Подключение электроплиты своими руками — пошаговая инструкция!

Содержание

В чем разница между подключением треугольником и звездой, какое соединение лучше

Когда говорят о подключении треугольником или звездой, то имеют в виду самые распространенные схемы обмотки трехфазного асинхронного электродвигателя. Если подавать питание на двигатель напрямую, то переизбыток пускового тока или чрезмерная нагрузка приведет к быстрому износу. Чтобы уменьшить этот показатель относительно вала двигателя, во время пуска используют специальные схемы подключения, которые позволяют наращивать мощность поэтапно.

В чем различия

Главная разница между типами обмоток – это способ достижения и получения разных параметров электрического напряжения и тока внутри двигателя. Первый случай предполагает постепенное наращивание показателей, второй вариант обеспечивает мощную передачу тока.

Способы треугольник и звезда отличаются реализацией поставленной задачи. Часто электрики применяют сочетание схем. Это дает щадящий режим для провода или трансформатора, но одновременно с этим ток принимает меньшее значение.

Что же лучше?

Системы обмоток подходят для разных случаев. Метод треугольника дает мощность в 1,5 раза больше, чем соединение звездой. Чтобы создать плавный пуск, защитить оборудование от перегрузок, больше подходит звезда.

Но даже при понимании преимуществ или недостатков выбрать определенный тип схемы по собственному усмотрению нельзя. При соединении обмотки учитывают заявленный показатель напряжения. Эту информацию печатают на лицевой стороне электрического оборудования.

Краткая сравнительная таблица

Оба варианта используют в сфере электрики. Это проверенные системы обмоток, позволяющие сохранить мощность, а также сократить износ.

Сравнивать схемы лучше, используя одни и те же свойства – становится понятнее, почему следует выбирать тот или иной вариант.

Чем отличаются соединения звездой и треугольником

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Реверсивная схема двигателя 380 на 220 Вольт

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

Схемы подключения звездой и треугольником

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

Однофазные, двухфазные и трёхфазные электрические сети

В мире распространение имеют однофазные и трёхфазные электрические сети.

Однофазный ток представляет собой синусоиду:

Полное амплитудное напряжение превышает фазное, отличающееся от него в √2/2 раз, т. 311. 1 х √2/2 = 220, 325. 3 х √2/2 = 230, 169. 7 х √2/2 = 120.

В трёхфазной сети фазы сдвинуты относительно друг друга на 120 градусов. Линейное напряжение выше фазного в √3 раз, т. примерно в 1. 73 раза, следовательно, 220 х √3 = 380, 230 x √3 = 400, 380 x √3 = 660, 400 x √3 = 690, 120 x √3 = 208, 277 х √3 = 480.

Одновременно с этим, условно говоря, вы можете считать, что на шильдике обозначено фазное напряжение, но только в том случае, если собираетесь подключать двигатель только к одной фазе через конденсатор.

Помимо этого, в США и Канаде также распространены двухфазные сети (сети с разделённой фазой или трёхпроводные однофазные сети), которые позволяют подключать мощные бытовые приборы и приборы, выпущенные под европейский стандарт 230 В. По сути, использование таких систем обосновано тем, что в США обычно не ведут по столбам низкое напряжение как у нас, а устанавливают понижающие трансформаторы непосредственно в местах отвода потребителям. прямо на столбах они вешают трансформаторы, понижая напряжение с условных 7 кВ до положенных по стандарту 120 В. Но вместо того, чтобы просто понизить напряжение до 120 В, они используют трансформатор на 240 В со средней точкой. Напряжения на крайних выводах вторичной обмотки трансформатора, возникающие в каждый момент его работы, сдвинуты по фазе на 180 градусов.

они получают таким образом как бы две фазы 120 В, смещённые относительно друг друга на 180 градусов.

Соответственно, у них там применяются специальные розетки на три контакта (две фазы и нейтраль) и есть разные варианты подключения мощных бытовых приборов, например, кондиционеров, которые можно подключать к 120 В, а можно к 240 В при наличии технической возможности.

Не следует путать такие двухфазные сети с существовавшими в начале XX века в США двухфазными сетями, где фазы были смещены на 90 градусов, к которым можно было напрямую подключать двигатели с двумя обмотками (как у современных сервомоторов). Все варианты однофазных и трёхфазных сетей, применяющихся в Америке, выглядят следующим образом:

Подключение двигателей

Вот всем известные схемы подключения треугольником (D) и звездой (Y):

Для такого двигателя на шильдике будет написано: D/Y 220V / 380V, 4. 9А / 2. Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю (именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху). Следовательно, для России (линейное напряжение 400 В) для такого двигателя надо использовать схему подключения звезда. Как видно по рисунку выше, при подключении к сети с большим напряжением токи в проводниках ниже (2. 8A vs. 85A), поэтому, в случае использования преобразователя частоты переменного тока (ПЧ) для управления двигателем D/Y 230V / 400V, лучше применять схему подключения звезда и выставлять в настройка ПЧ напряжение двигателя 400В.

Теперь логичный вопрос: если двигателю нет разницы по какой схеме он будет подключен, а важно лишь напряжение на обмотках, то зачем вообще делать двигатели с разным номинальным напряжением на этих самых обмотках?

Ответ такой: двигатель должен соответствовать требованиям конкретной ситуации, а требоваться может следующее:

ВОЗМОЖНОСТЬ ПОДКЛЮЧЕНИЯ К ТРЁХФАЗНОЙ СЕТИ В трёхфазную сеть можно подключить двигатель, номинальное напряжение обмоток которого равно либо фазному напряжению сети (звездой), либо линейному (треугольник).

Двигатели мощностью более 5 кВт, которые не имеют бытового назначения, а потому для них нет потребности подключения в однофазную сеть. Одновременно с этим, для них может возникнуть потребность переключения со звезды на треугольник при пуске. В России такими двигателями являются D400V / Y690V. Кроме того, такие двигатели можно подключать к промышленным сетям 690В, организация которой позволит экономить на прокладке кабеля, поскольку, как уже было показано выше, токи в проводниках будут ниже для сетей с более высоким напряжением.

Двигатели малой мощности

Для того, чтобы двигатель можно было так подключить в однофазную сеть, его номинальное напряжение каждой обмотки должно быть равно фазному напряжению сети. Это значит, что если двигатель планируется использовать в России или Европе, то номинальное напряжение обмотки должно быть равно 230 В. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением 400 В (подключение звезда), так и в однофазной сети 230 В (подключение треугольником через конденсатор). Это те самые двигатели, где на шильдике написано напряжение D 220V / Y 380V.

D 115V / Y 208-230V

Для двигателей мощнее 5 кВт обычно не предусматривают возможность подключения в однофазную сеть, т. номинальное напряжение обмоток делают такое, которое соответствует линейному напряжению. штатной схемой подключения таких двигателей в трёхфазную сеть является треугольник. В России и Европе это двигатели с номинальным напряжением обмоток 400В, т. где на шильдике написано D 400V / Y 690V.

Для определённых задач, где на валу двигателя находится свободная нагрузка (системы вентиляции, осевые насосы), ну, и вообще те задачи, где возможно регулирование скорости вращения вала только лишь напряжением (трансформатором), часто используют схему подключения «звезда» при старте с последующим переключением на «треугольник». при старте на обмотку подаётся заниженное напряжение 230В вместо номинальных 400В, а затем происходит переключение на штатный режим (т. на треугольник). Из-за свободной нагрузки на валу момент вращения при старте на низком напряжении также будет ниже, т. пусковой ток будет не столь высок, как при старте на номинальном напряжении. Поэтому такой пуск двигателя называют «щадящим».

Следует помнить, что для нагрузок, требующих большого момента при запуске, подобный режим приведет напротив, к возрастанию тока в обмотках и последующим неприятным событиям.

Кроме того, надо иметь ввиду, что подключение двигателей даже со свободной нагрузкой на валу звездой для «щадящего старта» вовсе не означает, что если по такой схеме постоянно эксплуатировать двигатель (не переходя на треугольник), то такой режим станет «щадящим» для него. Низкий момент при старте ещё не означает, что заниженное напряжение годится для его нормальной работы, поскольку сам двигатель (со своими номинальными характеристиками) обычно как раз и подбирается под конкретную нагрузку. Поэтому постоянная эксплуатация двигателей на напряжении ниже номинального иногда приводит к их выходу из строя. Чтобы не было неприятностей двигатель всегда надо эксплуатировать на номинальном напряжении, а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом. К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом.

D 220V / Y 440V, D 277V / Y 480

Обмотки генераторов, трансформаторов, электродвигателей и других электрических приемников при их подключении к трехфазной сети соединяются двумя способами: звездой или треугольником. Эти схемы подключения сильно отличаются друг от друга и несут на себе разные токовые нагрузки. Поэтому есть необходимость разобраться в вопросе, как производится подключение звезда и треугольник – в чем разница?

Что собой представляют схемы

Подключение обмоток звездой – это их соединение в одной точке, которая носит название нулевая точка или нейтральная. Она обозначается буквой «О».

Схема подключения треугольником – это последовательное соединение концов рабочих обмоток, в которых начало одной обмотки соединяется с концом другой.

Разница очевидна. Но какую цель преследуют эти виды соединения, почему звезда треугольник применяются в разных электрических установках, в чем эффективность той и другой. Вопросов по данной теме возникает немало, с ними и надо разобраться.

Начнем с того, что при запуске того же электродвигателя ток, который называется пусковым, обладает высоким значением, который превышает номинальную его величину раз в шесть или восемь. Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат. И это вызовет обязательно «проседание» напряжения и выход из строя предохранителей или автоматических выключателей. Сам же двигатель начнет вращаться с небольшой скоростью, отличающуюся от паспортной. То есть, проблем с пусковым током немало.

Поэтому его надо просто снизить. Есть несколько для этого способов:

Именно второй вариант используется на производстве, как самый простой и эффективный. Просто производится преобразование схемы звезда в треугольник. То есть, во время пуска двигателя его обмотки соединяются по схеме звезда, затем как только мотор наберет обороты, переключается на треугольник. Процесс переключения звезды на треугольник производится автоматически.

Рекомендуется в электродвигателях, где используются одновременно два варианта соединения – звезда-треугольник, к соединению обмоток по схеме звезда, то есть, к их общей точке подключения, подсоединить нейтраль от сети питания. Для чего это необходимо делать? Все дело в том, что во время работы по данному варианту подсоединения появляется высокая вероятность асимметрии амплитуд разных фаз. Именно нейтраль будет компенсировать данную асимметрию, которая обычно появляется за счет того, что обмотки статора могут иметь разное индуктивное сопротивление.

Преимущества двух схем

У схемы звезда достаточно серьезные достоинства:

Что касается схемы треугольник, то основное ее преимущество – это достижение электрическим двигателем в процессе его работы максимальной мощности. Но при этом рекомендуется строго придерживаться эксплуатационных режимов, которые расписаны в паспорте мотора. Тестирование электродвигателей, соединенных по схеме треугольник, показало, что его мощность в три раза больше, чем соединенных по схеме звезда.

Если говорить о генераторах, которые выдают ток в питающую сеть, то схемы соединения звезда и треугольник по своим техническим параметрам точно такие же. То есть, выдаваемое напряжение треугольником будет больше, правда, не в три раза, но не менее 1,73 раза. По сути, получается, что напряжение генератора при звезде, равное 220 вольт, преобразуется в 380 вольт, если провести переключение с одного варианта на другой. Но необходимо отметить, что мощность самого агрегата при этом остается неизменной, потому что все подчиняется закону Ома, в котором напряжение и сила тока находятся в обратной пропорциональности. То есть, увеличение напряжения в 1,73 раза, снижает ток точно на такую же величину.

Отсюда вывод: если в клеммной коробке генератора располагаются все шесть концов обмоток, то можно будет получить напряжение двух номиналов, отличающихся друг от друга коэффициентом 1,73.

Чем отличаются соединения звездой и треугольником

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения «треугольника» и метод «звезды». При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Реверсивная схема двигателя 380 на 220 Вольт

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии — конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».

Схемы подключения звездой и треугольником

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

Схема подключения электродвигателя звездой и треугольником

Асинхронные двигатели обладают многими преимуществами в работе. Это надёжность, большая мощность, хорошая производительность. Подключение электродвигателя звездой и треугольником обеспечивают его стабильную эксплуатацию.

В основе электромотора выделяют две основные части: крутящийся ротор и статичный статор. Оба имеют в структуре набор токопроводящих обмоток. Электрообмотки неподвижного элемента, расположены в пазах магнитного провода на расстоянии 120 градусов. Все окончания обмоток выводятся в электрораспределительный блок, там фиксируются. Контакты пронумерованы.

Подключения двигателей могут быть звездой, треугольником, а также всевозможные их переключения. Каждое соединение обладает своими преимуществами и недостатками. Двигатели, соединённые по схеме звезда, имеют плавную, мягкую работу, действие электродвигателя ограничено мощностью по сравнению с треугольником, так как её значение больше в полтора раза.

Объединениеводнойобщейточке

Концы обмоток статора соединены вместе в одном пункте. Трехфазное напряжение поступает на начало обмоток. Значение пусковых токов при соединении треугольник более мощное. Соединение звезда означает сводку концов обмотки статора. Напряжение поступает на начала каждой обмотки.

Обмотки соединяются последовательно замкнутой ячейкой, образуют треугольное соединение. Ряды контактов с клеммами расположены параллельно по отношению друг к другу. Например, начало вывода 1 находится напротив конца 1. Питание сети подаётся на статорные обмотки, создавая вращения магнитного поля, приводящее к движению ротора. Крутящийся момент, возникающий после подключения трехфазного электродвигателя, является недостаточным для пуска. Увеличение вращающего элемента достигается при помощи использования дополнительного элемента. Например, трехфазного частотника, подключенного к асинхронному двигателю на рисунке ниже.

Чертеж подсоединения классического частотного преобразователя звездой

По данной схеме подсоединяются отечественные моторы 380 вольт.

Смешанныйспособ

Комбинированный тип подключения применим для электромоторов мощностью от 5 кВт. Схема звезда — треугольник используется при необходимости снизить пусковые токи агрегата. Принцип действия начинается со звезды, а после набора двигателем нужных оборотов, происходит автоматическое переключение на треугольник.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Схема пуска трёхфазного электродвигателя с помощью реле

Данная схема не подходит устройствам с перегрузками, так как возникает слабый крутящийся момент, что может привести к поломке.

Принципработы

Пуск питания происходит с помощью второго и релейного контакта. Затем на статоре срабатывает третий пускатель, тем самым размыкая цепь, образованную катушкой третьего элемента, в нем происходит замыкание. Далее первая обмотка статора начинает работать. Затем происходит замыкание в магнитном пускателе. срабатывает временное термореле, которое в третьей точке замыкает. Далее наблюдается замыкание контакта временного термореле в электроцепи второй обмотки статора. После отсоединения обмоток третьего элемента, происходит замыкание контактов в цепочке третьего элемента.

К началу обмоток проходит ток на три фазы. Он поступает через силовые контакты магнита первого элемента. Контакты третьего пускателя включают его, замыкают концы обмоток, которые соединяются звездой.

Затем включается реле времени первого пускателя, третий выключается, а второй включается. Контакты К2 замыкают, напряжение поступает на концы обмоток. Это и есть включение треугольником.

Различные производители изготавливают реле пуска, необходимое для запуска электродвигателя. Они отличаются внешне, по названию, но выполняют одинаковую функцию.

Обычно подключение к сети 220 происходит фазосдвигающим конденсатором. Питание поступает от любой электросети, вращает ротор с одинаковой частотой. Конечно, мощность от трёхфазной сети будет больше, чем от однофазной. Если трёхфазный двигатель работает от однофазной сети, теряется мощность.

Некоторые виды моторов не предназначены для работы от бытовой сети. Поэтому выбирая прибор для дома, предпочтение следует отдать двигателям с короткозамкнутыми роторами.

По номинальному питанию отечественные электродвигатели делятся на два типа: мощностью 220 — 127 вольт и 380 — 220 вольт. Первый тип электромоторов небольшой мощности применяется нечасто. Вторые устройства имеют широкое распространение.

При монтаже электродвигателя любой мощности действует определенный принцип: устройства с низкой мощностью подключается по схеме треугольник, а с высокой соединяются звездой. Электропитание 220 поступает на сводку треугольником, напряжение 380 идёт на соединение звездой. Это обеспечит долгую и качественную работу механизма.

Рекомендованная схема для подключения двигателя значится в техническом документе. Значок △ означает соединение в этой же форме. Буква Y указывает на рекомендуемую схему подключения звездой. Характеристики многочисленных элементов обозначены цветами, в связи с их маленькими габаритами. По цвету читается, например, номинал, сопротивление. Если стоят оба знака, то соединение возможно переключением △ и Y. Когда стоит одна определенная маркировка, например, Y, то доступное подключение будет только по схеме звезда.

Схема △ даёт мощность на выходе до 70 процентов, значение пусковых токов доходит до максимальной величины. А это может испортить двигатель. Данная схема является единственным вариантом для работы от российских электросетей зарубежных асинхронных двигателей с мощностью 400 — 690 вольт.

Поэтому выбирать правильное соединение или переключение, необходимо учитывая особенности электрической сети, силовой мощности электродвигателя. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.

Как определить коэффициент трансформации счетчика электроэнергии

Коэффициент трансформации счетчика электроэнергии (КТ) – это одна из технических величин, виляющих на точность показаний прибора учёта.

Показатель определяется эффективностью функционирования трансформаторной подстанции.

Разберем подробно данную величину.

Что такое коэффициент трансформации?

С целью учета электрической энергии, которая потребляется крупными объектами, включая жилые многоэтажные здания, используется специализированное оборудование, способствующее понижению показателей мощности напряжения, которое передаётся на контакты общедомового прибора учёта. Такие электрические счётчики не имеют непосредственного соединения с электросетью дома, что обуславливается отсутствием возможности выполнить подключение высокого напряжения посредством традиционных приборов прямого включения.

Таким образом, чтобы предотвратить поломку счетчиков, требуется уменьшать мощностные показатели на подаваемое напряжение посредством трансформаторного стандартного оборудования. На выбор такого оборудования оказывает непосредственное влияние уровень необходимой нагрузки.

Коэффициент трансформации приборов учёта электрической энергии может варьироваться в зависимости от характеристик установленного оборудования. В результате приборы-счётчики для учета затрат электроэнергии, функционирующие с трансформаторами, фиксируют нагрузку, которая снижена в несколько десятков раз.

Полученные прибором учёта данные и являются коэффициентом трансформации, а чтобы определить реальное потребление электроэнергии, потребуется умножить показания электрического счетчика на КТ.

Виды электросчетчиков

Каждый хозяин, прежде чем совершить покупку оборудования для контроля расхода электроэнергии, должен понимать, что работа такого устройства будет зависеть от принципа действия. Именно принцип действия счетчиков электроэнергии разделяет их на два основных вида: электронные и индукционные. Электронные электрические счетчики всегда основываются на том, что проводят прямое измерение силы тока и напряжения на силовой линии, проходящей через систему. Шкала такого типа оборудования представляет собой электронный тип циферблата, а также имеет уникальную возможность сохранять значения потребленной электроэнергии во встроенной памяти.

В данном типе счетчика электроэнергии отсутствует механика, а сам ток будет проходить через микросхемы и полупроводники напрямую. К преимуществам данного типа оборудования относят его небольшой размер и вес, удобство в подключении, благодаря разнообразию производимых моделей. Электронные счетчики электроэнергии могут производиться специально для ведения одно- или двухтарифного учета. Их можно устанавливать в специальную автоматизированную систему для коммерческого учета потребляемого электричества.

Несмотря на то, что у данных приборов более широкий ассортимент функционала, чем у другого типа, его интерфейс достаточно простой и понятный. Благодаря цифровым значениям на шкале хозяева получают возможность точно считывать необходимую информацию с электронного счетчика. Данный вид считывающего оборудования имеет меньший гарантийный срок, поскольку он не так надежен как индукционный тип.

Индукционные электрические счетчики являются на текущий момент самыми распространенными. Они представляют собой механическую конструкцию, в которой установлено две специальные катушки – для тока и напряжения. Когда работает этот счетчик, то образовывается магнитное поле, которое и приводит эти катушки в движение. Диски, в свою очередь, начинают двигать шкалу со значениями на циферблате, что в результате выводит объем потребляемой электроэнергии.

Скорость работы системы будет напрямую зависеть от уровня напряжения в электрической сети. Чем больше будет значение мощности, чем выше будет и скорость оборота диска. При подсчете индукционный вид счетчиков энергоснабжения имеет погрешности при подсчете. Для того чтобы повысить класс точности показаний, потребуется дорогостоящая трата. Средний срок службы для такого оборудования обычно составляет около 15 лет.

Во время приобретения можно ознакомиться с техническим паспортом определенной модели электрического счетчика, чтобы узнать обо всех характеристиках и параметрах оборудования, которыми оно обладает. Это позволит подобрать оптимальный образец для вашего дома. Коэффициент трансформации электрического считывающего устройства напрямую не относится к самой конструкции, а является промежуточным показателем, которые преимущественно зависит от трансформатора.

Как определить коэффициент трансформации: формула

Коэффициент трансформации счетчика электроэнергии указывает во сколько раз входные параметры напряжения или тока отличаются в меньшую или большую сторону от показателей на выходе.

При показателях, превышающих единицу, производится снижение, и, напротив, при показателях менее единицы, применяется устройство повышающего типа.

Различаются коэффициенты трансформации на напряжение или ток.

Формула расчёта: k=U1/U2=N1/N2 ≈ I2/I1, где:

  • U1 и U2 – разница электрического напряжения на первичной и вторичной обмотке;
  • N1 и N2 – количество витков первичной и вторичной обмотки;
  • I2 и I1 – показатели силы тока в первичной и вторичной обмотке;
  • k – искомые показатели КТ.

Как правило, такие параметры коэффициента трансформации в обязательном порядке указываются в сопроводительной документации, которая прилагается к оборудованию. Также эти сведения можно узнать из обозначений на корпусе такого устройства.

Сложной является ситуация, при которой КТ нужно вычислить самостоятельно, по данным, полученным эмпирическим путем. В этом случае осуществляется пропуск тока сквозь первичную обмотку оборудования и замыкание на вторичной обмотке, после чего замеряется величина электрического тока, проходящего по вторичной обмотке.

Самостоятельный расчёт предполагает деление значения первичного тока, на значение вторичной обмотки. Результатом таких расчётов является частное, представленное коэффициентом трансформации.

Формула для определения КТ

Расчет показаний электросчетчика с трансформаторами тока и соответствующими коэффициентами производится по определенной формуле. Результат отражает необходимое масштабирование – повышение или понижение данных. Другими словами – трансформатор изменяет уровень напряжения и показывает колебания в цифрах.

Чтобы понять, как правильно считать показания счетчика электроэнергии с трансформаторами тока, стоит разобраться с используемой формулой. В большинстве случае коэффициент трансформации шифруют английскими буквами k и n (другие символы встречаются реже). Если обозначение на трансформаторе k ˂ 1, значит, устройство работает на повышение, если k ˃ 1 – на понижение.

Общая формула следующая:

где: U1 – уровень напряжения на входе, U2 – уровень на выходе, N1 – первичная обмотка (число витков), N2 – вторичная обмотка (число витков).

Данная формула используется, если можно пренебречь показателями потерь в обмотках. В ином случае прибегают к следующим расчетам:

где: R1и R2 – данные по сопротивлению первичной и вторичной обмоток соответственно, I1 и I2 – уровень силы электроэнергии на соответствующих витках.

Для крупных объектов формулы могут быть сложнее указанных, чтобы расчеты учитывали все нюансы и детали потребления электроэнергии.

Коэффициент трансформации (учета) электросчетчика – это величина, на которую умножают показатели счетчиков, чтобы получить более корректные данные. Например, для домашних сетей – 20 единиц. Если использовать коэффициент и цифры с экрана счетчика, можно получить количество реально потребленной энергии.

Расчетный коэффициент учета

Чтобы уточнить реальный уровень потребления электрической энергии, требуется снять показания электросчётчика, после чего умножить их на КТ.

На практике КТ трансформатора, понижающего напряжение в домашних условиях, составляет 20 единиц, поэтому данные с прибора учёта нужно умножать именно на эту цифру, в результате чего и будет получен реальный расход электрической энергии.

Расчет показаний счетчика непрямого подключения

ТТ устанавливаются в сети, потребляющие сотни киловатт эл энергии. Принцип работы такого преобразователя основан на снижении величины электротока до значения, позволяющего подключить через него стандартный электросчетчик. Например, счетчик на 5 А, в сети 150 А, ТТ должен снизить показатель в 30 раз, то есть, коэффициент трансформации, используемый при подсчете расхода, тоже 30.

Как считать показания счетчика с трансформатором тока? Нужно их просто считать и отнять показатель, считанный в начале расчетного периода.

Потом полученная цифра умножается на коэффициент трансформации, указанный в технической документации или акте поставщика электроэнергии, рассчитанный самостоятельно. Это и есть ответ на вопрос, как рассчитать электроэнергию с трансформаторами тока.

Разновидности приборов учета электроэнергии

Счетчики являются многофункциональными устройствами для учета потребления, а также сохранения информации по потреблению электрической энергии. На сегодняшний день эксплуатируются три варианта приборов-счётчиков, предназначенных для учета расходуемой электрической энергии. К ним относятся индукционные, электронные и гибридные модели. Последний вариант наименее распространённый.

Механические или индукционные приборы учёта

Приборы такого типа состоят из двух катушек.

Первая катушка на напряжение ограничивает параметры переменного тока, преграждая помехи и образуя, в соответствии с напряжением, особый магнитный поток.

Вторая катушка на ток образует поток переменного типа.

К преимуществам механических моделей относятся высокая надежность и конструкционная простота, длительный эксплуатационный срок, независимости от перепадов напряжения и доступная стоимость. При выборе индукционных приборов нужно учитывать достаточно крупные габариты устройства.

Несмотря на широкое распространение, такое оборудование относится к устройствам малого класса точности и отличается повышенной энергоемкостью, а погрешности получаемых данных особенно хорошо заметны в условиях невысокой нагрузки на сеть.

Электронные приборы учёта

Модельный ряд электронных приборов отличается достаточно высокой стоимостью, которая вполне оправдана достойным качеством устройства, включая более высокий класс точности и способность функционировать в многотарифном режиме.

Принцип действия базируется на способе преобразования входных аналоговых сигналов в специальный цифровой код, расшифровываемый при помощи микроконтроллера.

Однофазный многофункциональный электронный счётчик электрической энергии DDS28U

Расшифрованные данные поступают на дисплей или так называемый оптический порт. Помимо высокой точности и многотарифной системы использования, к преимуществам можно отнести возможность ведения энергоучёта в двух направлениях, сохранение данных, возможность получения показаний в дистанционном режиме, а также долговечность и компактные размеры.

При выборе нужно учитывать основные недостатки таких моделей, которые представлены высокой чувствительностью к перепадам напряжения и отсутствием ремонтопригодности.

Гибридные приборы учёта

На сегодняшний день гибридные приборы учёта используются потребителями крайне редко. Такой промежуточный вариант счётчика электрической энергии имеет цифровой интерфейс, а измерительная часть устройства может быть представлена индукционным или электронным типом. Характерным является наличие механического вычислительного устройства.

Советы и рекомендации

На сегодняшний день в многоквартирных жилых домах и частном загородном секторе домовладений в основном устанавливаются однофазные приборы учёта электрической энергии, которые рассчитаны на стандартное напряжение в 220 В. Тем не менее, в условиях использования большого количества бытовых приборов с разными показателями мощности, рекомендуется отдавать предпочтение трехфазным счетчикам, что позволяет подключать энергоемкие устройства, которые рассчитаны на напряжение в 220 В и 380 В.

При выборе прибора нужно обязательно обращать внимание на расчётные показатели тока, а также класс точности, представленный наибольшей допустимой относительной погрешностью, выраженной в процентах.

Все вновь устанавливаемые трехфазные счетчики обязательно должны иметь пломбы государственной поверки, давность которых не превышает двенадцать месяцев. Срок давности пломбы на однофазном счетчике не может превышать два года.

Характеристики, как снять показания Меркурий 230 АМ

Описание счетчиков Меркурий 230 АМ • Характеристики счетчиков Меркурий 230 АМ • Поверка счетчиков Меркурий 230 АМ • Габариты счетчика Меркурий 230 АМ • Схемы подключения Меркурий 230 АМ к сети 230 В • Схемы подключения Меркурий 230 АМ к сети 57,7 В

Назначение счетчиков Меркурий 230 АМ

Счетчики электрической энергии однотарифные, трехфазные, статические, «Меркурий 230АМ» прямого и трансформаторного включения, предназначены для измерения и учета электрической активной энергии переменного тока в трех и четырех проводных сетях.

Описание счетчиков Меркурий 230 АМ

Принцип действия счетчиков основан на преобразовании входных сигналов тока и напряжения трехфазной сети из аналогового представления в цифровое с помощью аналого-цифрового преобразователя (АЦП).

Счетчики «Меркурий 230АМ» обеспечивают регистрацию и хранение значений потребляемой электроэнергии по одному тарифу с момента ввода в эксплуатацию. В качестве устройства для отображения потребленной энергии используется устройство отсчетное электромеханическое (УО).

В счетчиках функционирует импульсный выход. В счетчиках «Меркурий 230 АМ-00» и «Меркурий 230 АМ-03» импульсный выход имеет два режима работы — режим телеметрии и режим поверки.

Счетчики могут применяться автономно или в автоматизированной системе сбора данных о потребляемой электроэнергии. Конструктивно счетчики состоят из следующих узлов:

  • корпуса (основания корпуса, крышки корпуса, клеммной крышки)
  • клеммной колодки
  • печатного узла

Печатный узел представляет собой плату с электронными компонентами, которая устанавливается в основании корпуса. Печатная плата подключается к клеммной колодке с помощью проводов. Крышка корпуса крепится к основанию защелками и одним или двумя винтами (в зависимости от модификации) и имеет окно для считывания показаний с УО и для наблюдения за светодиодным индикатором функционирования. Клеммная колодка состоит из восьми клемм для подключения электросети и нагрузки.

На печатном узле находятся:

  • блок питания
  • оптрон импульсного выхода
  • микроконтроллер (МК)
  • энергонезависимое запоминающее устройство

Корпус счетчиков изготовляется методом литья из ударопрочной пластмассы, клеммная колодка изготовляется из пластмассы с огнезащитными добавками.

Счетчики предназначены для эксплуатации внутри закрытых помещений. Класс защиты счетчиков от проникновения пыли и воды IP51 по РОСТ 14254.

Счетчики Меркурий 230 АМ имеют несколько вариантов исполнения, отличающиеся:

  • вариантом подключения к сети
  • базовым(номинальным) и максимальным током
  • номинальным напряжением
  • классом точности
  • постоянной счетчика

Варианты исполнений счетчиков Меркурий 230 АМ приведены в таблице 1

Таблица 1 — Варианты исполнения счетчиков

Модификации счетчика

Класс точности

Базовый или номинальный (максимальный) ток, А

Номинальное напряжение, В

Постоянная счетчика в режиме телеметрии/ поверки, имп. /(кВт-ч)

Меркурий 230 АМ-00

0,5S

5(7,5)

3×57,7/100

8000/170700

Меркурий 230 АМ-01

1,0

5(60)

3×230/400

1600

Меркурий 230 АМ-02

1,0

10(100)

3×230/400

1600

Меркурий 230 АМ-03

0,5S

5(7,5)

3×230/400

800/17070

Характеристики счетчиков Меркурий 230 АМ

Наименование характеристики

Значение

Класс точности

1 по ГОСТ 31819. 21-2012 или 0,5S по ГОСТ 31819. 22-2012

Номинальное напряжение, В

3×230/400 или 3×57,7/100

Установленный рабочий диапазон напряжения

от 0,9 до 1,1 Uном
Расширенный рабочий диапазон напряжения

от 0,8 до 1,15 Uном
Предельный рабочий диапазон напряжения

от 0 до 1,15 Uном
Базовый/максимальный ток для счетчиков непосредственного включения, А

5/60 или 10/100

Номинальный/максимальный ток для счетчиков, включаемых через трансформатор, А

5/7,5

Номинальная частота сети, Гц

50

Стартовый ток (чувствительность), мА, не более:
для счетчика с Iб=5 Адля счетчика с Iб=10 Адля счетчика с Iб=5 А
20255

Постоянная счетчика в режиме телеметрии/поверки, имп. /(кВт-ч):
для счетчиков непосредственного включениядля счетчиков, включаемых через трансформатор
1600800/17070 или 8000/170700

Устройство отсчетное
число индицируемых разрядовцена единицы младшего разряда при отображении энергии, кВт-ч
60,001 или 0,01 или 0,1

Количество тарифов

1

Потребляемая мощность, В А (Вт), не более:
по цепи напряженияпо цепи тока
8,0(1,0)0,1

Габаритные размеры счетчика, мм, не более:

высота

258

ширина

170

длина

74

Масса, кг, не более

1,5

Установленный рабочий диапазон температур, °С

от -40 до +55

Средний срок службы счетчика, лет

30

Средняя наработка счетчика на отказ, ч

140000

Знак утверждения типа наносится на панель счетчиков методом офсетной печати или фото способом. В эксплуатационной документации на титульных листах знак утверждения тина наносится типографским способом.

Поверка счетчиков Меркурий 230 АМ

Методика поверки Меркурий 230 АМ АВЛГ. 411152. 025 И3
Настоящая методика составлена с учетом требований Приказа Минпромторга России от 02. 2015 г. № 1815, РМГ 51-2002, ГОСТ 8. 584-2004, ГОСТ 31818. 11-2012, ГОСТ 31819. 21-2012, ГОСТ 31819. 22-2012 и устанавливает методику первичной, периодической и внеочередной поверки счетчика, а также объем, условия поверки и подготовку к ней. (Измененная редакция, Изм. № 1)

Таблица 1 – Модификации счётчика, выпускаемые предприятием-изготовителем

Базовый или номинальный (максимальный) ток, А
Номинальное напряжение, В
Меркурий 230 АМ-00
Меркурий 230 АМ-01
Меркурий 230 АМ-02
Меркурий 230 АМ-03

При выпуске счетчиков из производства и ремонта проводят первичную поверку. Первичной поверке подлежит каждый экземпляр счетчиков.

Межповерочный интервал счетчиков Меркурий 230 АМ — 10 лет.

Периодической поверке подлежат счетчики, находящиеся в эксплуатации или на хранении по истечении межповерочного интервала. Внеочередную поверку производят в случае:

  • повреждения знака поверки (пломбы) и в случае утраты паспорта
  • ввода в эксплуатацию счетчика после длительного хранения (более половины межповерочного интервала)
  • проведения повторной юстировки или настройки, известном или предполагаемом ударном воздействии на счетчик или неудовлетворительной его работе
  • продажи (отправки) потребителю, нереализованного по истечении срока, равного половине межповерочного интервала.

Операции и средства поверки счетчиков Меркурий 230 АМ

Выполняемые при поверке операции, а также применяемые при этом средства по­верки указаны в таблице 2. Последовательность операций проведения поверки обязательна.

Таблица 2 — Последовательность операций поверки

Обязательность проведения поверки
Наименование средств поверки, технические характеристики
при первичной поверке
при периодической (внеочередной) поверке
1. Внешний осмотр
2. Проверка электрической прочности изоляции
Установка для испытания электрической прочности изоляции УПУ-10 пост. и перем. напряжением 0 — 4000 В
Установка К68001: измерение основной погрешности счетчиков класса 1,0; номинальное напряжение 3*230/400 В и 3*57,7/100 В, ток (0,01. 100) А. Источники питания Б5- 30: постоянное напряжение (5…. 24) В, ток (0…50) мА. Проверка метрологических характеристик счетчика
3. Определение значений погрешностей счетчика
3. Проверка порога чувствительности и отсутствия самохода
Допускается проведение поверки счетчиков с применением средств поверки, не указанных в таблице, но обеспечивающих определение и контроль метрологических характеристик поверяемых счетчиков с требуемой точностью. Средства поверки должны быть поверены и иметь действующее клеймо поверки.

Требования безопасности при поверке

При проведении поверки должны быть соблюдены требования «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей».

Требования к квалификации поверителей

Поверку осуществляют юридические лица и индивидуальные предприниматели, аккредитованные в установленном порядке в области обеспечения единства измерений.

Все действия по проведению измерений при проверке счетчиков электроэнергии Меркурий 230 АМ и обработки результатов измерений проводят лица, изучившие настоящий документ, руководство по эксплуатации используемых средств измерений и вспомогательных средств поверки.

Условия поверки счетчиков электроэнергии Меркурий 230 АМ

Порядок предоставления счетчиков на поверку должен соответствовать требованиям Приказа Минпромторга России от 02. 2015 г. № 1815. При проведении поверки должны соблюдаться условия:

  • Температура окружающего воздуха, °С — 23 ± 2
  • Относительная влажность воздуха, % от 30 до 80
  • Атмосферное давление, мм рт. ст. от 630 до 795
  • Внешнее магнитное поле отсутствует
  • Частота измерительной сети, Гц 50 ± 0,3
  • Форма кривой напряжения и тока измерительной сети синусоидальная, Кг не более 2 %
  • Отклонение номинального напряжения ± 1,0 %

Поверка должна производиться на аттестованном оборудовании с применением средств поверки, имеющих действующее клеймо поверки.

Подготовка к поверке счетчиков Меркурий 230 АМ

Перед проведением поверки следует выполнить следующие подготовительные работы:

  • Проверить наличие и работоспособность эталонных средств измерения и вспомогательных средств поверки, перечисленных в таблице 2.
  • Проверить наличие действующих свидетельств о поверке (аттестации) и оттисков поверительных клейм у эталонных средств измерения и вспомогательных средств поверки.
  • Проверить наличие заземления всех составных частей поверочной схемы.
  • Подготовить эталонные средства измерения и вспомогательные средства поверки к работе в соответствии с руководством по их эксплуатации.
  • Проверить работоспособность эталонных средств измерений и вспомогательных средств поверки путём их пробного пуска.

Проведение поверки счетчиков Меркурий 230 АМ

При внешнем осмотре должно быть установлено соответствие счётчика следующим требованиям:

  • лицевая панель счетчика должна быть чистой и иметь четкую маркировку в соответствии с требованиями конструкторской документации
  • во все резьбовые отверстия токоотводов должны быть ввернуты до упора винты с исправной резьбой
  • на крышке зажимной колодки счетчика должна быть нанесена схема подключения счетчика к электрической сети
  • в комплекте счетчика должен быть паспорт

На лицевую часть панели счетчика должно быть нанесено офсетной печатью или другим способом, не ухудшающим качества:

Проверка электрической прочности изоляции

Мощность источника испытательного напряжения должна быть не менее 500 В-А. Увеличивать напряжение в ходе испытания следует плавно, начиная со 100-230 В и далее равномерно или ступенями, не превышающими 10 % установленного напряжения, в течение 5-10 с. По достижении заданного значения испытательного напряжения счетчик необходимо выдержать под его воздействием в течение 1 мин, контролируя отсутствие пробоя. Затем необходимо плавно уменьшать испытательное напряжение.

Результат проверки считают положительным, если электрическая изоляция выдерживает в течение 1 минуты напряжение переменного тока 4 кВ частотой 50 Гц между контактами счетчика 1-16 с одной стороны и 17, 20, 19, 22, «земля» с другой стороны.

При опробовании проверяется функционирование отсчетного устройства. Подключите цепи питания счетчика к установке К68001. Установите на установке К68001 фазные напряжения 230 В для счетчиков с номинальным напряжением 3*230 В и 57,7 В для счетчиков с номинальным напряжением 3*57,7 В. Ток в нагрузке отсутствует. Запишите показание потребленной электроэнергии.

Установите на установке ток 10 А при коэффициенте мощности 1,0 в каждой фазе для счетчиков с максимальным током 50 А или 100 А и 5 А для счетчиков с максимальным током 7,5 А. Светодиодный индикатор должен периодически мигать. На устройстве отсчетном должно происходить увеличение значения потребленной электроэнергии. По истечении 15 мин запишите показания потребленной электроэнергии. Разница в показаниях должна быть в пределах:

  • (1,5…1,8) кВт-ч для счетчиков с максимальным током 50 А или 100 А
  • (0,2…0,25) кВт-ч для счетчиков с максимальным током 7,5 А и номинальным напряжением 57,7 В
  • (0,8.0,85) кВт-ч для счетчиков с максимальным током 7,5 А и номинальным напряжением 230 В

Если все описанные действия завершились успешно, то счетчик функционирует исправно. Счетчик считается опробованным.

Проверка метрологических характеристик:

  • значений погрешности счетчика
  • стартового тока (чувствительности)
  • отсутствия самохода

Погрешность счетчика определяют методом непосредственного сличения на установке К68001. Часть испытаний проводится в режиме телеметрии, часть — в режиме поверки.

Таблица 3 — Значения информативных параметров входного сигнала

Информативные параметры входного сигнала
Предел допустимого значения погрешно­сти при измерении активной энергии, %
Время измерения, с
3 х Uном
3 х 0,01 Iном
3 х Uном
3 х 0,05 Iном(Iб)
3 х Uном
3 х 0,1 Iб
3 х Uном
3 х Iном(Iб)
3 х Uном
3 х Iмакс
3 х Uном
3 х 0,02 Iном
3 х Uном
3 х 0,02 Iном
3 х Uном
3 х 0,01 Iном(Iб)
3 х Uном
3 х 0,01 Iном(Iб)
3 х Uном
3 х 0,02 Iб
3 х Uном
3 х 0,02 Iб
3 х Uном
3 х Iном(Iб)
3 х Uном
3 х Iном(Iб)
3 х Uном
3 х Iмакс
3 х Uном
3 х Iмакс
3 х Uном
3 х Uном
1 х 0,01 Iб
3 х Uном
1 х Iном(Iб)
3 х Uном
1 х Iмакс
3 х Uном
1 х 0,1 Iном
3 х Uном
1 х 0,2 Iб
3 х Uном
1 х Iном(Iб)
3 х Uном
1 х Iмакс

Испытания 16-23 (таблица 3) с однофазной нагрузкой при симметрии фазных напряжений необходимо проводить последовательно для каждой из фаз отдельно.

При испытаниях время измерения выбирают по таблице 3. При этом изменение погрешности при двух, трёх измерениях не должно превышать 0,1 допускаемого значения погрешности (таблица 3).

Результаты испытаний считаются положительными, и счётчики соответствуют классу точности, если разность между значением погрешности, выраженной в процентах, при однофазной нагрузке и значением погрешности, выраженной в процентах при симметричной многофазной нагрузке при номинальном токе и cos ф = 1 для активной энергии не превышает 1 % и 1,5 % для счётчиков класса точности 0,5S и 1,0 соответственно.

Проверка стартового тока (чувствительности)

Перед началом проверки необходимо перевести импульсный выход счётчика в режим поверки (для тех счётчиков, в которых этот режим предусмотрен). Проверку стартового тока (чувствительности) проводят методом непосредственного сличения на установке К68001 при значениях тока, указанных в таблице 4 при симметричной нагрузке.

Примечание — Перед началом испытаний счётчики должны быть выдержаны 10 мин

Результаты испытаний считаются положительными, если счётчик регистрирует электроэнергию.

Проверку самохода производят при отсутствии тока в последовательных цепях и приложенном фазном напряжении 1,15Uном

В качестве индикатора используется светодиодный индикатор, подключенный к импульсному выходу. Перед началом испытаний перевести импульсный выход в режим поверки (для тех счётчиков, в которых этот режим предусмотрен). После установки величин фазных напряжений, снять напряжения с параллельных цепей счётчика. Через 10 с подать напряжение на параллельные цепи счётчика и включить секундомер.

Постоянная счетчика, имп. /(кВт-ч)
Меркурий 230 АМ-00
Меркурий 230 АМ-01
Меркурий 230 АМ-02
Меркурий 230 АМ-03

Габариты счетчика Меркурий 230 АМ

Меркурий 230 АМ габаритный чертеж счетчика

Схемы подключения Меркурий 230 АМ к сети 230 В

Схема непосредственного подключения счетчика Меркурий 230 АМ к сети 230 В

Схема подключения счетчика Меркурий 230 АМ к сети 230 В с помощью трех трансформаторов тока

Схемы подключения Меркурий 230 АМ к сети 57,7 В

Схема подключения Меркурий 230 АМ к трехфазной 3 или 4 проводной сети с помощью трех трансформаторов напряжения и трех трансформаторов тока

Схема подключения Меркурий 230 АМ к трехфазной 3 проводной сети с помощью трех трансформаторов напряжения и двух трансформаторов тока

Схема подключения Меркурий 230 АМ к трехфазной 3 проводной сети с помощью двух трансформаторов напряжения и двух трансформаторов тока

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий