергии на рабочий механизм.
    • сердечник ротора — насаживается на вал, так же как и сердечник статора выполняется из отдельных листов электротехнической стали
    • обмотка ротора — как правило имеет короткозамкнутое исполнение, часто короткозамкнутую обмотку ротора называют «беличьим колесом» из-за внешнего сходства. Короткозамкнутая обмотка ротора имеет следующий вид:

    Ротор удерживается в центре статора подшипниковыми щитами.

    Принцип работы трехфазного электродвигателя

    Принцип работы электродвигателя довольно прост и основан на принципе вращающегося электромагнитного поля.

    Таким же образом работает и трехфазный электродвигатель, однако в нем вращающееся магнитное поле создается с помощью специального расположения обмоток статора, которые смещены в пространстве относительно друг друга на 120 о , такое расположение при протекании по ним трехфазного тока приводит к возникновению вращающегося электромагнитного поля.

    Видео воздействия вращающегося электромагнитного поля статора на металлический контур (в качестве контура в данном случае выступает обычное лезвие):

    Вращающееся магнитное поле статора воздействуя на обмотку ротора приводит к возникновению в ней индукционных токов, которые протекая через обмотку ротора создают собственное электромагнитное поле, взаимодействие этих полейприводит ротор во вращение.

    Так же как и магнит статор электродвигателя имеет полюса, однако в отличие от постоянного магнита полюсов в электродвигателе может быть больше двух, при этом их всегда четное количество. Количество полюсов в статоре напрямую влияет на скорость вращения магнитного поля и соответственно на скорость вращения ротора. Частота вращения магнитного поля (синхронная частота) определяется по формуле:

    n=60*f/p

    где: f — частота тока в станах СНГ частота тока составляет 50 Гц (Герц); p — количество пар полюсов.

    Чем больше полюсов у двигателя тем меньше частота его вращения. Например, расчитаем частоту вращения электродвигателя с четырьмя полюсами:

    Четыре полюса — это 2 пары полюсов, соответственно:

    Т.е. синхронная частота вращения магнитного поля статора 1500 об/мин, при этом частота вращения ротора при этом будет немного меньше может составлять 1400-1450 об/мин.

    Относительная величина отставания вращения ротора от частоты вращения магнитного поля статора называется скольжением, она выражается в процентах и определяется по формуле:

    S=(n1-n2)/n1*100%

    где: n1 — синхронная частота вращения, об/мин; n2 — частота вращения ротора (асинхронная частота вращения), об/мин.

    Видео с описанием устройства и принципа действия трехфазного асинхронного электродвигателя с короткозамкнутым ротором:

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Формула изменений такова:

    Линейные электродвигатели

    Для ряда устройств требуется не вращательное движение вала движка, а его возвратно-поступательное движение. Для того чтобы удовлетворить требования промышленников, конструкторами были разработаны и линейные электродвигатели. Понятно, что можно использовать для перехода вращательного движения в поступательное различные редукторы и коробки передач, но это усложняет конструкцию, делает её более дорогой, а также снижает её эффективность.

    Недостатком этих двигателей являются: сложность их изготовления, достаточно высокая стоимость такого оборудования и низкая эффективность, хотя и выше чем использование вращения через редуктор.

    • независимый,
    • параллельный,
    • последовательный,
    • смешанный.

    Сферы применения электродвигателей постоянного тока

    Электродвигатели постоянного тока — наиболее часто используемые приводы для создания непрерывного движения с регулируемой скоростью вращения. Они могут приводить в движение транспортные средства: от игрушечных автомобилей-аттракционов с аккумулятором 12 В до электричек и троллейбусов, где точность регулировки оборотов наглядно демонстрируется плавным разгоном техники. Агрегаты на постоянных магнитах имеют особенно большую плотность мощности, поэтому часто используются в оборонительной отрасли.

    Электрический транспорт — одна из самых распространённых сфер применения ДПТ. На них основана работа:

    • метро,
    • трамваев,
    • троллейбусов,
    • электровозов,
    • пригородных электрических дорог.

    Другую сферу применения ДПТ составляют подъёмные механизмы, включая электрические подъёмные краны. Ввиду отсутствия жёстких ограничений по размерам электродвигатели часто остаются незамеченными. Их используют в автомобилестроении: на грузовом транспорте устанавливаются агрегаты с рабочим напряжением от 24 В, а на легковом — 12 В. Здесь ДПТ работают от генератора или АКБ и отвечают за разные функции:

    • поднятие-опускание стёкол;
    • поддержание в салоне заданной температуры;
    • позиционирование сидений;
    • управление зеркалами и пр.

    Использование электродвигателя на постоянном токе для автоматизированной очистки стёкол

    Для применения ДПТ в качестве генератора тока необходимо поменять полярность питания постоянного тока, подаваемого на соединения агрегата. Т. е., нужно изменить направление тока в якоре или обмотке возбуждения. В результате вал будет вращаться в противоположном направлении. Самым простым и недорогим способом управления вращением вала остаются переключатели.

    При использовании ДПТ учитывается одна из важнейших характеристик — способ подключения обмотки возбуждения:

    • независимый,
    • параллельный,
    • последовательный,
    • смешанный.

    В ДПТ с последовательной схемой возбуждения при необходимости можно уменьшить скорость вращения в 2 раза. За это отвечает переменный резистор, который при необходимости включают в цепь возбуждающей обмотки реостата. В двигателях с параллельной схемой для уменьшения оборотов в 2 раз тоже применяют реостат, а для повышения в 4 раза подключают сопротивление.

    В двигателях с параллельной схемой для уменьшения оборотов в 2 раз тоже применяют реостат, а для повышения в 4 раза подключают сопротивление

    Москва. 16 июня. INTERFAX.RU — Центр Келдыша провел успешные огневые испытания ионного двигателя ИД-200 КР, сообщили в госкорпорации «Роскосмос».

    Москва. 16 июня. INTERFAX.RU — Центр Келдыша провел успешные огневые испытания ионного двигателя ИД-200 КР, сообщили в госкорпорации «Роскосмос».

    «Специалистами ГНЦ ФГУП «Центр Келдыша» успешно проведены огневые стыковочные испытания нового ионного двигателя ИД-200 КР мощностью до 3 кВт с удельным импульсом тяги до 4 500 секунд, блока управления расходом рабочего тела и разработанной НПЦ «Полюс» системы преобразования и управления СПУ-200 КР», — говорится в сообщении.

    Как отмечают в госкорпорации, составные части электроракетной двигательной установки планируется использовать в составе перспективных геостационарных космических аппаратов.

    Ионный двигатель — одна из разновидностей электрического ракетного двигателя. Принцип работы двигателя основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.

    Подобные двигатели обладают существенно меньшей тягой по сравнению с химическими, однако отличаются малым расходом топлива и продолжительностью функционирования — срок непрерывной работы может исчисляться годами.

    Источники
    Источник — http://cable.ru/articles/id-1627.php
    Источник — http://promplace.ru/printcip-dejstviya-elektrodvigatelya-506.htm
    Источник — http://electrik.info/main/school/12-ustrojjstvo-i-princip-raboty.html
    Источник — http://www.promsnab62.ru/articles/108
    Источник — http://www.szemo.ru/press-tsentr/article/asinkhronnyy-elektrodvigatel-printsip-raboty-i-ustroystvo/
    Источник — http://electromontaj-st.ru/statia/99-princip-raboti-asinhronnogo-elektrodvigatelya.html
    Источник — http://elektroshkola.ru/elektrodvigateli/ustrojstvo-i-princip-raboty-trexfaznyx-elektrodvigatelej/
    Источник — http://elquanta.ru/teoriya/princip-raboty-ehlektrodvigatelya.html
    Источник — http://www.elec.ru/articles/elektrodvigateli-postoyannogo-toka-yalu-princip-ra/
    Источник — http://www.interfax.ru/russia/713327

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий