Онлайн-калькулятор расчета последовательного и параллельного соединения резисторов — Производство и поставка электростанций, Бензиновые и дизельные генераторы от 1 до 100 кВт. Мини ТЭЦ на базе двигателя Стирлинга.

Содержание

Схемы с делителем напряжения[1]

Проанализируем простую последовательную схему и определим падения напряжения для отдельных резисторов:

По заданным значениям для отдельных сопротивлений мы определяем общее сопротивление цепи, сложив сопротивления для последовательных резисторов:

Определяем общее сопротивление цепи

Теперь в крайней правой колонке мы можем использовать закон Ома (I = E/R) для определения общей силы тока, которая, будет одинаковой для каждого резистора, поскольку сила тока одинакова для всех участков последовательной цепи:

Используем закон Ома для расчёта силы тока

Теперь, зная, что сила тока в цепи равна 2 мА, можно использовать закон Ома (E = IR), чтобы вычислить напряжение на каждом резисторе:

Вполне очевидно, что падение напряжения на каждом резисторе прямо пропорциональна его сопротивлению, учитывая, что сила тока одинакова на всех резисторах. Обратите внимание: напряжение на резисторе R2 вдвое больше, чем на R1, также как и сопротивление R2 в два раза больше, чем у R1.

Если мы изменим величину общего напряжения, то обнаружим, что данная пропорциональность падений напряжения осталась неизменной:

Формула делителя напряжения

По этой причине последовательную цепь часто называют делителем напряжения из-за этой её пропорциональности, т. общее напряжение как бы делится на дробные части в постоянном соотношении. Используя несложную арифметику, выводим формулу для определения падения напряжения на последовательном резисторе, учитывая не что иное, как общее напряжение, сопротивление отдельного резистора и общее сопротивление всей цепи:

Отношение отдельного сопротивления к общему сопротивлению имеет ту же пропорцию, что и отношение напряжения отдельного резистора к общему напряжению источника питания в цепи, которая называется делителем напряжения. Это равенство известно как формула делителя напряжения, которая является быстрым способом определения падения напряжения в последовательной цепи без проведения всех расчётов с использованием закона Ома.

Пример использования формулы делителя напряжения

Используя эту формулу, мы можем повторно проанализировать падение напряжения на примере схемы за меньшее количество шагов:

Напряжение – разделительные элементы

Делители напряжения находят широкое применение в схемах электросчётчиков, где определённые комбинации последовательных резисторов используются для «разделения» напряжения на точные пропорции, что позволяет создавать устройства для измерения напряжения.

Потенциометры как элементы делителя напряжения

Одним из устройств, часто используемым в качестве элемента делителя напряжения, является потенциометр, представляющий собой резистор с подвижным контактом, перемещаемым с помощью ручки или рычага. Подвижный контакт (обычно его ещё называют ползунок, также используется термин дворник), взаимодействует с резистивной полоской материала (её ещё называют «скользящая проволока», если она сделана из резистивной металлической проволоки) в любой точке, которая устанавливается вручную:

Контакт-ползунок – это на приведённой схеме указывающая влево стрелка, пририсованная к середине вертикального резисторного элемента. При перемещении вверх он контактирует с резистивной полоской, приближаясь к клемме 1 и отдаляясь от клеммы 2, тем самым уменьшая сопротивление клеммы 1 и повышая сопротивление клеммы 2. При перемещении контакта вниз для клемм 1 и 2 происходит всё с точностью до наоборот. Суммарное сопротивление, измеренное между клеммами 1 и 2, будет постоянным для любого положения ползунка.

Поворотные и линейные потенциометры

Здесь показаны общие схемы двух типов потенциометров: поворотного и линейного.

Линейные потенциометры

Некоторые линейные потенциометры приводятся в действие прямолинейным движением рычага или ползунковой кнопки. Другие, подобные тому, что изображён на данном рисунке, приводятся в действие поворотным винтом, который даёт возможность точной регулировки. Такие потенциометры иногда называют подстроечными, так как они хорошо работают в устройствах, где требуется «подгонка» переменного сопротивления до необходимого точного значения. Следует отметить, что не все линейные потенциометры имеют такое же назначение клемм, как показано на рисунке выше. У некоторых клемма контакта находится посередине между двумя концевыми клеммами.

Поворотный потенциометр

На изображении ниже показана конструкция поворотного потенциометра.

На следующей фотографии показан настоящий поворотный потенциометр, у которого хорошо видны ползунок и скользящая проволока. Вал, перемещающий контакт-дворник, почти до упора повёрнут по часовой стрелке, так что дворник почти касается левого конца скользящей проволоки:

А вот этот же потенциометр, теперь у него вал повёрнут почти до упора против часовой стрелки, в результате чего дворник находится рядом с противоположным выводом:

Эффекты регулировки потенциометра в цепи

Если между внешними клеммами (по всей длине пути контакта) приложено постоянное напряжение, положение ползунка будет перераспределять часть приложенного напряжения, измерённого между контактом и любой из клемм. Дробное значение полностью зависит от физического положения дворника:

Важность применения потенциометра

Как и в случае с фиксированным делителем напряжения, коэффициент разделения напряжения потенциометра строго зависит от сопротивления отдельных участков, а не от величины напряжения на этих участках. Другими словами, если ручка или рычаг потенциометра перемещается в положение, соответствующее 50-ти процентам (точно по центру), падение напряжения между дворником и любой внешней клеммой будет ровно 1/2 от напряжения на участке, независимо от происхождения и величины напряжения. Имеет значение изменяемое сопротивление самого потенциометра. Другими словами, потенциометр работает как регулируемый делитель напряжения, где коэффициент деления напряжения устанавливается положением ползунка.

Это делает применение потенциометра крайне полезным, так как позволяет получать переменное напряжение от источника постоянного напряжения, вроде аккумулятора. Если для схемы, которую вы строите, требуется определённое количество напряжения, которое меньше, чем значение напряжения, которое даёт источник питания, вы можете подключить внешние клеммы потенциометра к этому источнику и «добрать» любое необходимое напряжение сближая/удаляя дворник потенциометра и один из внешних выводов:

При подобном использовании название «потенциометр» полностью оправдывает себя: это устройство измеряет (контролирует) приложенную к нему разность потенциалов (напряжение), создавая переменное соотношение делителя напряжения. Такое использование трехполюсного потенциометра в качестве переменного делителя напряжения очень популярно в схемотехнике.

Образцы малых потенциометров

Здесь показаны несколько небольших потенциометров, которые обычно используются в бытовом электронном оборудовании, а также любителями и студентами при построении схем:

Меньшие блоки слева и справа предназначены для подключения к макетной плате без пайки или для пайки в печатной плате. Блоки, находящиеся посередине, предназначены для установки на плоской панели с проводами, которые припаяны к каждой из трех клемм потенциометра. А вот еще три потенциометра, более специализированных, чем из предыдущего набора:

Крупного размера блок «Helipot» – это лабораторный потенциометр, предназначенный для быстрого и простого подключения к цепи. Блок в нижнем левом углу фотографии представляет собой потенциометр того же типа, только без футляра и 10-поворотного счётного диска. Оба этих потенциометра являются прецизионными (высокоточными) устройствами, в которых используются многооборотные спиралевидные резистивные ленты и механизмы дворника для выполнения малых регулировок. Блок в правом нижнем углу представляет собой потенциометр для монтажа на панели, он предназначен для работы в тяжёлых промышленных условиях.

Также

Теория по электроникеПостоянный токОсновные концепты электричества
• Статическое электричество • Проводники, диэлектрики и поток электронов • Что такое электрические цепи? • Напряжение и электроток • Сопротивление • Напряжение и электроток в реальной цепи • Условный ток и поток электроновЗакон Ома
• Закон Ома – Как напряжение, сила тока и сопротивление связаны друг с другом • Аналогия для закона Ома • Мощность в электрических цепях • Расчёт электрической мощности • Резисторы • Нелинейная проводимость • Построение цепи • Полярность перепада напряжения • Компьютерная симуляция электрических цепейПравила электробезопасности
• Важность правил электробезопасности • Воздействие электричества на психологическое состояние • Путь, который ток проходит перед ударом • Закон Ома (снова!) • Техника безопасности • Первая медицинская помощь при ударе током • Распространённые источники опасности • Проектирование электроцепей с учётом требований безопасности • Безопасное использование приборов для измерения электрических показателей • Данные о влиянии удара током на тело человекаЭкспоненциальная запись и метрические приставки
• Экспоненциальная запись • Арифметические операции для экспоненциальной записи • Метрические обозначения • Преобразование метрических приставок • Используем ручной калькулятор • Экспоненциальная форма в программе SPICEПоследовательные и параллельные электрические цепи
• Что такое «последовательные» и «параллельные» электрические цепи • Простая последовательная цепь • Простая параллельная цепь • Электропроводность • Рассчитываем мощность • Правильно используем закон Ома • Анализ отказов компонентов цепи • Строим простые резистивные цепиСхемы с делителями напряжения и правила Кирхгофа
• Схемы с делителем напряжения • Правило напряжений Кирхгофа (ПНК) • Цепи – делители тока и формула делителя тока • Правило Кирхгофа для силы тока (ПКТ)Комбинированные последовательно-параллельные схемы
• Что такое последовательно-параллельная цепь • Методы анализа последовательно-параллельных резисторных цепей • Перерисовываем избыточно усложнённые схемы • Анализ отказов компонентов (продолжение) • Построение простых резисторных цепейИзмерения в электрических цепях постоянного тока
• Что такое измеритель? • Как устроен вольтметр • Как вольтметр влияет на измеряемую цепь • Как устроен амперметр • Как амперметр влияет на измеряемую цепь • Как устроен омметр • Высоковольтный омметр • Мультиметры • Кельвиновское 4-проводное измерение сопротивления • Мостовые схемы • Как устроен ваттметр • Как самостоятельно сделать ручной калибраторСигналы электрического оборудования
• Аналоговые и цифровые сигналы • Системы сигналов напряжения • Системы сигналов силы тока • Тахогенераторы • Теромопары • Измерения pH • ТензодатчикиАнализ сети постоянного тока
• Что такое сетевой анализ? • Метод токов ветвей • Аналитический метод контурных токов • Метод узловых потенциалов • Введение в сетевые теоремы • Теорема Миллмана • Теорема о суперпозиции • Теорема Тевенена • Теорема Нортона • Эквивалентность схем Тевенена и Нортона • И вновь о теореме Миллмана • Теорема о передаче максимальной мощности • Δ-Y и Y-Δ преобразованияБатареи и системы питания
• Поведение электронов при химических реакциях • Батарейные конструкции • Рейтинг батарей • Батареи специального назначения • Практические рекомендации при использовании батарейФизика проводников и диэлектриков
• Введение в физику проводников и диэлектриков • Размеры проводов• Допустимые токовые нагрузки на провода • Предохранители • Удельное сопротивление • Температурный коэффициент сопротивления • Сверхпроводимость • Пробивное напряжение диэлектрикаКонденсаторы
• Электрическое поле и ёмкость • Конденсаторы и дифференциальное исчисление • Факторы, влияющие на ёмкость конденсатора • Последовательное и параллельное соединение конденсаторов • Практические соображения — КонденсаторыМагнетизм и электромагнетизм
• Постоянные магниты • Электромангетизм • Единицы измерения магнитных величин • Магнитная проницаемость и насыщение • Электромагнитная индукция • Взаимная индукцияКатушки индуктивности
• Магнитные поля и индуктивность • Катушки индуктивности и дифференциальное исчисление • Факторы, влияющие на индуктивность • Катушки индуктивности в последовательных и параллельных соединениях • Практические соображения – Катушки индуктивностиПостоянные времени в RC и L/R цепях
• Переходные процессы в электрических цепях • Переходные процессы в цепях с конденсатором • Переходные процессы в цепях с катушкой индуктивности • Расчёт напряжения и силы тока • Почему L/R, а не LR? • Комплексные расчёты напряжения и тока • Сложные схемы • Расчёт неизвестного времениПеременный токОсновы теории переменного тока
• Что такое переменный ток? • Формы волн переменного тока • Измерение величин переменного тока • Расчёт простейшей цепи переменного тока • Фаза переменного тока • Принципы радиоКомплексные числа
• Введение в комплексные числа • Векторы и волны переменного тока • Сложение простых векторов • Сложение сложных векторов • Полярная и алгебраическая запись комплексных чисел • Арифметика комплексных чисел • И ещё по поводу полярности переменного тока • Несколько примеров с цепями переменного токаРеактанс и импеданс – Индуктивность
• Резистор в цепи переменного тока (Индуктивность) • Катушка индуктивности в цепи переменного тока • Последовательные резистивно-индуктивные цепи • Параллельные резистивно-индуктивные цепи • Особенности катушек индуктивности • Что такое «скин-эффект»?Реактанс и импеданс – Ёмкость
• Резистор в цепи переменного тока (Ёмкость) • Конденсатор в цепи переменного тока • Последовательные резистивно-ёмкостные цепи • Параллельные резистивно-ёмкостные цепи • Особенности конденсаторовРеактанс и импеданс – R/L/C-цепи
• Обзор R, X и Z (сопротивление, реактанс и импеданс) • Последовательные R/L/C-цепи • Параллельные R/L/C-цепи • Последовательно-параллельные R/L/C-цепи • Реактивная проводимость и адмиттанс • R/L/C-цепи – что в итоге?Резонанс
• Электрический маятник • Простой параллельный резонанс (колебательный контур) • Простой последовательный резонанс • Применение резонанса • Резонанс в последовательно-параллельных цепях • Добротность и полоса пропускания резонансной цепиСигналы переменного тока смешанной частоты
• Сигналы переменного тока смешанной частоты — Введение • Прямоугольные волновые сигналы • Другие волновые формы • Подробнее о спектральном анализе • Эффекты в электрических цепяхФильтры
• Что такое фильтр? • Низкочастотные фильтры • Высокочастотные фильтры • Полосовые фильтры • Полосно-заграждающие фильтры • Резонансные фильтры • Подводя итоги по фильтрамТрансформаторы
• Взаимная индуктивность и основные операции • Повышающие и понижающие трансформаторы • Электрическая изоляция • Фазировка • Конфигурации обмотки • Регулировка напряжения • Специальные трансформаторы и приложения • Практические соображения – ТрансформаторыМногофазные цепи переменного тока
• Однофазные системы питания • Трёхфазные системы питания • Чередование фаз • Устройство многофазного двигателя • Трёхфазные Y- и дельта-конфигурации • Трёхфазные цепи с трансформатором • Гармоники в многофазных энергосистемах • Гармонические фазовые последовательностиКоэффициент мощности
• Мощность в резистивных и реактивных цепях переменного тока • Истинная, реактивная и полная мощность • Расчёт коэффициента мощности • Практическая коррекция коэффициента мощностиИзмерение цепей переменного тока
• Вольтметры и амперметры переменного тока • Измерение частоты и фазы • Измерение мощности • Измерение качества электроэнергии • Мостовые схемы переменного тока • Измерительные преобразователи переменного токаДвигатели переменного тока
• Введение в двигатели переменного тока • Синхронные двигатели • Синхронный конденсатор • Двигатель с магнитным сопротивлением • Шаговые двигатели • Бесщёточный двигатель постоянного тока • Многофазные асинхронные двигатели Теслы • Асинхронные двигатели с фазным ротором • Однофазные асинхронные двигатели • Прочие специализированные двигатели • Сельсин-двигатели (синхронизированные двигатели) • Коллекторные двигатели переменного токаЛинии передачи
• Кабель на 50 Ом? • Электрические цепи и скорость света • Характеристический импеданс • Линии передачи конечной длины • «Длинные» и «короткие» линии передачи • Стоячие волны и резонанс • Преобразование импеданса • ВолноводыПолупроводникиУсилители и активные устройства
• От электрики к электронике • Активные и пассивные устройства • Усилители • Коэффициент усиления • Децибелы • Абсолютные дБ-шкалы • АттенюаторыТеория твердотельных приборов
• Введение в теорию твердотельных устройств • Квантовая физика • Валентность и кристаллическая структура • Зонная теория твёрдых тел • Электроны и «дырки» • P-N-переход • Полупроводниковые диоды • Транзисторы с биполярным переходом • Полевые транзисторы • Полевые транзисторы с изолированным затвором (MOSFET) • Тиристоры • Методы производства полупроводников • Сверхпроводящие устройства • Квантовые устройства • Полупроводниковые приборы в SPICEДиоды и выпрямители
• Диоды и выпрямители – Введение • Проверка диодов мультиметром • Номинальные характеристики диодов • Схемы выпрямителей • Пиковый детектор • Схемы ограничителей напряжения • Схемы фиксаторов уровня • Умножители напряжения (удвоители, утроители, учетверители и т. ) • Схемы коммутации индуктивных нагрузок • Диодные схемы коммутации • Что такое диод Зенера (стабилитрон)? • Диоды специального назначения • Прочие диодные технологии • Модели диодов в SPICEБиполярные транзисторы
• Транзисторы с биполярным переходом (ТБП) – Введение • Транзистор с биполярным переходом (ТБП) как переключатель • Проверка транзистора с биполярным переходом (ТБП) с помощью мультиметра • Активный режим работы транзистора с биполярным переходом (ТБП) • Усилительный каскад с общим эмиттером • Усилительный каскад с общим коллектором • Усилительный каскад с общей базой • Каскодный усилитель • Методы смещения для транзисторов с биполярным переходом (ТБП) • Расчёт смещения для транзисторов с биполярным переходом (ТБП) • Взаимодействие входа и выхода в транзисторах с биполярным переходом (ТБП) • Обратная связь в транзисторах с биполярным переходом (ТБП) • Импеданс усилителя • Токовые зеркала в транзисторах с биполярным переходом (ТБП) • Параметры и корпуса транзисторов с биполярным переходом (ТБП) • Особенности транзисторов с биполярным переходом (ТБП)Полевые транзисторы
• Полевые транзисторы (JFET) – Введение • Полевой транзистор (JFET) как переключатель • Проверка полевого транзистора (JFET) с помощью мультиметра • Активный режим работы полевого транзистора (JFET)Полевые транзисторы с изолированным затвором
• Полевые транзисторы с изолированным затвором – Введение • Обедняющие полевые транзисторы с изолированным затвором • Биполярные транзисторы с изолированным затворомТиристоры
• Гистерезис • Газоразрядные лампы • Диод Шокли (динистор) • DIAC (симметричный динистор) • Управляемый кремниевый выпрямитель (SCR-тиристор) • TRIAC (симметричный тринистор, триак) • Оптотиристоры • Однопереходной транзистор • Управляемый кремниевый коммутатор (SCS-тиристор) • Тиристоры с полевым управлениемОперационные усилители
• Операционные усилители (ОУ) – Введение • Несимметричные и дифференциальные усилители • «Операционный» усилитель • Отрицательная обратная связь • Делитель напряжения в цепи обратной связи • Аналогия для делителя напряжения в цепи обратной связи • Преобразование сигнала напряжения в сигнал тока • Схемы усреднителя и сумматора • Построение дифференциальных усилителей • Инструментальный (измерительный) усилитель • Схемы дифференциатора и интегратора • Положительная обратная связь • Практические аспекты ОУ • Модели операционных усилителейПрактические аналоговые полупроводниковые схемы
• Электростатический разряд • Схемы источников питания • Схемы усилителей • Осцилляторные схемы • Радиосхемы • Вычислительные схемы • Измерительные схемыПриводы двигателей постоянного тока
• Широтно-импульсная модуляцияЭлектронные лампы
• Электронные лампы – Введение • История электронных ламп – с чего всё началось • Триод • Тетрод • Силовой лучевой тетрод • Пентод • Комбинированные электронные лампы • Характеристики электронных ламп • Ионизированные (газовые) электронные лампы • Индикаторные электронные лампы • Микроволновые электронные лампы • Сравниваем электронные лампы и полупроводникиЦифровая электроникаСистемы счисления
• Числа и способы их выражения • Системы счисления • Сравниваем десятеричные и двоичные числа • Восьмеричная и шестнадцатеричная системы счисления • Восьмеричные и шестнадцатеричные числа преобразовываем в десятеричные • Преобразование из десятеричной системы счисленияДвоичная арифметика
• Числа и системы счисления • Двоичное сложение • Отрицательные двоичные числа • Двоичное вычитание • Двоичное переполнение • Наборы битовЛогические вентили
• Цифровые сигналы и вентили • Вентили «НЕ» • «Буферные» вентили • Вентили с более чем одним входом • Транзисторно-транзисторная логика вентилей «И-НЕ» и «И» • Транзисторно-транзисторная логика вентилей «ИЛИ-НЕ» и «ИЛИ» • Схемы КМОП-вентилей • Специальные выходы в вентилях • Универсальность вентилей «И-НЕ» и «ИЛИ-НЕ» • Уровни напряжения для «высоких» и «низких» логических сигналов • Вентильные DIP корпусыПереключатели
• Типы переключателей • Как устроены контакты переключателей • «Нормальное» состояние контакта и последовательное замыкание/размыкание • «Дребезжание» контактовЭлектромеханические реле
• Устройство реле • Контакторы • Реле с задержкой времени • Защитные реле • Твердотельные релеРелейная логика
• «Лестничные» диаграммы • Функции цифровой логики • Разрешающие и блокирующие схемы • Схемы управления двигателем • Отказоустойчивость • Программируемые логические контроллеры (ПЛК)Булева алгебра
• Булева алгебра – Введение • Логическая арифметика • Булевы алгебраические тождества • Булевы алгебраические свойства • Логические правила для упрощения • Примеры упрощения схем • Функция «Исключающее ИЛИ»: вентиль XOR • Законы де Моргана • Преобразование таблиц истинности в логические выраженияКарты Карно
• Карты Карно – Введение • Диаграммы Венна и множества • Булевы соотношения на диаграммах Венна • Преобразование диаграмм Венна в карты Карно • Карты Карно, таблицы истинности и логические выражения • Упрощение логики с помощью карт Карно • Бо́льшие карты Карно с 4-мя переменными • Минтермы и макстермы в реализациях • Обозначения сумм и произведений • Поля «безразличия» на картах Карно • Бо́льшие карты Карно с 5-ю и 6-ю переменнымиФункции комбинационной логики
• Функции комбинационной логики – Введение • Неполный сумматор • Полный сумматор • Декодер • Кодер • Демультиплексоры • Мультиплексоры • Совместное использование множественных комбинационных схемМультивибраторы
• Цифровая логика с обратной связью • SR-защёлка • Вентильная SR-защёлка • D-защёлка • Защёлки с запуском по фронту сигнала: триггеры • JK-триггер • Триггеры с асинхронными входами • Моностабильные мультивибраторыСхемы последовательностей
• Двоичная счётная последовательность • Асинхронные счётчики • Синхронные счётчики • Конечные автоматыСдвиговые регистры
• Сдвиговые регистры – Введение • Сдвиговые регистры: последовательный вход, последовательный выход (SISO) • Сдвиговые регистры: параллельный вход, последовательный выход (PISO) • Сдвиговые регистры: последовательный вход, параллельный выход (SIPO) • Универсальные сдвиговые регистры: параллельный вход, параллельный выход (PIPO) • Кольцевые счётчикиЦифро-аналоговые и аналого-цифровые преобразования
• Цифро-аналоговые (ЦАП) и аналого-цифровые (АЦП) преобразования – Введение • ЦАП R/2nR: цифро-аналоговый преобразователь с двоично-взвешенным входом • ЦАП R/2R: (цифро-аналоговый преобразователь) • Параллельные АЦП • Цифровые ступенчатые АЦП • АЦП с последовательным приближением • Отслеживающий АЦП • Скатные (интегрирующие) АЦП • Дельта-сигма АЦП • Практические аспекты схем АЦПЦифровая связь
• Цифровая связь – Введение • Сети и шины • Потоки данных • Типы электрических сигналов • Оптическая передача данных • Топология сети • Сетевые протоколы • Практические аспекты цифровой связиЦифровое хранилище (память)
• Почему «цифровое»? • Понятия и концепции цифровой памяти • Современная немеханическая память • Устаревшие немеханические технологии памяти • Постоянное запоминающее устройство (ПЗУ) • Память с движущимися частями: «Приводы»Принципы цифровых вычислений
• Двоичный сумматор • Таблицы поиска • Конечные автоматы • Микропроцессоры • Микропроцессорное программированиеСправочные материалыПолезные уравнения и коэффициенты пересчёта
• Уравнения и законы для цепей постоянного тока • Правила последовательных цепей • Правила параллельных цепей • Эквивалентные значения компонентов в последовательных и параллельных цепях • Уравнение ёмкости конденсатора • Уравнение катушки индуктивности • Уравнения постоянной времени • Уравнения цепей переменного тока • Уравнения для децибел • Метрические приставки и преобразования единиц измеренияЦветовая маркировка
• Цветовая маркировка резисторов • Цветовая маркировка проводки • Инфографика цветовой маркировки проводкиТаблицы проводников и диэлектриков
• Таблица калибров медной проволоки • Таблица допустимых нагрузок для медного провода • Коэффициенты удельного сопротивления • Таблица температурных коэффициентов сопротивления • Критические температуры для сверхпроводников • Диэлектрическая прочность изоляторовСправочник по алгебре
• Основные алгебраические тождества • Основные свойства арифметики • Свойства степеней • Извлечение корней • Важные константы • Логарифмы • Формулы сокращённого умножения • Квадратное уравнение • Прогрессии • Факториалы • Решение систем уравнений: метод подстановки и метод сложенияСправочник по тригонометрии
• Тригонометрия прямоугольного треугольника • Тригонометрия произвольного треугольника • Тригонометрические формулы • Гиперболические функцииСправочник по исчислению
• Формулы вычисления пределов • Производная числа • Общие производные • Производные показательных функций с основанием e • Производные простых тригонометрических функций • Правила вычисления производных • Первообразная (неопределённый интеграл) • Общие первообразные • Первообразные показательных функций от числа e • Правила вычисления первообразных • Определённые интегралы и основная теорема исчисления • Дифференциальные уравненияИспользование программы SPICE для моделирования электрических схем
• Программа моделирования электрических цепей SPICE — Введение • История программы SPICE • Основы программирования в SPICE • Интерфейс командной строки • Компоненты электрических схем • Опции для проведения анализа • Странные особенности программы SPICE • Примеры электрических цепей и списков связейУстранение неполадок – теория и практика
• Вопросы, которые следует задать, прежде чем продолжить • Общие советы по устранению неполадок • Конкретные методы устранения неполадок • Вероятные сбои в проверенных системах • Вероятные сбои в непроверенных системах • Возможные ментальные ловушкиСхематические обозначения элементов цепи
• Провода и соединения • Источники питания • Типы резисторов • Типы конденсаторов • Катушки индуктивности • Взаимные катушки индуктивности • Переключатели с ручным управлением • Управляемые процессом переключатели • Переключатели с электрическим приводом (реле) • Соединители • Диоды • Биполярные транзисторы • Переходные транзисторы с полевым эффектом (JFET) • Транзисторы с полевым эффектом с изолированным затвором (IGFET или MOSFET) • Гибридные транзисторы • Тиристоры • Интегральные схемы • Электронные лампыПериодическая таблица химических элементов
• Таблица МенделееваЭкспериментыВведение
• Электроника как точная наука • Обустраиваем домашнюю лабораториюОсновные концепции и испытательное оборудование
• Использование вольтметра • Использование омметра • Очень простая схема • Использование амперметра при измерении силы тока • Закон Ома • Нелинейное сопротивление • Рассеяние мощности • Цепь с переключателем • Эксперимент по электромагнетизму • Эксперимент с электромагнитной индукциейЭлектрические цепи постоянного тока
• Электрические цепи постоянного тока – Введение • Последовательные источники питания • Параллельные источники питания • Делитель напряжения • Делитель тока • Потенциометр как делитель напряжения • Потенциометр как реостат • Прецизионный потенциометр • Ограничение диапазона реостата • Термоэлектричество • Мультиметр своими руками • Чувствительный детектор напряжения • Потенциометрический вольтметр • 4-проводное измерение сопротивления • Простейший компьютер • Картошка-батарейка • Зарядка и разрядка конденсатора • Индикатор скорости измененияЭлектрические цепи переменного тока
• Электрические цепи переменного тока – Введение • Трансформатор – блок питания • Сборка трансформатора • Переменный индуктор • Чувствительный аудиодетектор • Обнаружение магнитных полей переменного тока • Обнаружение электрических полей переменного тока • Альтернатор – автомобильный генератор • Асинхронный двигатель • Асинхронный двигатель побольше • Фазовый сдвиг • Погашение звука • Музыкальный синтезатор как генератор сигналов • ПК-осциллограф • Анализ волновых сигналов • Колебательный контур • Сигнальная связьДискретные полупроводниковые схемы
• Дискретные полупроводниковые схемы – Введение • Коммутирующий диод • Полупериодный выпрямитель • Двухполупериодный мостовой выпрямитель • Двухполупериодный выпрямитель с центральным отводом • Цепь «выпрямитель/фильтр» • Регулятор напряжения • Транзистор как переключатель • Датчик статического электричества • Датчик импульсного света • Повторитель напряжения • Усилитель с общим эмиттером • Многокаскадный усилитель • Как построить схему токового зеркала • JFET – регулятор тока • Дифференциальный усилитель • Простой операционный усилитель • Аудио осциллограф • Ламповый аудио усилительАналоговые интегральные схемы
• Аналоговые интегральные схемы – Введение • Компаратор напряжения • Прецизионный повторитель напряжения • Неинвертирующий усилитель • Высокоимпедансный вольтметр • Интегратор • Аудио осциллограф на таймерной схеме 555 • Наклонный генератор на таймерной схеме 555 • ШИМ-контроллер мощности • Аудиоусилитель класса BЦифровые интегральные схемы
• Цифровые интегральные схемы – Введение • Основная функция вентилей • Вентиль «ИЛИ-НЕ» S-R защёлка • Вентиль «И-НЕ» разрешительная S-R защёлка • Вентиль «И-НЕ» S-R триггер • Светодиодный секвенсор • Простой кодовый локер • 3-битный двоичный счётчик • 7-сегментный дисплейТаймерные схемы 555
• Интегральный таймер 555 • Триггер Шмитта на интегральном таймере 555 • Гистерезисный осциллограф на интегральном таймере 555 • Моностабильный мультивибратор на интегральном таймере 555 • Минимальное количество комплектующих для КМОП-схемы 555 проблескового прибора длительного действия на красных светодиодах • КМОП-схема 555 проблескового прибора длительного действия на синих светодиодах • КМОП-схема 555 проблескового прибора длительного действия на светодиодах обратного хода • КМОП-схема 555 проблескового прибора длительного действия на красных светодиодах

Информация на сайте предоставлена в справочных целях. По вопросам электромонтажных работ всегда консультируйтесь с квалифицированными лицами.

Калькулятор параметрического стабилизатора напряжения

Работа стабилизатора основана на свойстве стабилитрона в момент пробоя. Напряжение на стабилитроне практически не изменяется на рабочем участке между точками А и B.

Введите данные напряжений и силы тока для расчета

Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом. Соблюдайте технику безопасности во время работы с электронными компонентами!

Калькулятор делителя напряжения

Для создания фиксированного значения напряжения на нагрузке в качестве делителя напряжения часто используется последовательного соединение резисторов.

Расчет делителя напряжения

Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом. Соблюдайте технику безопасности во время работы с электронными компонентами!

Калькулятор параллельных сопротивлений

Параллельные (как и последовательные) схемы соединения резисторов, часто используются для получения точного сопротивления или если резистора с требуемым сопротивлением нет и его необходимо подобрать.

Расчет сопротивления

Расчет эквивалентного сопротивления
Расчет при известном эквивалентном значении

Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом. Соблюдайте технику безопасности во время работы с электронными компонентами!

Электрические расчеты — программа предназначена для электрических расчетов, которые используются в работе электрика и домашних мастеров.

Расчет электрических цепей онлайн калькуляторы помогут вам рассчитать различные параметры электрических цепей постоянного и переменного тока, такие как силу тока, напряжение и сопротивление по закону Ома, сопротивление катушки индуктивности, сопротивление конденсатора, сопротивление при параллельном соединении резисторов, ёмкость при последовательном соединении конденсаторов, резистивный и ёмкостный делитель напряжения, частоту резонанса LC фильтра, частоту среза RC фильтра, компенсацию реактивной мощности, ток в однофазных и трехфазных сетях, ток нагрузки, параметры трансформатора.

Как рассчитать падение напряжения на резисторах? Показываю на примерах | Будни радиолюбителя

Картинка для карточки. Источник Pixabay

Картинка для карточки. Источник Pixabay

Простая электрическая цепь состоит из источника питания, проводников и сопротивлений. На практике же электроцепи редко бывают простыми и включают в себя несколько различных ответвлений и повторных соединений.

В больших масштабах в роли сопротивлений может выступать бытовая техника, осветительные приборы и другие потребители. Давайте разберемся, что происходит с током и напряжением на каждом таком потребителе или резисторе с точки зрения электротехники.

Основы электротехники

Закон Ома гласит, что напряжение равно силе тока умноженной на сопротивление. Это может относиться к цепи в целом, участку цепи или к конкретному резистору. Самая распространенная форма этого закона записывается:

Два типа схем в электротехнике

Здесь ток протекает по одному проводнику. Независимо от того, какие сопротивления встречаются на его пути, просто суммируйте их, чтобы получить общее сопротивление цепи в целом:

Rобщй = R1 + R2 + … + RN (последовательная цепь)

В этом случае проводник разветвляется на два или более других проводника, на каждом из которых имеется своё сопротивление. В этом случае полное сопротивление определяется как:

1/Rобщ = 1/R1 + 1/R2 + … + 1/R N (параллельная цепь)й

Если взглянуть на эту формулу, можно сделать вывод, что добавляя сопротивления одинаковой величины, вы уменьшаете сопротивление цепи в целом. Согласно закону Ома это фактически увеличивает ток!

Если это кажется нелогичным, представьте себе поток автомобилей, которые выезжают с парковки через один шлагбаум и тот же самый поток который выезжает со стоянки, которая имеет несколько выездов. Несколько выездов явно увеличит поток покидающих стоянку машин.

Падение напряжения в последовательной цепи

Если вы хотите найти падение напряжения на отдельных резисторах в цепи, выполните следующие действия:

  • Рассчитайте общее сопротивление, сложив отдельные значения R.
  • Рассчитайте ток в цепи, который одинаков для каждого резистора, поскольку в цепи только один проводник.
  • Рассчитайте падение напряжения на каждом резисторе, используя закон Ома.

Пример: источник питания 24 В и три резистора подключены последовательно, где R1 = 4 Ом, R2 = 2 Ом и R3 = 6 Ом. Чему равно падение напряжения на каждом резисторе?

  • Сначала рассчитаем общее сопротивление: 4 + 2 + 6 = 12 Ом.
  • Далее рассчитываем ток: 24 В / 12 Ом = 2 А
  • Теперь используем ток, чтобы вычислить падение напряжения на каждом резисторе.  Используя Закон Ома (U = IR) для каждого резистора, получим значения R1, R2 и R3 равными 8 В, 4 В и 12 В соответственно.

Падение напряжения в параллельной цепи

Пример: источник питания 24 В и три резистора подключены параллельно, где R1 = 4 Ом, R2 = 2 Ом и R3 = 6 Ом, как и в предыдущей схеме. Чему будет равно падение напряжения на каждом резисторе?

В этом случае все проще: независимо от значения сопротивления, падение напряжения на каждом резисторе одинаково. Это означает, что падение напряжения на каждом из них — это просто общее напряжение цепи, деленное на количество резисторов в цепи, или 24 В / 3 = 8 В.

Применяя эти несложные правила вы сможете рассчитать падение напряжения даже в сложной цепи, достаточно лишь разделить её на простые участки.

Источником публикации является наш сайт milliamper

Расчет падения напряжения на транзисторе

Во-первых: ток течет в базу, через излучатель. во-вторых, ток течет через коллектор и выходит из излучателя. Суммарный ток через излучатель равен току через основание плюс ток через коллектор.

Вам потребуется таблица данных, чтобы определить точное падение напряжения. Однако также следует помнить, что нет двух идентичных транзисторов.

Таблица данных будет содержать графики, которые вы можете использовать для поиска ожидаемых значений. Для некоторых вычислений полезно предположить, что Vbe обычно составляет около 0,7v. Соединение база-эмиттер по сути является диодом, поэтому оно зажимает напряжение на себе примерно до 0,7 В. Используя этот факт, легко вычислить ток, поступающий в базу: напряжение на R составляет приблизительно 5-0,7 = 4,3 В. Таким образом, ток, идущий в базу, должен быть примерно:

I = V / R = 4,3 / R

Так что, если вы знаете R, вы можете приблизить ток, текущий в базу. Это даст вам один фактор, который поможет вам прочитать графики из таблицы данных транзистора. Скажем, R составляет 10 кОм, ток, протекающий в базу, будет приблизительно 0,43 мА.

Теперь с этим базовым током вы можете рассчитать ток, протекающий через коллектор — просто умножьте его на коэффициент усиления тока транзистора. Но имейте в виду, что они могут сильно различаться в первую очередь между транзисторами одной модели, а также при разных условиях работы этой модели. Скажем, если 50, то ток, протекающий через коллектор, будет приблизительно 22,5 мА.

Используя приведенную выше схему, предположим, что падение напряжения на светодиоде составляет 2 В при 22,5 мА, что означает, что значение Vbe должно составлять 5-2 = 3 В. Однако, опять же, падение напряжения светодиода при данном токе будет незначительно отличаться между светодиодами одной и той же модели, и некоторые светодиоды, такие как белые светодиоды, имеют тенденцию иметь более высокое падение напряжения, например, 4v.

Чтобы попытаться получить точное значение Vbe, есть формула, которую вы можете использовать, однако, учитывая различия между отдельными транзисторами, гораздо проще просто использовать графики. Поскольку вы знаете приблизительное напряжение Vce и ​​приблизительный базовый ток Ib, вы можете посмотреть Vbe на графике.

И учитывая диапазон возможных значений hfe, указанных в таблице, (обычно они предоставляют три значения: минимальное, типичное и максимальное). Используя верхнюю и нижнюю границы hfe, вы можете рассчитать верхнюю и нижнюю границы тока, который будет проходить через коллектор. Исходя из этого и таблицы данных светодиода, вы можете рассчитать верхнюю и нижнюю границу Vce. Это значение будет полезно при уточнении возможных значений Vbe, поскольку часто Vbe существенно зависит от Vce и ​​Ice; это может иметь значение +/- 0,2 В или около того.

Другие соображения, которые также могут быть весьма значительными, это температура перехода транзистора. Итак, сколько энергии протекает через него, как долго, а также насколько хорошо он отдает тепло в окружающую среду, и температура этой среды будет определять температуру перехода транзистора, что, в свою очередь, повлияет на такие значения, как hfe, Vbe и так далее.

Для вашей схемы выше, вы можете использовать транзистор, такой как NP54 BC547, который является BJT NPN транзистором общего назначения. Эта таблица должна быть достаточной для того, чтобы вы могли понять, как она будет себя вести. Значения hfe, которые я изложил выше, будут разными в BC547; в техническом описании указано минимальное значение 110, максимальное — 800. Таким образом, ваша схема даст очень широкий диапазон значений потенциального льда, поэтому будьте осторожны, чтобы не перегореть светодиод. Вы можете определить hfe любого отдельного транзистора, подав небольшой ток через базу, и измерить ток через коллектор; затем разделите Ic на Ib, и это то, что нужно для этой ситуации. (Если транзистор не «насыщен», то есть светодиод или что-то на его месте в вашей цепи имеет почти 5 В через него, что означает, что транзистор не может еще больше увеличить Ic, поскольку он уже действует как короткое замыкание. ) чтобы рассчитать hfe одного конкретного BC547, можно предположить, что он не будет иметь hfe меньше 110, а затем рассчитать резистор для замены R и светодиода (назовем его Rled) на. (Vbe / kt) -1) не применяется, когда транзистор насыщен , поскольку Ie будет ограничено. (Смотри ниже). Во-вторых, решение включает в себя построение пересечения двух графиков: напряжение на R против Ir в соответствии с законом Ома и Vbe против Ib с уравнением Эберса-Молла, решение, где Ir и Ib равны. Ir против Vr будет прямой линией, а Ib против Vbe будет экспоненциальной.

График в вашем ответе выглядит правильно, если предположить, что он взят из схемы, которую вы разместили в своем вопросе? (То есть со светодиодом?) Причина, по которой он может перестать быть линейным, заключается в том, что напряжение на светодиоде становится близким к 5 В, что означает, что транзистор насыщается. Таким образом, больший базовый ток приводит лишь к немного большему току, проходящему через светодиод, из-за немного уменьшенных насыщенных значений Vce. Это отражается в следующем:

Если вы посмотрите на эту таблицу данных для 2N3904 , она сведет в таблицу эти два значения:

VBE (sat) Напряжение насыщения базового излучателя:

  • С IC = 10 мА и IB = 1,0 мА, тогда Vbe = 0,65
  • При IC = 50 мА и IB = 5,0 мА, тогда Vbe = 0,85

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий