Носители зарядов и их движение
Проводник — это вещество, в котором носители начинают перемещаться под воздействием малейшего внешнего электрического поля. Когда внешнее поле отсутствует, поля положительных ионов и отрицательных электронов компенсируют друг друга. Подробнее мы рассматривали смежный вопрос и сравнивали проводники, диэлектрики и полупроводники в статье, опубликованной ранее.
Рассмотрим металлический предмет, который находится в электрическом поле. Перемещаться под воздействием внешнего поля носители зарядов начинают из-за того, что начинают действовать кулоновские силы на носители заряда. Причем на положительные и отрицательные носители направление действия этих сил лежит в разном направлении. Движение прекращается в том случае, если сумма напряженностей внешнего и внутреннего полей станет равна нулю, то есть:
При этом напряженность поля равна:
Если напряженность равна нулю, то потенциал внутри тела равен какому-то постоянному числу. Это станет ясно, если выразить из этой формулы потенциал и произвести интегрирование, то есть:
Положительные ионы и электроны из всего объёма тела устремляются к его поверхности, чтобы скомпенсировать напряженность электрического поля. Тогда внутри проводника напряжённость электрического поля становится равной нулю, так как оно уравновешивается носителями зарядов с его поверхности.
Интересно! Поверхность, на которой во всех точках присутствует одинаковый потенциал, называют эквипотенциальной.
Если рассмотреть этот вопрос подробнее, то когда проводник вносят в электрическое поле, положительные ионы движутся против его силовых линий, а отрицательные электроны в том же направлении. Это происходит до тех пор, пока они не распределятся, а поле в проводнике не станет равным нулю. Такие заряды называют индуцированными или избыточными.
Важно! При сообщении зарядов проводящему материалу они распределятся так, чтобы было достигнуто состояние равновесия. Одноименные заряды будут отталкиваться и стремится в соответствии с направлением силовых линий электрического поля.
Отсюда следует, что работа по перемещению носителей зарядов равна нулю, что равняется разности потенциалов. Тогда и потенциал в разных участках проводника равняется постоянному числу и не изменяется. Важно знать, что в диэлектрике чтобы оторвать носитель заряда, например электрон от атома, нужно приложить большие силы. Поэтому описанные явления в общем смысле наблюдаются на проводящих телах.
Электроемкость уединенного проводника
Для начала рассмотрим понятие уединенный проводник. Это такой проводник, который удален от других заряженных проводников и тел. При этом потенциал на нем будет зависеть от его заряда.
Электроемкость уединенного проводника – это способность проводника удерживать распределенный заряд. В первую очередь, она зависит от формы проводника.
Если два таких тела разделить диэлектриком, например, воздухом, слюдой, бумагой, керамикой и т. – получится конденсатор. Его емкость зависит от расстояния между обкладками и их площади, а также от разности потенциалов между ними.
Формулы описывают зависимость емкости от разности потенциалов и от геометрических размеров плоского конденсатора. Подробнее узнать о том, что такое электрическая емкость, вы можете из нашей отдельной статьи.
Распределение зарядов и форма тела
Итак, плотность распределения носителей зарядов зависит от формы проводника. Рассмотрим это на примере формул для сферы.
Предположим, что у нас есть некая металлическая заряженная сфера, с радиусом R, плотностью зарядов на поверхности G и потенциалом Ф. Тогда:
Из последней выведенной формулы можно понять, что плотность приблизительно обратно пропорциональна радиусу сферы.
Применение на практике
Если принять во внимание вышесказанное, то стоит отметить, что ток по кабелю протекает и распределяется, словно по внешнему диаметру трубы. Это вызвано особенностями распределения электронов в проводящем теле.
Любопытно, что при протекании токов в системах с током высокой частоты наблюдается скин-эффект. Это и есть распределение зарядов по поверхности проводников. Но в этом случае наблюдается ещё более тонкий «проводящий» слой.
Что это значит? Это говорит о том, что для протекания тока аналогичной величины с сетевой частотой в 50 Гц и с частотой 50 кГц в высокочастотной цепи потребуется большее сечение токопроводящей жилы. На практике это наблюдают в импульсных блоках питания. В их трансформаторах как раз такие токи и протекают. Для увеличения площади сечения либо выбирают толстый провод, либо мотают обмотки несколькими жилками сразу.
Описанная в предыдущем разделе зависимость распределения плотности от формы поверхности на практике используется в системах молниезащиты. Известно, что для защиты от поражения молнией устанавливают один из видов молниезащиты, например громоотвод. На его поверхности скапливаются заряженные частицы, благодаря чему разряд происходит именно в него, что опять же подтверждает сказанное об их распределении.
Напоследок рекомендуем просмотреть видео, на котором простыми словами объясняется и наглядно показывается, как распределяются заряды в проводнике:
Это все, что мы хотели рассказать вам по поводу того, как происходит распределение зарядов в проводнике при протекании тока. Надеемся, предоставленная информация была для вас понятной и полезной!
Проводники это тела, в которых электрические заряды способны перемещаться под действием сколь угодно слабого электростатического поля,
что приводит к появлению поля внутри проводника, равного и противоположного внешнему. Вследствие этого сообщённый проводнику заряд будет перераспределяться до тех пор, пока в любой точке внутри проводника напряженность электрического поля не станет равной нулю.
Таким образом, напряженность электрического поля внутри проводника всегда будет равна нулю.
Распределение зарядов по поверхности
Можно выделить две основных закономерности распространения заряда по проводникам.
- Потенциал внутри проводника постоянен и одинаков.
Так как напряжённость внутри проводника равна нулю (Е = 0), то потенциал внутри проводника постоянен.
На поверхности заряженного проводника вектор напряженности Е должен быть направлен перпендикулярно к этой поверхности, иначе под действием составляющей, касательной к поверхности (Et), заряды перемещались бы по поверхности проводника.Таким образом, при условии статического распределения зарядов, напряженность на поверхности:
где En — нормальная составляющая напряженности,
Et — составляющая напряженности, направленная касательно к поверхности. - В заряженном проводнике нескомпенсированные заряды располагаются только на поверхности проводника.
Представим внутри проводника произвольную замкнутую поверхность S, ограничивающую некоторый внутренний объём проводника.
Согласно теореме Гаусса, суммарный заряд этого объёма равен:Таким образом, в состоянии равновесия внутри проводника избыточных зарядов нет.
Поэтому если мы удалим вещество из некоторого объёма, взятого внутри проводника, это никак не отразится на равновесном расположении зарядов.
Таким образом, избыточный заряд распределяется на полом проводнике так же, как и на сплошном, т.е. по его наружной поверхности.
На внутренней поверхности избыточные заряды располагаться не могут.Исследуя величину напряжённости электрического поля вблизи поверхности заряженных тел различной формы можно судить и о распределении зарядов по поверхности — плотность зарядов при данном потенциале проводника определяется кривизной поверхности – она растёт с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости).
Особенно велика бывает плотность на остриях. Напряженность поля вблизи остриёв может быть настолько большой, что происходит ионизация молекул окружающего газа. При этом заряд проводника уменьшается, он как бы стекает с острия.Если поместить на внутреннюю поверхность полого проводника электрический заряд, то этот заряд будет вытолкнут на наружную поверхность проводника, повышая потенциал последнего.
Многократно повторяя передачу полому проводнику можно значительно повысить его потенциал до величины, ограничиваемой явлением стекания зарядов с проводника.
Этот принцип был использован Ван-дер-Граафом для построения электростатического генератора, позже названного его именем.
В этом устройстве заряд от электростатической машины передаётся бесконечной непроводящей ленте, переносящий его внутрь большой металлической сферы.
Там заряд снимается и переходит на наружную поверхность проводника, таким образом, удаётся постепенно сообщить сфере очень большой заряд и достигнуть разности потенциалов в несколько миллионов вольт.
Проводники во внешнем электрическом поле.
В проводниках могут свободно перемещаться не только заряды, принесённые извне, но и заряды, из которых состоят атомы и молекулы проводника (электроны и ионы). Поэтому при помещении незаряженного проводника во внешнее электрическое поле свободные заряды будут перемещаться к его поверхности, положительные по полю, а отрицательные против поля. В результате у концов проводника возникают заряды противоположного знака, называемые индуцированными зарядами. Это явление, состоящее в электризации незаряженного проводника во внешнем электростатическом поле путём разделения на этом проводнике уже имеющихся в нём в равных количествах положительных и отрицательных электрических зарядов называется электростатической индукцией.
Перемещение зарядов в проводнике помещённом во внешнее электрическое поле Е0 будет происходить до тех пор, пока создаваемое индукционными зарядами дополнительное поле Едоп. не скомпенсирует внешнее поле Е0 во всех точках внутри проводника и результирующее поле Е внутри проводника станет равным нулю.
E = E0 + Eдоп.
Суммарное поле Е вблизи проводника будет заметно отличаться от своего первоначального значения Е0. Линии Е будут перпендикулярны к поверхности проводника и будут частично кончаться на индуцированных отрицательных зарядах и вновь начинаться на индуцированных положительных зарядах.
Индуцированные на проводнике заряды исчезают, когда проводник удаляют из электрического поля. Если предварительно отвести индуцированные заряды одного знака на другой проводник (например в землю) и отключить последний , то первый проводник останется заряженным электричеством противоположного знака.
Отсутствие поля внутри проводника, помещённого в электрическое поле, широко применяется в технике для электростатической защиты от внешних электрических полей (экранировки) разных электрических приборов и проводов. Когда какой-то прибор хотят защитить от воздействия внешних полей, его окружают проводящим футляром (экраном).
Подобный экран действует хорошо и в том случае, если его сделать не сплошным, а в виде густой сетки — именно так устроена «клетка Фарадея»
Минпросвещения утвердило новый ФГОС основного общего образования.
В частности, помимо алгебры и геометрии, предусмотрен еще один математический учебный курс «Вероятность и статистика».
Прописаны требования к организации электронного обучения и применению дистанционных образовательных технологий.
Детализированы требования к результатам освоения обучающимися программы основного общего образования по каждому предмету.
Прием на обучение по прежнему ФГОСу прекращается с 1 сентября 2022 г.
По электрическим свойствам все вещества разделяют на два больших класса — вещества, которые проводят электрический ток (проводники) и вещества, которые не проводят электрический ток (диэлектрики, или изоляторы).
Мы знаем, что все вещества состоят из атомов, которые, в свою очередь, состоят из заряженных частиц. Если внешнее поле вокруг вещества отсутствует, то его частицы распределяются так, что суммарное электрическое поле внутри вещества равно нулю. Если вещество поместить во внешнее электрическое поле, то поле начет действовать на заряженные частицы и они перераспределяться так, что в веществе возникнет собственное электрическое поле. Полное электрическое поле складывается из внешнего поля и внутреннего поля создаваемого заряженными частицами вещества.
Проводник — это тело или материал, в котором электрические заряды начинают перемещаться под действием сколь угодно малой силы. Поэтому эти заряды называют свободными.
В металлах свободными зарядами являются электроны, в растворах и расплавах солей (кислот и щелочей) — ионы.
Диэлектрик — это тело или материал, в котором под действием сколь угодно больших сил заряды смещаются лишь на малое, не превышающее размеров атома расстояние относительно своего положения равновесия. Такие заряды называются связанными.
Рассмотрим подробнее эти классы веществ.
Проводники в электрическом поле.
Проводниками называют вещества, проводящие электрический ток.
Типичными проводниками являются металлы.
Основная особенность проводников – наличие свободных зарядов ( в металлах это электроны), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.
В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.
Явление перераспределения зарядов внутри проводника под действием внешнего электрического поля называется электростатической индукцией.
Заряды, появляющиеся на поверхности проводника, называются индукционными зарядами.
Индукционные заряды создают свое собственное поле , которое компенсирует внешнее поле во всем объеме проводника:
(внутри проводника).
Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.
Диэлектрики в электрическом поле.
Диэлектриками (изоляторами) называют вещества, не проводящие электрического тока.
В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.
При внесении диэлектрика во внешнее электрическое поле в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.
Связанные заряды создают электрическое поле , которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля. Этот процесс называется поляризацией диэлектрика.
Электрической поляризацией называют особое состояние вещества, при котором электрический момент некоторого объёма этого вещества не равен нулю.
В результате полное электрическое поле внутри диэлектрика оказывается по модулю меньше внешнего поля.
Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженности полного поля в однородном диэлектрике , называется диэлектрической проницаемостью вещества.
Диэлектрическая проницаемость среды показывает, во сколько раз напряженность поля в вакууме больше, чем в диэлектрике. Это величина безразмерная (нет единиц измерения).
При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика. В этом случае электрическое поле связанных зарядов и полное поле могут иметь сложную структуру, зависящую от геометрии диэлектрика. Утверждение о том, что электрическое поле в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем строго справедливо только в случае однородного диэлектрика, заполняющего все пространство, в котором создано внешнее поле. В частности:
Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд q, то напряженность поля , создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:
Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная, электронная и ионная поляризации. Ориентационная и электронная механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков, ионная — при поляризации твердых диэлектриков.
Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.
Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U.
Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.
Электроемкостью (электрической емкостью) проводников называется физическая величина, характеризующая способность проводника или системы проводников накапливать электрический заряд.
Электроемкость находится как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:
Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.
Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.
Простейший конденсатор – плоский конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.
Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.
В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.
Электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними.
Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:
Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.
Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2.
Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.
Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:
— сферический конденсатор
— цилиндрический конденсатор
Для получения заданного значения емкости конденсаторы соединяются между собой, образуя батареи конденсаторов.
1) При параллельном соединении конденсаторов соединяются их одноименно заряженные обкладки.
Напряжения на конденсаторах одинаковы U1 = U2 = U, заряды равны q1 = С1U и q2 = С2U.
Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует или С = С1 + С2
Таким образом, при параллельном соединении электроемкости складываются.
2) При последовательном соединении конденсаторов соединяют разноименно заряженные обкладки
Заряды обоих конденсаторов одинаковы q1 = q2 = q, напряжения на них равны и
Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2.
При последовательном соединении конденсаторов складываются обратные величины емкостей.
Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.
в случае n конденсаторов одинаковой емкости С емкость батареи
при параллельном соединении Собщ = nС
при последовательном соединении Собщ = С/n
Если обкладки заряженного конденсатора замкнуть металлическим проводником, то по цепи пойдет электрический ток, лампочка загорится и будет гореть до тех пор, пока конденсатор не разрядится. Значит, заряженный конденсатор содержит запас энергии.
Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.
Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую. При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов
при переносе каждой порции Δq внешние силы должны совершить работу
Энергия We конденсатора емкости C, заряженного зарядом q, может быть найдена путем интегрирования этого выражения в пределах от 0 до q:
Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением q = CU.
Электрическую энергию We следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе.
По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля.