Принцип работы электронного вольтметра

Такой прибор способен измерить короткие импульсы напряжений в сети. Разберем устройство и работу импульсного вольтметра на примере устройства для поиска неисправностей в электрической сети автомобиля. Он служит для поиска импульсных помех.

Вольтметры в идеале должны иметь большое внутреннее сопротивление, для обеспечения точных показаний, и не воздействовать на измеряемую цепь. Поэтому в высокоточных приборах стремятся к наибольшему внутреннему сопротивлению.

Классификация
По принципу действия:
  • Электромеханические.
  • Электронные.
По назначению:
  • Для постоянного тока.
  • Для переменного тока.
  • Импульсные.
  • Фазочувствительные.
  • Селективные.
  • Универсальные.
По способу исполнения:
  • Переносные.
  • Стационарные.
  • Щитовые.
Устройство и работа

Рассмотрим основные виды вольтметров.

Электромеханические

Процесс измерения основан на прямой линейной зависимости движения механического вида от напряжения. Стрелка прибора находится на рамке с обмоткой, расположенной на вращающейся оси внутри постоянного магнита.

При возникновении в рамке напряжения, вокруг нее появляется электромагнитное поле. В результате рамка со стрелкой поворачивается в магнитном поле на определенный угол, величина которого зависит от измеряемой величины. Чувствительностью прибора называется коэффициент пропорциональности между значением угла поворота рамки и напряжением. Чтобы не было колебаний вращающейся рамки со стрелкой, используют магнитно-индукционный демпфер.

Для уменьшения трения металлические наконечники изготавливают из прочной стали, затем полируют их. Подпятники выполняют из твердых камней. Зазор между подпятником и полированным наконечником регулируется винтом. Направление поворота стрелки зависит от полярности тока, протекающего через катушку. Поэтому для правильных измерений необходимо соблюдать полярность.

Электронные вольтметры

Приборы с электронной начинкой делятся в свою очередь на аналоговые и цифровые. Они отличаются тем, что в аналоговых приборах имеется стрелка и шкала, а в цифровых приборах значение напряжения выводится на цифровой экран. Аналоговые приборы работают по принципу преобразования переменного входного напряжения в постоянное. Затем оно усиливается и поступает на детектор, сигнал от которого отклоняет стрелку. Чем выше напряжение входа, тем больше отклонится стрелка.

Цифровые

Такие приборы работают с большей точностью, в отличие от аналоговых моделей. Принцип их работы заключается в изменении аналогового входного сигнала в цифровой вид. При этом кодированный цифровой сигнал приходит на устройство, преобразующее двоичный код в цифры, отображаемые на экране. Точность измерений цифровых вольтметров зависит от дискретности аналого-цифрового устройства, преобразующего сигнал.

Вольтметры в сети переменного тока

Работа таких устройств заключается в преобразовании переменного значения напряжения в постоянное. После этого сигнал усиливается и поступает на измерительный механизм магнитоэлектрического действия.

Импульсный вольтметр

Такой прибор способен измерить короткие импульсы напряжений в сети. Разберем устройство и работу импульсного вольтметра на примере устройства для поиска неисправностей в электрической сети автомобиля. Он служит для поиска импульсных помех.

Около 5% неисправностей автомобиля возникают из-за неисправностей электрической проводки в виде помех и исчезающего контакта. У старого автомобиля таких неисправностей больше. Простыми вольтметрами и тестерами такие неисправности невозможно, так как они не реагируют на одиночные импульсы, приводящие к сбою и выходу из строя оборудования.

Бортовой компьютер автомобиля при неисправностях выдает сигнал. При проверке выясняется, что это коды – ошибки. Ремонтники меняют свечи, сам компьютер, выполняют другие работы. Но по-прежнему выдается «ошибка двигателя», а кодов неисправностей нет, так как импульсы, вызванные неисправностями, не улавливаются.

Для решения этих проблем существует прибор, измеряющий импульсные сигналы напряжения. Он срабатывает при появлении одиночного импульса. На корпусе устройства имеется переключатель чувствительности.

Порядок работы
  • Большие «крокодилы» подключить на аккумуляторные клеммы.
  • Провод с небольшим «крокодилом» подключить на положительную клемму батареи.
  • Чувствительность установить на «0».
  • Двигатель запустить.
  • При нормальном аккумуляторе при запуске двигателя красный индикатор на приборе не должен светиться. В противном случае необходимо искать неисправность на клеммах батареи или в ее внутреннем состоянии.
  • При запущенном двигателе чувствительность установить на «1», покачать кузов машины, легко постучать по аккумулятору деревянной палкой. Если импульсный вольтметр не сработал, то в аккумуляторе нет проблем.
  • Подобным образом проверяют электропроводку, лампочки, электронные узлы и потребители энергии.

На этом примере становится понятно, для чего нужны и как работают импульсные вольтметры.

Фазочувствительные

Такие приборы называют векторметрами. Они предназначены для замеров квадратурных составляющих напряжений первой гармоники. Они оснащаются двумя индикаторами для показаний мнимой и действительной составляющей комплексного напряжения.

Фазочувствительный вольтметр определяет общее напряжение в комплексе. При этом начальная фаза опорного напряжения принимается за ноль. Такие типы приборов нашли применение в лабораторных исследованиях фазоамплитудных характеристик четырехполюсных усилителей и т.п.

Селективные

Вольтметры, способные избирательно выделить гармонические составляющие сложного сигнала и среднеквадратичную величину напряжения, называют селективными. По конструктивным особенностям и принципу работы такие приборы подобны устройству супергетеродинного радиоприемника, без регулятора усиления.

Универсальные

Название прибора говорит само за себя. С помощью такого вольтметра можно измерить ЭДС в любых цепях и при любых условиях. Чаще всего они имеют в комплекте набор различных шунтов в виде гасящих резисторов.

Универсальные измерители напряжения обладают множеством функций и возможностей, имеют незначительный расход энергии, и могут определить напряжение, как в аналоговом, так и в цифровом виде. Они применяются в различных сферах производства, науки, техники, лабораторных исследованиях.

Переносные вольтметры

Такие приборы являются автономными, так как не требуют для своей работы внешнего питания. Они имеют небольшие габаритные размеры и заключены в удобный эргономичный корпус. Одним из видов переносных вольтметров можно назвать мультиметр, или тестер. Он также имеет компактные размеры, однако его точность работы достаточно высокая, и позволяет получить точные результаты при выполнении ответственных заданий.

Стационарные вольтметры

Приборы стационарного типа обычно размещают в большом металлическом корпусе с большой шкалой измерений. Их можно устанавливать и подключать в различных положениях, для этого на корпусе имеются соответствующие крепления. Стоят такие приборы значительно дороже переносных моделей. Однако высокая точность работы позволяет применять их в различных сферах: лабораториях, крупных производственных объектах, научных центрах и т.д.

Щитовые

Внешний вид щитовых вольтметров аналогичен переносным приборам, с отличием в том, что устанавливаются они в специальные шкафы для контрольных приборов.

Маркировка вольтметров
Для определения типа прибора можно посмотреть его обозначение маркировки. Если первая буква в названии:
  • «Д» — это вольтметр электродинамического действия.
  • «М» — прибор магнитоэлектрический.
  • «Т» — термоэлектрический.
  • «С» — электростатический.
  • «Ц» — приборы выпрямители.
  • «Э» — электромагнитные.
  • «Щ», «Ф» — электронные.

Радиоизмерительные вольтметры маркируются по-другому. Вначале стоит буква «В», а далее цифра обозначает тип. Затем идут символы модели прибора.

Рисунок 5 — Схема детектора средневыпрямленного значения

Электронные вольтметры (В2 — постоянного тока, В3 — переменного, В4 — импульсного, В5 — фазочувствительные, В6 — селективные, В7 — универсальные).

Рисунок 2 — Структурные схемы электронных вольтметров:

а) переменного напряжения; б) постоянного напряжения;

в) переменного и постоянного напряжения

Усилители в электронных вольтметрах предназначены для повышения чувствительности при измерении малых напряжений. Для повышения стабильности коэффициента усиления усилителя и уменьшения нелинейных искажений обычно используется многокаскадный усилитель, охваченный отрицательной обратной связью.

Детектор вольтметра предназначен для преобразования измеряемого напряжения в постоянную или пульсирующую форму, измеряемую магнитоэлектрическим прибором. В зависимости от закона преобразования детекторы подразделяются на пиковые (амплитудные), детекторы действующего значения и детекторы средневыпрямленного значения.

Рисунок 3- Схема пикового детектора и график напряжений

В пиковом детекторе параметры схемы (рис. 3) подобраны так, что постоянная времени заряда конденсатора τ3 = Ri.С (Ri — внутреннее сопротивление диода) намного меньше постоянной цепи разряда τр= R . С, которая много больше периода колебаний входного напряжения: τр>>Т. Вследствие этого через несколько периодов колебаний конденсатор зарядится до напряжения Uс со средним значением Uср, близким к амплитудному значению Um.

Детектор действующего значения должен иметь квадратичную вольт-амперную характеристику.

Рисунок 4 — Схема квадратичного детектора с кусочно-гладкой аппроксимацией ВАХ

Рисунок 5 — Схема детектора средневыпрямленного значения

Детектор средневыпрямленного значения представляет собой двухполупериодный выпрямитель, собранный обычно по мостовой схеме (рис. 5). Чтобы ток в этом детекторе был пропорционален средневыпрямленному значению измеряемого напряжения, необходимо, чтобы амплитуда входного напряжения, подаваемая на диоды, значительно превышала квадратичный участок вольт-амперной характеристики диода, т. е. чтобы детектирование было линейным, а не квадратичным. Рассмотрим некоторые специальные типы вольтметров.

Избирательный (селективный) электронный вольтметр предназначен для измерения синусоидального напряжения определенной (избранной) частоты в спектре других частот. Принцип действия такого вольтметра основан на выделении напряжения нужной частоты из спектра других частот, усилении и дальнейшем измерении напряжения выделенной частоты.

Милливольтметр В3-38Б состоит из входного делителя (ДН), преобразователя импеданса (ПИ), аттенюатора (А), широкополосного усилителя (ШУ) с детектором (Д), эммитерного повторителя (ЭП), отсчётного прибора (ИП), блока питания (БП), показанных на структурной схеме прибора (рисунок 6).

Рисунок 6 — Структурная схема В3-38Б

Входной делитель расположен между входом прибора и преобразователем импеданса. Коэффициент деления 1: 316. Переключение плеч делителя происходит при переходе с поддиапазона измерения 1 В на поддиапазон 3 В. Для точной установки коэффициента деления в его нижнее плечо включен потенциометр R73.

Преобразователь импеданса (ПИ) служит для получения требуемого входного импеданса милливольтметра и согласования высокого входного сопротивления прибора с низким сопротивлением аттенюатора.

Линейность передаточной характеристики детектора зависит от глубины обратной связи ШУ. На частотах до 1 МГц характеристики практически линейна по всей шкале отсчётного прибора. На частоте 10 МГц из-за меньшей глубины обратной связи нелинейность шкалы в точке 1/10 составляет около 3%, а в точке 1/3 -около 2% от установленного поддиапазона измерения.

Включает отклоняющий тип индикаторных измерителей напряжения. Аналоговый вольтметр можно разделить на три категории.

Типы вольтметров

Аналоговые вольтметры

Включает отклоняющий тип индикаторных измерителей напряжения. Аналоговый вольтметр можно разделить на три категории.

  • Инструменты с подвижной катушкой
  • Движущиеся железно
  • Электростатический вольтметр

Инструменты с подвижной катушкой

Тип измерительных приборов с подвижной катушкой Аналоговые вольтметры доступны в двух типах. Они есть:

  • Инструменты с подвижной катушкой с постоянным магнитом
  • Инструменты с подвижной катушкой

Инструменты с подвижной катушкой с постоянным магнитом

Инструменты с постоянными магнитами с подвижной катушкой реагируют только на постоянный ток. Эти инструменты имеют постоянный магнит для создания магнитного поля. Катушка намотана на кусок мягкого железа и вращается вокруг собственной вертикальной оси. Когда ток течет через катушку, отклоняющий крутящий момент генерируется в соответствии с уравнением силы Лоренца.

Приборы с подвижной катушкой типа «Динамо» состоят из двух катушек. Одна катушка зафиксирована, а другая катушка вращается вокруг нее. Взаимодействие двух полей создает отклоняющий момент.

Инструменты с подвижным железом

Инструменты с подвижным железом используются в цепях переменного тока и подразделяются на инструменты с простым подвижным железом, типом динамометра и индукционным. Он состоит из мягкого железа, содержащего подвижные и неподвижные катушки.

Взаимодействие потоков, создаваемых этими элементами, создает отклоняющий момент. Диапазоны расширены за счет удержания резисторов последовательно с катушкой.

Электростатический вольтметр

Он работает по электростатическому принципу, когда отталкивание между двумя зарядовыми пластинами отклоняется от указателя, прикрепленного к пружине.

Эти приборы используются для измерений переменного и постоянного тока высокого напряжения. Это высокочувствительные приборы, способные измерять минимальное напряжение заряда, а также напряжение высокого диапазона почти 200 кВ.

Вакуумный ламповый вольтметр

Эти типы инструментов могут работать как с переменным / постоянным напряжением, так и с измерениями сопротивления. Эти устройства используют электронный усилитель между входом и счетчиком.

Если это устройство использует вакуумную лампу в усилителе, то это называется вакуумным ламповым вольтметром (VTVM). VTVM используются в измерениях переменного тока высокой мощности.

Полевой транзистор (FET) — это транзистор, который использует электрическое поле для управления электрическим поведением устройства. Они также известны как униполярные транзисторы. Вольтметр на основе полевых транзисторов использует это свойство полевых транзисторов при измерении напряжения.

Цифровой вольтметр (DVM)

DVM отображает напряжение с помощью светодиодов или ЖК-дисплеев для отображения результата. Прибор должен содержать аналого-цифровой преобразователь. Устройство содержит запрограммированный микроконтроллер, АЦП и ЖК-дисплей для обеспечения точного цифрового отображения аналоговых значений от 0 до 15 вольт постоянного тока.

Они используются из-за таких свойств, как точность, долговечность и уменьшают ошибки параллакса.

— Напряжение на выходе линейного преобразоват. 1 В

По назначению все вольтметры делятся

Вольтметры переменного тока, как и постоянного используются для измерений в сетях с соответствующим типом тока, а вот селективные – могут отделять гармоническую составляющую сложного сигнала, и определять среднеквадратическое значение напряжения.

Импульсный вольтметр обычно используют для измерений амплитуды постоянных импульсных сигналов, а также они способны точно определить амплитуду одиночного импульса.

Фазочувствительные приборы могут измерять изменения составляющих комплексных напряжений, благодаря чему становится возможным точное исследование амплитудно-фазовой характеристики усилителей, и прочих подобных схем.

По принципу действия различают электронные (цифровые или аналоговые), и электромеханические вольтметры (электромагнитные, термоэлектрические, а также магнитоэлектрические, электродинамические и электростатические).

Все электромеханические приборы, за исключением термоэлектрических, по сути, являются обычным измерительным механизмом с показывающим устройством. Во всех них для расширения пределов измерений применяются дополнительные сопротивления.

Приборы данной категории, не смотря на довольно высокое внутреннее сопротивление, имеют относительно большую погрешность, что делает невозможным их использование в ходе экспериментов и исследований, где требуется повышенная точность данных.

Термоэлектрический вольтметр использует для замеров электродвижущую силу одной или нескольких термопар, которые греются из-за тока входящего сигнала. Они более точны и компактны, в сравнении с электромеханическими измерителями напряжения.

Электронные вольтметры в свою очередь подразделяются на цифровые и аналоговые.

Цифровой вольтметр преобразует постоянное значение напряжения в цифровой сигнал, который и выводится на табло прибора. Делается это при помощи аналого-цифрового преобразователя.

В аналоговых вольтметрах помимо магнитоэлектрического измерителя и дополнительных резисторов в обязательном порядке присутствует измерительный усилитель, позволяющий в несколько раз повысить внутреннее сопротивление прибора, и соответственно – улучшить точность показаний.

Основа работы вольтметра — метод аналогово-цифрового преобразования. Так, преобразователи, установленные в конструкции прибора В7-35, измеряют величину напряжения переменного и постоянного тока (а также сопротивление, силу тока), преобразуя измеряемую величину в нормализованное напряжение, а затем с использованием АЦП в цифровой код.

Принцип действия прибора

Основа работы вольтметра — метод аналогово-цифрового преобразования. Так, преобразователи, установленные в конструкции прибора В7-35, измеряют величину напряжения переменного и постоянного тока (а также сопротивление, силу тока), преобразуя измеряемую величину в нормализованное напряжение, а затем с использованием АЦП в цифровой код.

Функциональная схема цифрового тестера работает с использованием 4 преобразователей:

  1. Масштабирующий преобразователь.
  2. Преобразователь силы переменного и постоянного тока в напряжение.
  3. Низкочастотный прибор, который преобразует напряжение переменного тока в постоянный.
  4. Преобразователь сопротивления в напряжение.

Рис. №2. Схема цифрового вольтметра

(2.13)

2.4.1 Кодоимпульсные цифровые вольтметры

В кодоимпульсных (с поразрядным уравновешиванием) цифровых вольтметрах реализуется принцип компенсационного метода измерения напряжения. Структурная схема подобного вольтметра представлена на рис. 2.13.

Измеряемое напряжение U’х полученное с входного устройства, сравнивается с компенсирующим напряжением UК, вырабатываемым прецизионным делителем и источником опорного напряжения. Компенсирующее напряжение имеет несколько уровней, квантованных в соответствии с двоично-десятичной системой счисления. Например, двухразрядный цифровой вольтметр, предназначенный для измерения напряжений до 100 В, может включать следующие уровни напряжений: 80, 40, 20, 10, 8,4,2, 1 В.

Рисунок 2.13 Структурная схема кодоимпульсного вольтметра

Сравнение измеряемого U’x и компенсирующего UK напряжений проводят последовательно по командам управляющего устройства, Процесс сравнения показан на рис. 2.14.

Управляющие импульсы Uу через определенные интервалы времени переключают сопротивления прецизионного делителя таким образом, что на его выходе последовательно возникают напряжения: 80, 40, 20, 10, 8, 4, 2, 1В; одновременно к соответствующему выходу прецизионного делителя подключают устройство сравнения. Если UK > U’x, то с устройства сравнения поступает сигнал Uср на отключение в делителе соответствующего звена, так, чтобы снять сигнал UK. Если UK

Рис. №3. Схема подключения высокочастотного вольтметра.

Принцип действия прибора

В основу работы вольтметра заложен метод аналогово-цифрового преобразования с двухтактным интегрированием. Рассмотрим работу прибора на примере В7-35. Преобразователи установленные в конструкции, измеряя величины напряжения постоянного и переменного тока, силу тока, сопротивление, преобразуют в нормализованное напряжение и при использовании АЦП преобразуют в цифровой код.

Функциональная схема цифрового вольтметра работает на использовании 4 преобразователей это:

  1. Масштабирующий преобразователь.
  2. Низкочастотный прибор, преобразующий напряжение переменного тока в постоянный ток.
  3. Преобразователь силы постоянного и переменного тока в напряжение.
  4. Преобразователь сопротивления в напряжение.

Рис. №2.Схема цифрового вольтметра

УПЧ – усилитель промежуточной частоты.

Электронные вольтметры (ЭВ) бывают постоянного и переменного тока, универсальные.

Вольтметры подразделяются на группы:

· В2 – постоянная тока;

· В8 – измеритель отношения и разности;

· В9 – преобразователи напряжения;

По принципу работы и устройства бывают: прямого преобразования и уравновешенного. Первые простые, но менее точные, вторые сложнее, но значительно точнее.

Электронные вольтметры классифицируют по следующим признакам:

· по способу измерения — приборы непосредственной оценки и сравнения;

· по назначению – приборы постоянного, переменного, импульсного напряжений, универсальные и селективные;

· по характеру измеряемого напряжения – амплитудные (пиковые), действующего и среднего напряжений;

· по частотному диапазону – низкочастотные и высокочастотные.

Электронные вольтметр постоянного тока состоят из входного устройства (ВУ), усилителя постоянного тока (УПТ), измерительного механизма (ИМ).

Рис. 4.1 Структурная схема электронного вольтметра постоянного тока.

Измеряемое напряжение постоянного тока поступает на входное устройство, представляющее собой многопредельный высокоомный резисторный делитель напряжения. Сигнал с ВУ поступает на вход УПТ, который помимо функции усиления сигнала согласует высокое выходное сопротивление ВУ с малым сопротивлением рамки — делителя входного напряжения ИМ магнитоэлектрической системы. Входное сопротивление ЭВ составляет десятки мегаом, что снижает его влияние на объект измерения.

При измерении слабых сигналов начинается сказываться дрейф УПТ, поэтому в электронных микровольтметрах исключают УПТ, постоянный ток преобразуют с помощью модулятора в переменный и используют усилитель переменного напряжения.

Рис. 4.2 Структурная схема электронного вольтметра постоянного тока с модуляцией сигнала.

ВУ – входной делитель, предназначен для согласования с нагрузкой (с источником сигнала);

У – усилитель переменного тока для измерения слабых сигналов;

УПТ – усилитель постоянного тока, характеризуется дрейфом нуля, что ограничивает измерение сверхмалых сигналов;

ИМ – устройство отображения;

М — ДМ – модулятор – демодулятор сигнала;

Недостатком усилителей переменного тока является зависимость показаний от частоты сигнала.

Диапазон измеряемых напряжений составляет от микровольт до тысячи вольт; классы точности – 1,5; 2,5, шкала линейная.

Электронные вольтметры переменного тока используются для измерения переменного напряжения, изменяющегося в широком диапазоне по амплитуде и частоте (до гигагерц).

Структурная схема ЭВ может содержать выпрямитель (В), что позволяет существенно расширить частотный диапазон измеряемого сигнала.

Рис. 4.3 Структурные схемы электронных вольтметров переменного тока.

Элементная база современных ЭВ основана на использовании полупроводниковых устройств микроинтегрального исполнения.

Широко используются универсальные электронные вольтметры, предназначенные для измерения различных параметров электрической цепи постоянного (переменного) тока: и др. Такие устройства содержат в себе ряд дополнительных блоков, преобразующих измеряемый параметр в напряжение, которое затем измеряется.

Рис. 4.4 Структурная схема универсального электронного вольтметра.

Импульсные вольтметры используются для измерения импульсных сигналов (амплитуды максимального значения) различной формы с высокой скважностью (= 2500, где — период, — длительность сигнала).

Принцип их работы основан на заряде конденсатора от стабилизированного источника и поддержание измеряемого сигнала неизменным во времени на уровне, соответствующем максимальному его значению. Для этого используют усилители с ООС.

Рис. 4.5 Структурная схема импульсного электронного вольтметра и его временные диаграммы.

Диапазон измерений по частоте у приборов данного типа составляет 20 Гц…1 ГГц, по напряжению 100 мВ…1000 В, класс точности 4,0…10,0. Недостатком прибора является зависимость показаний от формы сигнала.

Селективные электронные вольтметры предназначены для измерения действующих значений напряжений отдельной гармонической составляющих сигналов (периодических сигналов).

Принцип работы таких устройств основан на выделении отдельных гармоник из сигнала, например, с помощью перестраиваемого полосового фильтра или использования принципа гетеродина. Используются также безфильтровые методы спектрального анализа сигнала, в том числе, с использованием цифровой обработки сигналов.

Нужно учитывать, что идеальных фильтров и усилителей не существует, что приводит к искажению передаваемого сигнала, к погрешности его измерений.

Технологически удобно использовать не отдельные фильтры на каждую гармонику, а устройство, состоящее из смесителя сигналов (СМ), получаемых от фильтра полосовой частоты (УПЧ) и перестраиваемого генератора (Г). Перемножая эти сигналы, можно выделить (для гармонических сигналов) сигналы с разностной и суммарной частотами.

Рис. 4.6 Структурная схема селективного электронного вольтметра.

ИМ – измерительный механизм;

ВУ – входной усилитель;

СМ – смеситель частот;

УПЧ – усилитель промежуточной частоты.

При соблюдении условия , получим суммарный сигнал на выходе смесителя в виде:

= (4.1)

С помощью УПЧ выделяют и усиливают сигнал разностной частоты, соответствующий огибающей биения колебаний , затем его детектируют и измеряют.

Достоинства: используется один фильтр (полосовой) разностной частоты и один перестраиваемый генератор.

Схема состоит из следующих блоков:

Для измерения токов и напряжений (разности элек­трических потенциалов) используются амперметры и вольтметры.

Это электромеха­нические или электронные приборы со стрелочным или цифровым способом отсчета. Шкалы приборов со стрелкой градуируют в значениях измеряемой величины (в вольтах или амперах).

Амперметр включается в цепь последовательно с сопротивлением нагрузки RН, т.е. говорят, что амперметр включается в разрыв цепи.

Рисунок 1 – Включение амперметра в цепь

Сопротивление амперметра RA должно быть очень малым по сравнению с полным сопротивлением измеряемой цепи. Включение амперметра не должно искажать режим работы электрической цепи.

Вольтметр включается параллельно с сопротивлением нагрузки RН.

Рисунок 2 – Включение вольтметра в цепь

Сопротивление вольтметра RV должно быть большим, чтобы не искажался режим работы электрической цепи.

В качестве вольтметров и амперметров чаще всего применяются приборы магнитоэлектрической системы, работа которых основана на взаимодействии поля постоянного магнита и поля, создаваемого током в подвижной рамке, вращающейся в магнитном поле.

Достоинства приборов магнитоэлектрической системы:

большая точность (до 0,1%);

малое влияние внешних магнитных полей;

незначительное влияние температуры;

малая потребляемая мощность;

Недостатки приборов магнитоэлектрической системы:

чувствительность к перегрузкам;

пригодны только для постоянного тока.

Рассмотрим общую структурную схему простейшего аналогового вольтметра (амперметра) для измерения постоянного напряжения (тока).

Рисунок 3 – Структурная схема простейшего аналогового вольтметра (амперметра) для измерения постоянного напряжения (тока)

Схема состоит из следующих блоков:

электромеханический преобразователь (ЭЛМП);

измерительный механизм (ИМ);

стрелочный прибор (СП).

Электромеханический преобразователь предназначен для преобразования энергии электромагнитного поля в механическую энергию.

Измерительный механизм состоит из подвижной и неподвижной частей.

Под действием тока, протекающего через обмотку измерительного механизма за счет взаимодействия магнитных полей постоянного магнита и тока в рамке создается вращающий момент, который действует на подвижную часть ИМ. Под действием механических сил, пропорциональных значению измеряемой электрической величины, подвижная часть ИМ отклоняется на некоторый угол.

Стрелочный прибор (указатель) показывает значение измеряемой величины.

Вольтметры, содержащие усилители, называются электронными. На рисунке 1 приведена схема электронного вольтметра для измерения переменного напряжения.

Рисунок 1 – Схема электронного вольтметра для измерения переменного напряжения

Входное устройство обеспечивает требуемое входное сопротивление (высокое для вольтметров), содержит делитель напряжения, который предназначен для расширения пределов измерения напряжений в сторону больших значений.

Усилитель постоянного тока предназначен для усиления сигнала до значения, необходимого для эффективной работы электромеханического преобразователя.

Электромеханический преобразователь предназначен для преобразования энергии электромагнитного поля в механическую энергию.

В зависимости от принципа действия электромеханические преобразователи делятся на: магнитоэлектрические, электромагнитные, электродинамические,

индукционные, электростатические, выпрямительные, электронные и т.д.

В качестве вольтметров чаще всего применяются приборы магнитоэлектрической системы, работа которых основана на взаимодействии поля постоянного магнита и поля, создаваемого током в подвижной рамке, вращающейся в магнитном поле.

К достоинствам приборов магнитоэлектрической системы относятся: большая точность (до 0,1%), высокая чувствительность, малое влияние внешних магнитных полей, незначительное влияние температуры, малая потребляемая

мощность, равномерная шкала.

Недостатками приборов магнитоэлектрической системы являются: чувствительность к перегрузкам и пригодность только для постоянного тока.

Измерительный механизм состоит из подвижной и неподвижной частей. Под действием тока, протекающего через обмотку измерительного механизма, за счет взаимодействия магнитных поле постоянного магнита и тока в рамке создается вращающий момент, который действует на подвижную часть измерительного механизма. Подвижная часть под действием механических сил, пропорциональных значению измеряемой электрической величины, отклоняется на некоторый угол.

Стрелочный прибор (указатель) показывает значение измеряемой величины.

Стрелочный вольтметр, исходя из названия, оснащается шкалой из цифр и стрелкой-определителем, закрепленной на рамке с обмоткой, которая, в свою очередь, насажена на ось с магнитом постоянного типа. В то время, когда через устройство проходит электронапряжение, создается электромагнитное поле, с которым взаимодействует рамка, в итоге отклоняясь совместно со стрелкой на определенное величиной напряжения расстояние.

Классификация

Вольтметры имеют многоступенчатую классификацию, которая обусловлена их широким видовым разнообразием.

Разнообразие по предназначению

По предназначению эти измерители разделяются на нижеследующие типы:

Внешний вид цифрового вольтметра переменного напряжения UNI-T UT-632

Видовое разнообразие по внешним признакам

По внешним признакам такие измерители можно разделить на три группы:

  • стационарные;
  • щитовые;
  • переносные (автономные).

Стационарные вольтметры являются самыми габаритными установками и используются стационарно на многих производственных площадках, где требуется постоянный контроль параметров электросети, поддерживающий работу, например, холодильного оборудования, системы отопления или кондиционирования. Характеризуются такие вольтметры высокоточностью и чувствительностью.

Вольтметры, которые обычно устанавливаются в щитовых шкафах, называются щитовыми. Имеют более компактные размеры, чем стационарные приборы.

Внешний вид стрелочного щитового вольтметра

Автономные или переносные вольтметры характеризуются небольшими габаритными параметрами и весом, поэтому их можно переносить. Также они имеют широкую область применения: электропроводка автомобиля и квартиры, снятие показаний на производстве и прочее. Такие приспособления обычно оснащаются несколькими электродами для снятия быстрых показаний электроцепи без закрепления всего устройства.

Внешний вид карманного приспособления, измеряющего вольтаж батарейки

Диапазон измерения

Все устройства для измерения вольтажа разделяются по измерительному диапазону и бывают нижеследующих видов:

  • микровольтметры, которые нужны для работы с микросхемами, чувствительны к миллионной доли вольта;
  • милливольтметры, которые фиксируют тысячную часть вольта;
  • киловольтметры, фиксирующие высокое напряжение, которое выражается в тысячах вольт.

Важно! Измеряя высокое напряжение в цепи микровольтметром, можно вызвать короткое замыкание.

Виды по принципу измерения

Многих интересует вопрос о том, как работает вольтметр. Как и многие измерительные приборы, вольтметры тоже различаются по принципу действия, по которому он измеряет напряжение. Различают следующие устройства по принципу измерения:

  • стрелочный вольтметр или механический;
  • электронный вольтметр или цифровой.

Важно! Однозначного ответа на вопрос о том, какой вольтметр лучше: стрелочный или цифровой, нет, так как оба они обладают равным количеством преимуществ и недостатков.

Стрелочные приборы

Стрелочный вольтметр, исходя из названия, оснащается шкалой из цифр и стрелкой-определителем, закрепленной на рамке с обмоткой, которая, в свою очередь, насажена на ось с магнитом постоянного типа. В то время, когда через устройство проходит электронапряжение, создается электромагнитное поле, с которым взаимодействует рамка, в итоге отклоняясь совместно со стрелкой на определенное величиной напряжения расстояние.

Электромеханические устройства могут быть различной чувствительности – пропорциональный коэффициент между истинным электронапряжением и отображением угла стрелочной части на циферблате. Колебания стрелки в таких агрегатах предотвращается посредством закрепления на оси пластины из алюминия (индукционного демпфера), что передвигается вместе со стрелкой-определителем. Также демпфер может быть воздушным, состоящим из цилиндра и поршня, которые при колебании стрелки не допускают ее сильных скачков.

Универсальный стрелочный вольтметр В7-26

Также стрелочные приборы оснащаются внутри противовесной системой в виде грузиков, которые устанавливаются на стрелку. Именно они препятствуют под влиянием силы тяжести ее чрезмерному отклонению и гарантируют точные измерения даже при наклоне агрегата.

Важно! При подсоединении этих приспособлений важно соблюдать полярность, так как неправильное подключение полюсов приведет к насильному повороту стрелки в другую сторону, но стопорный элемент в корпусе ей этого сделать не позволит, что приведет к выходу из строя этой измерительной аппаратуры или ее элементов.

Подвижные компоненты стрелочного вольтметра изготавливаются из сверхтвердой стали, что препятствует возможному их истиранию, а все его составные стрежни полируются для уменьшения трения.

Электронные приборы

Цифровые вольтметры оснащаются электронным дисплеем для отображения параметров и микросхемой-контроллером, что преобразует напряжение в цифровой сигнал. Эти агрегаты-измерители характеризуются высокой точностью, компактностью, надежностью и легкостью. Стоят такие устройства дороже стрелочных аналогов.

Точность измерения электронных вольтметров полностью зависит от качества исполнения преобразователя параметров в цифровой сигнал.

Стационарный цифровой прибор DJ-V96

Важно! Электронные приборы могут быть также аналоговыми, которые внешне похожи на стрелочные вольтметры, и в них тоже стрелка показывает величину напряжения в цепи. Однако оснащаются они специальным электронным детектором, что отклоняет стрелку на нужное расстояние по шкале.

Источники
Источник — http://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/voltmetry/
Источник — http://studfile.net/preview/5792912/page:2/
Источник — http://meanders.ru.com/chto-takoe-voltmetr-princip-raboty-tipy-i-primenenie.shtml
Источник — http://pue8.ru/elektrotekhnik/811-voltmetr-naznachenie-printsip-raboty-tipy.html
Источник — http://www.meratest.ru/articles/printsip_raboti_voltmetrov/
Источник — http://intellect.icu/2-4-tsifrovye-voltmetry-printsip-raboty-tsifrovogo-voltmetra-7368
Источник — http://enargys.ru/voltmetr-ustroystvo-printsip-rabotyi-vidyi-i-harakteristiki/
Источник — http://studopedia.ru/view_misi.php?id=27
Источник — http://vitta201.jimdofree.com/%D0%BA%D0%BE%D0%BD%D1%81%D0%BF%D0%B5%D0%BA%D1%82-%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9-%D0%BF%D0%BE-%D0%BC%D0%B8/c%D1%85%D0%B5%D0%BC%D0%B0-%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE-%D0%B2%D0%BE%D0%BB%D1%8C%D1%82%D0%BC%D0%B5%D1%82%D1%80%D0%B0-%D0%B4%D0%BB%D1%8F-%D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B5%D0%BD%D0%B8%D1%8F-%D0%BF%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D1%8B%D1%85-%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%B8%D0%B9/
Источник — http://elquanta.ru/teoriya/chto-izmeryaet-voltmetr.html

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий