Разновидности максимально-токовых защит

Принцип работы

Прежде чем рассматривать трансформаторы тока нулевой последовательности, нужно остановится на обычных трансформаторах. Все устройства этого типа разделяются на трансформаторы тока и напряжения. Они применяются для измерений токов и напряжений с большими величинами. На одну из обмоток подается ток или напряжение, которое требуется измерить, а на выходе второй обмотки снимаются уже преобразованные, как правило пониженные значения этих параметров.

Через трансформаторы тока наиболее часто подключаются магнитоэлектрические вольтметры и параллельные цепи, а трансформаторы напряжения соединяются с амперметрами и другими последовательными цепями.

Трансформаторы нулевой последовательности также относятся к токовым измерительным приборам. От других видов трансформаторных устройств они отличаются назначением и принципом работы. Основной функцией данных приборов является регистрация токовых утечек или отсутствия фазы при коротком замыкании в трехфазных кабелях. Когда в жилах таких кабелей возникает асимметрия токов, это приводит к появлению на выходе вторичной обмотки сигнала небаланса. Далее этот сигнал уходит к контрольному устройству, с помощью которого отключается питание поврежденного кабеля. Подключение трансформатора тока нулевой последовательности осуществляется не к каждой фазе. Он соединяется сразу со всеми жилами кабеля.

Таким образом, принцип работы этих устройств основан на выделении сигнала через трансформацию токов нулевой последовательности при однофазных замыканиях на землю. Они применяются в сетях с изолированной нейтралью и схемах релейной защиты. Благодаря нормированному коэффициенту трансформации, который может переключаться во вторичной обмотке, становится возможной эффективная и точная настройка релейной защиты.

Выпуск трансформаторов производителями осуществляется в различных модификациях. Основными техническими характеристиками являются номинальное напряжение и частота, коэффициент трансформации, испытательное одноминутное напряжение, односекундный ток термической стойкости вторичной обмотки. Они имеют различные габариты, обеспечивающие возможность подключения сразу к нескольким одножильным кабелям, сечением до 500 мм2.

Однофазные повреждения в электрических сетях являются наиболее распространенными, для их устранения применяют специальные защиты, реагирующие на токи нулевой последовательности, возникающие в сети при несимметричных коротких замыканиях (КЗ).

К таким защитам относятся максимальные токовые защиты нулевой последовательности, отсечки нулевой последовательности, направленные защиты нулевой последовательности.

В этой статье более подробно рассматривается максимальная токовая защита нулевой последовательности. Для удобства будем применять сокращенное название ТЗНП (токовая защита нулевой последовательности).

Чтобы понять принцип действия защиты необходимо вспомнить, что такое токи и напряжения нулевой последовательности (н. ) и откуда они берутся. Для любой симметричной цепи справедливо равенство:

Геометрическая сумма токов и напряжений нулевой последовательности равна нулю. При нарушении симметрии, например замыкание фазы А на землю, токи н. в фазах В и С будут равны нулю, а в фазе А равен 1/3 тока КЗ:

I0=1/3(Īк+0+0), отсюда Īк=3I0; U0=1/3(0+Ūbк+Ūcк);

То есть, при однофазном замыкании, ток нулевой последовательности равен одной трети тока КЗ. в данной точке, а напряжение нулевой последовательности равно одной трети суммы напряжений неповрежденных фаз.

Источником появления токов нулевой последовательности можно считать напряжение U0к , это напряжение между нейтралью силового питающего трансформатора и точкой в которой произошло замыкание на землю.

Ток н. по земле притекает к нейтрали трансформатора, разветвляется по фазам и возвращается к месту КЗ. Таким образом, токи нулевой последовательности возможны только в сетях с заземленными нейтралями трансформаторов.

Сети 110 кВ работают в режиме эффективно заземленной нейтрали, то есть часть из них заземлена, а часть нет. Этим добиваются поддержание токов I0к на необходимом для защиты уровне.

На рисунке 2 представлена простейшая схема ТЗНП. Пусковое токовое реле Т, включается на фильтр токов нулевой последовательности, в качестве которого служит нулевой провод трансформаторов тока, включенных по схеме полной звезды.

Реле времени В обеспечивает необходимую выдержку времени для селективной работы защит.

Ток срабатывания реле Т с учетом коэффициента трансформации:

Очевидно, что пуск схемы возможен только при несимметричном режиме, а именно одно- или двухфазном замыкании:

Примечательно, что при качаниях или междуфазных замыканиях ТЗНП не работает, так как происходит симметричное увеличение и уменьшение токов в фазах. К преимуществам схемы можно также отнести отсутствие необходимости отстраивать защиту от максимальных токов нагрузки, так как режим тоже является симметричным.

Однако, применение трансформаторов тока, с различными кривыми намагничивания вносит дисбаланс в схему полной звезды, и тогда уже при равенстве первичных токов, появляется ток небаланса в нулевом проводе ТТ, соединенных в звезду.

Это явление может повлиять на несанкционированное срабатывание ТЗНП. Тогда выражение для нахождения тока срабатывания реле выглядит следующим образом:

Максимальное значение тока небаланса определяют при трехфазном КЗ. в точке повреждения. Для уменьшения Īнебпридерживаются следующих правил:

ТТ, питающие защиту должны иметь погрешность не более 10% при максимальных токах КЗ. в начале следующего участка;2. ТТ должны иметь одинаковые характеристики намагничивания;3. Нагрузка вторичных цепей ТТ должна быть одинакова.

Выбор уставок для ТЗНП. На рисунке 3 представлен ступенчатый график срабатывания ТЗНП. Каждая предыдущая ступень имеет время срабатывания больше на ступень селективности, так t1=t2+Δt.

Ступень селективности выбирается по тому же условию, что и для максимальной токовой защиты. Однако если сеть разделена трансформатором Т-3, с соединением обмоток по схеме звезда-звезда или звезда-треугольник, как показано на рисунке 3, ТЗНП сети высокого напряжения не согласовывается с защитами низкой стороны.

Это объясняется тем, что однофазное повреждение сети высокого напряжения не ведет к появлению токов н. в сети низкого напряжения, при данной схеме соединения обмоток.

В этом случае, на шинах ПС №3 ТЗНП работает с нулевой выдержкой времени. При этом ТЗНП на ПС№1 и №2 имеют время срабатывания меньше времени срабатывания МТЗ.

При соединении обмоток Т-3 звезда-звезда с нулем, или при автотрансформаторной связи сетей разного напряжения, повреждение сети высокого напряжения ведет к появлению токов н. в сети низкого напряжения. ТЗНП в этом случае отстраивается от времени срабатывания защит на шинах ПС№4, аналогично МТЗ.

Ток срабатывания ТЗНП выбирается по двум условиям:

Iсз>3 I0к мин; Iсз=kн*Iнеб. макс;

Решающим условием является отстройка защиты от тока небаланса. Если время срабатывания ТЗНП больше времени срабатывания междуфазных защит t0>tмф, то Iсз отстраивается от токов небаланса в нормальном режиме.

У ТТ с вторичным номинальным током 5 А в этом случае, значение тока н. б колеблется в пределах от 0,01 до 0,2 А, поэтому ток срабатывания реле находится в пределах 0,5–1 А.

При условии t0

После выбора Iсз, ТЗНП проверяется по чувствительности, которая характеризуется коэффициентом чувствительности:

где 3I0кмин – минимальный ток н. в конце второго участка. Надежность считается удовлетворительной при kч≥1,5.

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий