Причины возникновения и воздействие на человека. Как защитится от разряда тока ? — TEZRO.RU

Сила разряда в действии

Впервые явление вольтовой дуги наблюдал русский академик Петров, получив искровой разряд.

Вольтова дуга характеризуется двумя свойствами:

  • выделением большого количества теплоты
  • сильным лучеиспусканием.

И то и другое свойство электрической дуги использовано в технике.

Для сварочной техники первое свойство является положительным фактором, второе — отрицательным.

В качестве электропроводов для электрического разряда могут служить любые электропроводные материалы. Чаще всего в качестве проводников употребляют угольные и графитные стержни круглого сечения (дуговые фонари).

Типичный вариант между двумя углями изображена на рисунке.

Верхний электрод присоединен к положительному полюсу машины (анод). Второй уголь соединен с отрицательным полюсом (катод).

Температура электрической дуги, ее воздействие

Выделение теплоты неодинаково в различных точках дуги. У положительного электрода выделяется 43% всего количества, у отрицательного 36% и в самой дуге (между электродами) остальные 21%.

Схема зон и их температуры в сварочной дуге

В связи с этим и температура на электродах неодинакова. Анод имеет около 4000° С, а катод 3400°. В среднем считают температуру электрической дуги 3500° С.

Благодаря различной температуре на полюсах вольтовой дуги угольные проводники берутся различной толщины. Положительный уголь берется толще, отрицательный — тоньше. Стержень дуги (средняя часть) состоит из потока электронов, выбрасываемых катодом, которые с огромной скоростью несутся к аноду. Обладая большой кинетической энергией, они ударяются о поверхность анода, преобразуя кинетическую энергию в тепловую.

Окружающий его зеленоватый ореол является местом химических реакций, происходящих между парами вещества электродов и атмосферой, в которой горит вольтова дуга.

Процесс возникновения сварочной дуги

Возникновение электрической дуги

Процесс образования вольтовой дуги представляется в следующем виде. В момент соприкосновения электродов проходящий ток выделяет большое количество тепла в месте стыка, так как здесь имеется большое электрическое сопротивление (закон Джоуля).

Благодаря этому концы проводников раскаляются до светлого накала, и после разъединения электродов катод начинает испускать электроны, которые, пролетая через воздушный промежуток между электродами, расщепляют молекулы воздуха на положительно и отрицательно заряженные частички (катионы и анионы).

Вследствие этого воздух становится электропроводным.

В сварочной технике наибольшее применение имеет разряд между металлическими электродами, причем одним электродом являйся металлический стержень, который в то же время служит и присадочным материалом, а вторым электродом является сама свариваемая деталь.

Процесс остается тот же, что и в случае угольных электродов, но здесь появляется новый фактор. Если в угольной дуге проводники постепенно испарялись (сгорали), то в металлической дуге электроды весьма интенсивно плавятся и частично испаряются. Благодаря наличию металлических паров между электродами сопротивление (электрическое) металлической дуги ниже, чем угольной.

Угольный разряд горит при напряжении в среднем 40—60 в, тогда как напряжение металлической дуги в среднем 18—22 в (при длине 3 мм).

Длина дуги, кратер, провар

Сам процесс дуговой электросварки протекает следующим образом.

Как только мы коснемся находящимся под напряжением электродом изделия и тотчас же отведем его на некоторое расстояние, образуется вольтова дуга и сейчас же начинается плавление основного металла и металла проводника. Следовательно, конец электрода все время находится в расплавленном состоянии, и жидкий металл с него в виде капель переходит на свариваемый шов, где металл электрода смешивается с расплавленным металлом свариваемого изделия.

Исследования показали, что таких капель переходит, с электрода около 20—30 в секунду, т. процесс этот совершается очень быстро.

Хотя вольтова дуга и развивает очень высокую температуру, выделение тепла ею производится на очень небольшом пространстве как раз под дугой.

Схема длины дуги

Если мы будем рассматривать через темные стекла дугу, возбужденную металлическим электродом, то убедимся, что в месте образования дуги между электродом и основным металлом на основном металле выделяется добела нагретая поверхность, которая непосредственно под дутой имеет вид углубления, заполненного жидким металлом. Получается такое впечатление, что это углубление образовано как бы выдуванием жидкого металла дугой. Это углубление называется сварочной ванной. Она окружена металлом, нагретым до белого каления, причем температура нагрева области, прилегающей, быстро падает до красного цвета и уже на небольшом расстоянии, величина которой колеблется в зависимости от диаметра электрода и силы тока, температура сравнивается с температурой самого свариваемого предмета.

Электрическая дуга — Справочник химика 21

Электрическая дуга и ее свойства

Электрическая дуга и ее свойства

Электрическая дуга представляет собой длительный электрический разряд, происходящий в газовом промежутке между двумя проводниками — электродом и свариваемым металлом при значительной силе тока. Непрерывно возникающая под действием стремительного потока положительных и отрицательных ионов и электронов в дуге ионизация воздушной прослойки создает необходимые условия для продолжительного устойчивого горения сварочной дуги.

Рис. Электрическая дуга между металлическим электродом и свариваемым металлом:
а — схема дуги, б — график напряжений дуги длиной 4 мм; 1 — электрод, 2 — ореол пламени, 3 — столб дуги, 4 — свариваемый металл, 5 — анодное пятно, 6 — расплавленная ванна, 7 — кратер, 8 — катодное пятно; h — глубина проплавления в дуге, А — момент зажигания дуги, Б — момент устойчивого горения

Дуга состоит из столба, основание которого находится в углублении (кратере), образующемся на поверхности расплавленной ванны. Дуга окружена ореолом пламени, образуемым парами и газами, поступающими из столба дуги. Столб имеет форму конуса и является основной частью дуги, так как в нем сосредоточивается основное количество энергии, соответствующее наибольшей плотности проходящего через дугу электрического тока. Верхняя часть столба, расположенная на электроде 1 (катоде), имеет небольшой диаметр и образует катодное пятно 8. Через катодное пятно излучается наибольшее количество электродов. Основание конуса столба дуги расположено на свариваемом металле (аноде) и образует анодное пятно. Диаметр анодного пятна при средних значениях сварочного тока больше диаметра катодного пятна примерно в 1,5 … 2 раза.

Выделяя большое количество теплоты и имея высокую темпе-оатуру. электрическая дуга вместе с тем дает очень сосредоточенный нагрев металла. Поэтому металл во время сварки остается сравнительно мало нагретым уже на расстоянии нескольких сантиметров от сварочной дуги.

Действием дуги металл расплавляется на некоторую глубину h называемую глубиной проплавления или проваром.

Возбуждение дуги происходит при приближении электрода к свариваемому металлу и замыкании им сварочной цепи накоротко. Благодаря высокому сопротивлению в точке соприкосновения электрода с металлом конец электрода быстро нагревается и начинает излучать поток электронов. Когда конец электрода быстро отводят от металла на расстояние 2…4 мм, возникает электрическая дуга.

Напряжение в дуге, т. напряжение между электродом и основным металлом, зависит в основном от ее длины. При одном и том же токе напряжение в короткой дуге ниже, чем в длинной. Это обусловлено тем, что при длинной дуге сопротивление ее газового промежутка больше. Возрастание же сопротивления в электрической цепи при постоянной силе тока требует увеличения напряжения в цепи. Чем выше сопротивление, тем выше должно быть и напряжение для того, чтобы обеспечить прохождение в цепи того же тока.

Дуга между металлическим электродом и металлом горит при напряжении 18… 28 В. Для возбуждения дуги требуется более высокое напряжение, чем то, которое необходимо для поддержания ее нормального горения. Это объясняется тем, что в начальный момент воздушный промежуток еще недостаточно нагрет и необходимо придать электронам большую скорость для расцепления молекул и атомов воздуха. Этого можно достичь только при более высоком напряжении в момент зажигания дуги.

График изменения тока I в дуге при ее зажигании и устойчивом горении (рис. 1, б) называется статической характеристикой дуги и соответствует установившемуся горению дуги. Точка А характеризует момент зажигания дуги. Напряжение дуги V быстро падает по кривой АБ до нормальной величины, соответствующей в точке Б устойчивому горению дуги. Дальнейшее увеличение тока (вправо от точки Б) увеличивает нагрев электрода и скорость его плавления, но не оказывает влияния на устойчивость горения дуги.

Устойчивой называется дуга, горящая равномерно, без произвольных обрывов, требующих повторного зажигания. Если дуга горит неравномерно, часто обрывается и гаснет, то такая дуга называется неустойчивой. Устойчивость дуги зависит от многих причин, основными из которых являются род тока, состав покрытия электрода, вид электрода, полярность и длина дуги.

При переменном токе дуга горит менее устойчиво, чем при постоянном. Это объясняется тем, что в тот момент, когда ток п, дает до нуля, ионизация дугового промежутка уменьшается и дуга может гаснуть. Чтобы повысить устойчивость дуги переменного тока, приходится наносить на металлический электрод ио-крытия. Пары элементов, входящих в покрытие, повышают ионизацию дугового промежутка и тем способствуют устойчивому горению дуги при переменном токе.

Длину дуги определяют расстоянием между торцом электрода и поверхностью расплавленного металла свариваемого изделия. Обычно нормальная длина дуги не должна превышать 3…4 мм для стального электрода. Такая дуга называется короткой. Короткая дуга горит устойчиво и при ней обеспечивается нормальное протекание процесса сварки. Дуга длиной больше 6 мм называется длинной. При ней процесс плавления металла электрода идет неравномерно. Стекающие с конца электрода капли металла в этом случае в большей степени могут окисляться кислородом и обогащаться азотом воздуха. Наплавленный металл получается пористым, шов имеет неровную поверхность, а дуга горит неустойчиво. При длинной дуге понижается производительность сварки, увеличивается разбрызгивание металла и количество мест непровара или неполного сплавления наплавленного металла с основным.

Перенос электродного металла на изделие при дуговой сварке плавящимся электродом является сложным процессом. После зажигания дуги (положение /) на поверхности торца электрода образуется слой расплавленного металла, который под действием сил тяжести и поверхностного натяжения собирается в каплю (положение //). Капли могут достигать больших размеров и перекрывать столб дуги (положение III), создавая на непродолжительное время короткое замыкание сварочной цепи, после чего образовавшийся мостик из жидкого металла разрывается, дуга возникает вновь, и процесс каплеобразования повторяется.

Размеры и количество капель, проходящих через дугу в единицу времени, зависят от полярности и силы тока, химического состава и физического состояния металла электрода, состава покрытия и ряда других условий. Крупные капли, достигающие 3…4 мм, обычно образуются при сварке непокрытыми электро-дами, мелкие капли (до 0,1 мм)—при сварке покрытыми электл родами и большой силе тока. Мелкокапельный процесс обеспечивает стабильность горения дуги и благоприятствует условиям переноса в дуге расплавленного металла электрода.

Рис. Схема переноса металла с электрода на свариваемый металл

Рис. Отклонение электрической дуги магнитными полями (а—ж)

Сила тяжести может способствовать или препятствовать переносу капель в дуге. При потолочной и частично при вертикальной сварке сила тяжести капли противодействует переносу ее на изделие. Но благодаря силе поверхностного натяжения жидкая ванна металла удерживается от вытекания при сварке в потолочном и вертикальном положениях.

Прохождение электрического тока по элементам сварочной цепи, в том числе по свариваемому изделию, создает магнитное поле, напряженность которого зависит от силы сварочного тока. Газовый столб электрической дуги является гибким проводником электрического тока, поэтому он подвержен действию результирующего магнитного поля, которое образуется в сварочном контуре. В нормальных условиях газовый столб дуги, открыто горящей в атмосфере, расположен симметрично оси электрода. Под действием электромагнитных сил происходит отклонение дуги от оси электрода в поперечном или продольном направлении, что по внешним признакам подобно смещению факела открытого пламени при сильных воздушных потоках. Это явление называют магнитным дутьем.

Присоединение сварочного провода в непосредственной близости к дуге резко снижает ее отклонение, так как собственное круговое магнитное поле тока оказывает равномерное воздействие на столб дуги. Подвод тока к изделию в отдалении от Дуги приведет к отклонению ее вследствие сгущения силовых линий кругового магнитного поля со стороны токопровода.

Реклама:

Процесс сварки металла

Статьи по теме:

Электродуговый шлак, произведенный на заводе ферроникеля LARCO S. A Larymna в Греции, был использован для синтеза геополимеров. Годовое производство шлака составляет около 1 700 000 т, из которых около 450 000 т используются в цементной промышленности. Стоимость утилизации оставшихся объемов достигает 650 000 евро в год. Размер частиц хрупкого шлака колеблется от 0,075 до 4 мм (большая часть приходится на фракцию 0,1–1,5 мм). Шлак сушили и измельчали ​​(91% –50 мкм, 47% –10 мкм) с помощью пульверизатора FRITSCH, чтобы увеличить площадь поверхности и улучшить прочность на сжатие производимых геополимеров (Захараки, 2005; Захараки и Комницас, 2005; Захараки et al. , 2006). Используемые добавки включают каолинит (Fluka), метакаолинит (полученный путем прокаливания каолинита при 600 ° C в течение 4 часов), CaO (Alfa Aesar), кварцевый песок, а также пуццолан, летучую золу, красный шлам и стекло.

В таблице 16. 1 показан химический анализ шлака и используемых добавок в виде оксидов и микроэлементов. Содержание железа в шлаке показано как Fe 2 O 3 , но также присутствует значительная часть двухвалентного железа. Микроэлементы видны в элементарной форме. Основные минералогические фазы, присутствующие в шлаке, а именно фаялит, анортит, кварц, тридимит, кристобалит, магнетит, форстерит и хромит, видны на рентгенограмме рис. По форме рисунка предполагается, что содержание аморфного вещества превышает 50%.

Таблица 16. Химический анализ сырья и добавок

% Ферроникелевый шлак Пуццолан Летучая зола Красный шлам Техническое стекло Fe 2 O 3 43,83 1,09 5,60 45,48 — SiO 2 32,74 72,22 33,40 6. 96 74,00 Al 2 O 3 8,32 17,73 13,10 15,65 1,30 CaO 3,73 0,95 35,31 14,8490 10,50 Cr 2 O 3 3,07 — — — — MgO 2,76 1. 10 3,67 — — Mn 3 O 4 0,44 0,19 0,19 — — Na 2 O — 3,30 0,46 3,26 13,00 K 2 O — 3,05 0,76 — — P 2 O 5 — 0. 56 – – – TIO 2 – 0. 14 0. 71 4. 80 – SO 3 – – 6. 58 – – S 0. 18 – – – – C 0. 11 – – – – Ni 0. 10 — — — — Co 0,02 — — — —

16,1. Рентгенограмма шлака (Fa: фаялит, A: анортит, Q: кварц, T: тридимит, Ct: кристобалит, M: магнетит, Fo: форстерит, Ch: хромит).

Песок кварцевый, закупаемый в гранулированном виде, состоит из кварца. Пуццолан, добываемый на острове Милос в Греции, является очень дешевым материалом и при использовании в портландцементном бетоне увеличивает его долговременную прочность на сжатие. Летучая зола была получена от Ptolemais, N. Греция, тепловая электростанция и классифицируется согласно ASTM как тип C; его основные минералогические фазы — кварц SiO 2 , кальцит CaCO 3 , ангидрит CaSO 4 , геленит Ca 2 (Al (AlSi) O 7 ), альбит NaAl 4 Si 3 O 8 , известь CaO и портландит Ca (OH) 2. Красный шлам был получен из АО «Алюминий Греции» и состоит из кварца SiO 2 , гематита Fe 2 O 3 , гиббсита Al (OH) 3 , диаспора AlO (OH), кальцита CaCO 3 , канкринит Na 6 Ca 2 Al 6 Si 6 O 24 (CO 3 ) 2 и катоит Ca 3 Al 2 (SiO 4 ) (OH) 8. Техническое стекло — это аморфный материал, состоящий в основном из оксидов кремния, кальция и натрия. Перед использованием стекло и кварцевый песок измельчали ​​в порошок.

Шлак и добавки смешивали и медленно добавляли в активирующий раствор, приготовленный растворением безводных гранул гидроксида натрия или калия (ACS-ISO для анализа) в дистиллированной воде и смешиванием с раствором силиката натрия (Merck, Na 2 O: SiO 2 = 0,3, Na 2 O = 7,5–8,5%, SiO 2 = 25. 5–28,5%). При непрерывном механическом перемешивании получали реактивную однородную пасту. Массовый процент добавления шлака и добавок варьируется и зависит от реагентов, используемых в каждом случае для получения рабочей пасты. Было синтезировано несколько контрольных образцов с использованием шлака и активирующего раствора в каждой серии опытов.

Пасту отливали в пластиковые кубические формы (по 5 см с каждой стороны), которые подвергали вибрации в течение пяти минут для удаления захваченного воздуха. Некоторые образцы были предварительно отверждены при комнатной температуре в течение максимум 4 дней, а затем нагреваются в лабораторной печи (MMM GmbH) при требуемой температуре в течение 24 или 48 часов. После извлечения из формы старение происходило при комнатной температуре в течение 7 или 28 дней, чтобы усилить развитие структурных связей. Затем была измерена прочность на сжатие с использованием силовой рамы MTS 1600. Все эксперименты проводились в двух экземплярах. Лишь в единичных случаях, когда отклонение экспериментальных результатов превышало 10%, были изготовлены дополнительные образцы.

Для изучения геохимической стабильности полученных геополимеров образцы, синтезированные с использованием шлака и каолинита в условиях 80 ° C, 48 часов, 28 дней, погружали в растворы, содержащие дистиллированную, морскую воду и 0. 5N HCl и оставил максимум на 9 месяцев. Первоначально использовалось 400 мл каждого раствора, а при необходимости добавлялись свежие растворы для учета потерь при испарении. Жидкие пробы собирали ежемесячно и анализировали на pH, окислительно-восстановительный потенциал (pH / Eh-метр Hanna 211) и электропроводность (кондуктометр Hanna EC215). Морская вода считалась выщелачивающим средством для оценки целостности геополимеров при использовании в прибрежных или подводных строительных работах. Раствор HCl использовался для оценки их поведения в чрезвычайно агрессивных / коррозионных промышленных средах.

Образцы были подвергнуты циклам замораживания-оттаивания (с использованием –15 ° C и 20 ° C в качестве крайних температур) в течение 9 месяцев, а также высокотемпературному нагреванию (до 800 ° C) в течение 6 часов для оценки их целостность конструкции; Каолинит не добавлялся во время синтеза геополимера, когда изучалось влияние высокотемпературного нагрева.

XRD-анализ выполняли на дифрактометре Siemens D500 с использованием Fe-трубки и диапазона сканирования от 3 ° до 70 ° 20, с шагом 0,03 ° и временем измерения 4 секунды / шаг. Качественный анализ проводился с использованием программного обеспечения Diffrac plus (Bruker AXS) и базы данных PDF. Визуализацию микроструктуры геополимера проводили с использованием сканирующего электронного микроскопа JEOL JSM-5400, оборудованного оксфордским энергодисперсионным рентгеновским спектрометром (EDS). Перед анализом образцы были покрыты углеродом для увеличения проводимости поверхности. FTIR-анализ выполнялся на FTIR Spectrometer Model 1000 (Perkin-Elmer) с использованием метода таблеток KBr (1. Образец порошка 5 мг, смешанный с 150 мг KBr). Анализ ТГ выполняли с использованием термогравиметрического анализатора Perkin Elmer TGA 6 (максимальная температура нагрева составляла 950 ° C при скорости 10 ° C мин. -1 с использованием скорости продувки азотом 60 мл мин. -1 ).

Электрическая дуга [Определение, применение и дуговая вспышка]

18 июня 2018

Электробезопасность имеет первостепенное значение для обслуживания любого эффективного и производительного объекта, и одной из самых больших угроз безопасности рабочих является электрическая дуга и вспышка дуги. Для менеджеров по безопасности — убедиться, что на предприятии нет опасностей, связанных с электрической дугой и вспышкой дуги, и приняты меры по минимизации ущерба в случае одной из этих аварий.

Электрические пожары вызывают катастрофические повреждения, и в промышленных условиях они часто вызываются электрическими дугами того или иного типа. В то время как некоторые типы электрических дуг трудно пропустить, «дуговая вспышка громкая и включает в себя большой яркий взрыв», некоторые электрические дуги, такие как дуговое замыкание, менее заметны, но могут быть столь же разрушительными. Дуговые замыкания часто являются причиной электрических пожаров в жилых и коммерческих зданиях.

Проще говоря, электрическая дуга — это электрический ток, который намеренно или непреднамеренно разряжается через зазор между двумя электродами через газ, пар или воздух и распространяет относительно низкое напряжение на проводники. Тепло и свет, производимые этой дугой, обычно являются интенсивными и могут использоваться для определенных применений, таких как дуговая сварка или освещение прожекторами. Непреднамеренные дуги могут иметь разрушительные последствия, например: возгорание, опасность поражения электрическим током и материальный ущерб.

В 1801 году британский химик и изобретатель сэр Хамфри Дэви продемонстрировал электрическую дугу своим коллегам из Лондонского королевского общества и предложил название — электрическая дуга. Эти электрические дуги, когда они не сдерживаются, выглядят как зазубренные удары молнии. За этой демонстрацией последовали дальнейшие исследования электрической дуги, как это проиллюстрировал русский ученый Василий Петров в 1802 году. Дальнейшие успехи в ранних исследованиях электрической дуги привели к появлению таких важных для отрасли изобретений, как сварочные аппараты.

По сравнению с искрой, которая является кратковременной, дуговый разряд представляет собой непрерывный электрический ток, который выделяет столько тепла от заряда, несущего ионы или электроны, что он может испарить или расплавить что-либо в пределах дугой. Дуга может поддерживаться как в электрических цепях постоянного, так и переменного тока, и она должна включать некоторое сопротивление, чтобы повышенный ток не оставался неконтролируемым и полностью разрушал фактический источник цепи с его потреблением тепла и энергии.

При правильном использовании электрические дуги могут быть полезны. Фактически, каждый из нас выполняет ряд повседневных задач, благодаря ограниченному применению электрических дуг.

Электрические дуги используются в некоторых вспышках фотокамер, прожекторах для освещения сцены, люминесцентном освещении, дуговой сварке, дуговых печах (для производства стали и таких веществ, как карбид кальция), а также в устройствах плазменной резки (в которых сжатый воздух сочетается с мощной дугой и превращается в плазму, способную мгновенно прорезать сталь).

Электрическая дуга также может быть чрезвычайно опасной, если не предназначена. Ситуации, когда электрическая дуга возникает в неконтролируемой среде, как в случае вспышки дуги, могут привести к травмам, смерти, пожару, повреждению оборудования и материальному ущербу.

Чтобы защитить рабочих от электрической дуги, компании должны использовать следующие продукты для вспышки дуги, чтобы снизить вероятность возникновения электрической дуги и уменьшить ущерб в случае одного:

  • Перчатки с защитой от дугового разряда — Эти перчатки предназначены для защиты рук от поражения электрическим током и сведения к минимуму травм в случае поражения электрическим током.
  • Видеообучение «Вспышка дуги» — Эти учебные занятия позволят вашим сотрудникам быть в курсе всех опасностей, связанных с работой в условиях повышенного напряжения, и того, как они могут защитить себя.
  • Программное обеспечение для расчета опасности возникновения дугового разряда — Это интуитивно понятный калькулятор и программное обеспечение для анализа дугового разряда, упрощающее оценку электрических систем вашего предприятия.

Ссылка в Википедии на фото электрической дуги

Строение

Электрическая дуга состоит из трёх основных зон:

  • катодной;
  • анодной;
  • плазменного столба.

В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.

На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.

Рис. Строение сварочной дуги

Обратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.

Свойства

Высокая плотность тока в стволе электрической дуги определяет её главные свойства:

  • Чрезвычайно высокую температуру плазменного ствола и околоэлектродных зон.
  • Длительное горение, при поддержании условий образования ионов.

Эти свойства необходимо учитывать при борьбе с возникновением электрической дуги, так и при её применении в некоторых сферах.

Полезное применение

Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.

У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.

Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях. Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис

Рис. Дуговая сварка

Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.

Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.

Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.

Рис. Дуговой разряд на ЛЭП

Способы гашения

Следует отметить, что гашение дуги происходит и по разным причинам. Например, в результате остывания столба, падения напряжения или когда воздух между электродами вытесняется сторонними испарениями, препятствующими ионизации.

С целью недопущения образования дуг на высоковольтных проводах ЛЭП, их разносят на большое расстояние, что исключает вероятность пробоя. Если же пробой между проводами всё-таки случится, то длинный ствол быстро охладится и произойдёт гашение.

Для охлаждения ствола его иногда разбивают на несколько составляющих. Данный принцип часто используют в конструкциях воздушных выключателей, рассчитанных на напряжения до 1кВ.

Некоторые модели выключателей состоят из множества дугогасительных камер, способствующих быстрому охлаждению.

Быстрой ионизации можно достигнуть путём испарения некоторых материалов, окружающих пространство подвижных ножей. Испарение под высоким давлением сдувает плазму ствола, что приводит к гашению.

Существуют и другие способы: помещение контактов в масло, автодутьё, применение электромагнитного гашения и др.

Воздействие на человека и электрооборудование

Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.

Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.

Электрическая дуга постоянного тока

Рис. Вольтамперные характеристики дуги

Напряжение uз соответствующее началу дугового разряда, называется напряжением зажигания дуги. С ростом тока увеличивается ионизация дугового промежутка и падает его сопротивление. В установившемся режиме горения для каждого значения тока в какой-то момент времени число вновь образованных зарядов в результате ионизации будет равно числу потерянных зарядов в дуговом промежутке за счет деионизации. С этого момента времени сопротивление дугового промежутка и падение напряжения на нем станут величинами постоянными, не зависящими от времени. Такой режим носит название статического, а кривая 1, характеризующая этот режим, — статической характеристикой дуги. Статическая характеристика соответствует установившемуся квазистационарному состоянию, т. условию устойчивого горения дуги. Статическая характеристика дуги зависит от длины дуги, материала электродов и параметров среды, в которой горит дуга. Напряжение на дуге можно рассматривать как сумму околоэлектродных падений напряжения ыэ и падения напряжения в столбе дуги , где Ед — градиент напряжения в столбе дуги; lд —длина дуги. Следовательно, чем больше длина дуги, тем выше лежит ее статическая вольт-амперная характеристика.

При быстром изменении тока в дуге напряжение на ней отличается от того, которое было при установившемся значении. Ток в дуге может убывать с различными скоростями, причем, чем выше скорость его спадания, тем ниже проходит вольт-амперная характеристика. Это объясняется тем, что такие параметры, как сечение дуги, температура газа и степень ионизации, понижаются медленнее, чем ток, и не успевают достичь тех значений, которые бы соответствовали меньшему току при установившемся режиме. Зависимость напряжения на дуге от тока при быстром его изменении называется динамической вольт-амперной характеристикой.

Если изменять ток в дуге от значения I1 бесконечно медленно, то статическая и динамические характеристики дуги будут совпадать.

При бесконечно быстром изменении тока сопротивление столба дуги останется неизменным и напряжение на дуге будет изменяться пропорционально току (прямая 1—2 при увеличении тока, прямая 1—0 при его уменьшении). Конечной скорости изменения тока будут соответствовать промежуточные положения вольт-амперной характеристики, например кривая В при увеличении тока от I1 и кривые С и D при его уменьшении соответственно от I2 и от I1.

Большое расхождение между статической и динамической характеристиками наблюдается при малых токах, т, е. непосредственно перед гашением дуги, что способствует ограничению перенапряжений на элементах отключаемой цепи.

Условия гашения дуги постоянного тока

Для того чтобы погасить электрическую дугу постоянного тока, необходимо создать такие условия, при которых процессы деионизации дугового промежутка превосходили бы процессы его ионизации. Если параметры цепи постоянны, то уменьшение ионизации дугового промежутка ведет к увеличению сопротивления дуги и уменьшению тока. В результате этого дуга начинает гореть неустойчиво.

В момент погасания дуги напряжение на дуговом промежутке соответствует напряжению гашения. Это напряжение зависит от интенсивности деионизации дугового промежутка. С усилением деионизации растет сопротивление дуги, быстро уменьшается ток и к концу гашения дуги напряжение на контактах резко возрастает. Поэтому при отключении цепей постоянного тока возникают значительные перенапряжения. Величина их зависит от индуктивности цепи и быстроты гашения дуги. Перенапряжение растет с увеличением скорости изменения тока и зависит от индуктивности цепи L.

При отключении цепей постоянного тока напряжение на дуговом промежутке в момент погасания дуги может в несколько раз превысить напряжение источника тока. Эти перенапряжения опасны не только для цепи тока, но и гасящих сред, имеющих высокое напряжение гашения. Поэтому при отключении цепей постоянного тока не применяются также среды, напряжение гашения которых велико, например масло. Масляные выключатели не применяются для размыкания цепей постоянного тока.

Для уменьшения перенапряжения применяют различные способы шунтирования индуктивностей цепи активными сопротивлениями, емкостями и вентилями. Это уменьшает перенапряжение и облегчает процесс гашения дуги.

В процессе гашения дуги в дуговом промежутке выделяется определенное количество энергии. Величина энергии в основном определяется током цепи, напряжениями цепи и дуги, сопротивлением дуги, временем ее горения и постоянными дугогасительных устройств. В дуге постоянного тока при ее гашении выделяются энергия магнитного поля, запасенная цепью в начальный момент отключения, и энергия, поступающая от генератора за время горения дуги, за вычетом потерь в цепи. Отсюда следует, что чем больше индуктивность цепи, тем больше в ней запас энергии магнитного поля и тем труднее погасить дугу постоянного тока. В устойчиво горящей дуге вся выделяющаяся в ней энергия поступает от генератора. Энергия, выделяемая в дуге, расходуется на нагревание дугового промежутка и частично рассеивается в окружающей среде.

Гашение дуги происходит в том случае, если температура дугового промежутка будет падать. Это условие выполняется при отрицательном энергетическом балансе дуги, т. когда количество тепла, отводимое от дуги, больше количества энергии, подводимой к дуге в процессе ее гашения.

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий