Трансформаторы для галогеновых ламп — ООО «УК Энерготехсервис»

Рекомендуем отключить VPN для стабильной работы сайта.

Резисторы для светодиодного освещения. Как выбрать и какие подходят?

Правильное подключение светодиодов бесспорно является важным вопросом. Многие задумываются над тем, чтобы собрать себе экономичный и не дорогой светильник, или же сделать эффектную интерьерную подсветку. Светодиоды отлично подходят для таких целей. Но мало кто знает, что их подключение может быть сопряжено с определенными трудностями. Нельзя просто так взять и включить светодиод в бытовую электросеть.

Необходимо помнить, что светодиоды имеют свой определенный ток питания, а также падение напряжения, которое зависите не только от типа светодиода, но и от его цвета. Для того, чтобы светодиод прослужил максимально долго, ему необходим специальный ограничивающий резистор. К вопросу, какие нужные резисторы для светодиодов и посвящена эта статья.

Теория, практика и примеры

Рассмотрим несколько небольших примеров подключения светодиодов. Для первого примера будем подключать один светодиод к блоку питания 12 вольт.

Пример с одним светодиодом

И так, у нас есть красный светодиод в количестве одной штуки. Падение напряжения данного диода составляет 2 вольта, а его ток питания 20 мА. Если подключить светодиод напрямую к блоку питания он просто сгорит, так как напряжение будет значительно превышать рекомендуемое для светодиода. В таком случае нам необходимо отсечь 10 вольт излишнего напряжения, а для этого нам необходим ограничивающий резистор. А вот теперь перейдем напрямую к вопросу выбора резистора.

Нам необходимо отсечь 10 вольт напряжения. Для этого вспоминаем закон Ома и делим 10 вольт напряжения на ток, потребляемый резистором: R=U/I. Получаем значение сопротивления в 500 Ом.

Теперь необходимо рассчитать мощность резистора. Для этого вспоминаем формулу P=U*I. Получаем значение мощности 200 мВт.

У нас есть расчеты характеристик резистора — 500 Ом и 200 мВт. Резистора с такими характеристиками нет, а ближайший к нему по характеристикам имеет сопротивление 510 Ом и 0,25 Вт мощности. Вот он то нам и нужен. Покупаем, подсоединяем к аноду или катоду (неважно к какому из контактов, можно выбрать любой) и все! Светодиод подключен.

Пример с несколькими светодиодами

Если нужно подключить несколько светодиодов, их нужно подключать последовательно. Допустим у нас 2 красных светодиода, как и в прошлом примере. В таком случае падение напряжения будет суммироваться — 2+2=4 вольта.

Проводим аналогичные расчеты и считаем сопротивление аналогично прошлому примеру — 8 делим на 20 мА и получаем значение сопротивления в 400 Ом. Считаем мощность — 8 вольт умножаем на 20 мА и получаем 160 мВт.

Делаем вывод, что нам необходим резистор на 400 Ом и 160 мВт. Ближайший по параметрам резистор имеет сопротивление 400 Ом и все те же 25 мВт мощности.

Пример параллельного подключения светодиодов

При параллельном подключении нельзя подключать к нескольким параллельным диодам один резистор. В таком случае один из светодиодов будет тянуть на себя больший ток и гореть ярче, из-за чего он быстрее выйдет из строя. Второй же светодиод будет гореть более тускло.

Важно помнить, что превышение рекомендуемых параметров питания приводит к ускоренной деградации кристалла, а при значительном превышении параметров светодиод просто сгорит в очень короткие сроки.

Ну вот собственно и все. Главное знать параметры светодиода, помнить школьный курс физики и провести минимальные расчеты. Кстати, у нес на сайте огромный выбор различных резисторов, а также собственно самих светодиодов!

Внешне электронный трансформатор представляет собой небольшой металлический, как правило, алюминиевый корпус, половинки которого скреплены всего двумя заклепками. Впрочем, некоторые фирмы выпускают подобные устройства и в пластиковых корпусах.

Чтобы посмотреть, что же там внутри, эти заклепки можно просто высверлить. Такую же операцию предстоит проделать, если намечается переделка или ремонт самого устройства. Хотя при его низкой цене куда проще пойти и купить другое, чем ремонтировать старое. И все же нашлось немало энтузиастов, которые не только сумели разобраться в устройстве прибора, но и разработать на его основе несколько импульсных блоков питания.

Принципиальная схема к устройству не прилагается, как и ко всем нынешним электронным устройствам. Но схема достаточно проста, содержит малое количество деталей и поэтому принципиальную схему электронного трансформатора можно срисовать с печатной платы.

На рисунке 1 показана снятая подобным образом схема трансформатора фирмы Taschibra. Очень похожую схему имеют преобразователи, выпускаемые фирмой Feron. Отличие лишь в конструкции печатных плат и типах используемых деталей, в основном трансформаторов: в преобразователях Feron выходной трансформатор выполнен на кольце, в то время как в преобразователях Taschibra на Ш-образном сердечнике.

В обоих случаях сердечники выполнены из феррита. Следует сразу отметить, что кольцеобразные трансформаторы при различных доработках прибора лучше поддаются перемотке, чем Ш – образные. Поэтому, если электронный трансформатор приобретается для опытов и переделок, лучше купить прибор фирмы Feron.

При использовании электронного трансформатора лишь для питания галогенных ламп название фирмы – изготовителя значения не имеет. Единственное, на что следует обратить внимание, это на мощность: электронные трансформаторы выпускаются мощностью 60 — 250 Вт.

Рисунок 1. Схема электронного трансформатора фирмы Taschibra

Краткое описание схемы электронного трансформатора, ее достоинства и недостатки

Как видно из рисунка, устройство представляет собой двухтактный автогенератор, выполненный по полумостовой схеме. Два плеча моста выполнены на транзисторах Q1 и Q2, а два других плеча содержат конденсаторы C1 и C2, поэтому такой мост называется полумостом.

В одну из его диагоналей подается сетевое напряжение, выпрямленное диодным мостом, а в другую включена нагрузка. В данном случае это первичная обмотка выходного трансформатора. По очень похожей схеме выполнены электронные балласты для энергосберегающих ламп, но в них вместо трансформатора включен дроссель, конденсаторы и нити накала люминесцентных ламп.

Для управления работой транзисторов в их базовые цепи включены обмотки I и II трансформатора обратной связи Т1. Обмотка III это обратная связь по току, через нее подключена первичная обмотка выходного трансформатора.

Управляющий трансформатор Т1 намотан на ферритовом кольце с внешним диаметром 8 мм. Базовые обмотки I и II содержат по 3. 4 витка, а обмотка обратной связи III – всего один виток. Все три обмотки выполнены проводами в разноцветной пластиковой изоляции, что немаловажно при экспериментах с устройством.

На элементах R2, R3, C4, D5, D6 собрана цепь запуска автогенератора в момент включения всего устройства в сеть. Выпрямленное входным диодным мостом напряжение сети через резистор R2 заряжает конденсатор C4. Когда напряжение на нем превысит порог срабатывания динистора D6, последний открывается и на базе транзистора Q2 формируется импульс тока, который запускает преобразователь.

Дальнейшая работа осуществляется без участия цепи запуска. Следует заметить, что динистор D6 двухсторонний, может работать в цепях переменного тока, в случае постоянного тока полярность включения значения не имеет. В интернете его также называют «диак».

Сетевой выпрямитель выполнен на четырех диодах типа 1N4007, резистор R1 с сопротивлением 1Ом и мощностью 0, 125Вт используется в качестве предохранителя.

Схема преобразователя в том виде, как она есть, достаточно проста и не содержит никаких «излишеств». После выпрямительного моста не предусмотрено даже просто конденсатора для сглаживания пульсаций выпрямленного сетевого напряжения.

Выходное напряжение прямо с выходной обмотки трансформатора также безо всяких фильтров подается прямо на нагрузку. Отсутствуют цепи стабилизации выходного напряжения и защиты, поэтому при коротком замыкании в цепи нагрузки сгорают сразу несколько элементов, как правило, это транзисторы Q1, Q2, резисторы R4, R5, R1. Ну, может и не все сразу, но хотя бы один транзистор точно.

И несмотря на такое, казалось бы, несовершенство схема себя вполне оправдывает при использовании его в штатном режиме, т. для питания галогенных ламп. Простота схемы обуславливает ее дешевизну и широкую распространенность устройства в целом.

Исследование работы электронных трансформаторов

Если к электронному трансформатору подключить нагрузку, например, галогенную лампу 12В х 50Вт, а к этой нагрузке подключить осциллограф, то на его экране можно будет увидеть картинку, показанную на рисунке 2.

Рисунок 2. Осциллограмма выходного напряжения электронного трансформатора Taschibra 12Vх50W

Выходное напряжение представляет собой высокочастотные колебания частотой 40КГц, модулированные на 100% частотой 100ГЦ, полученной после выпрямления сетевого напряжения частотой 50ГЦ, что вполне подходит для питания галогенных ламп. В точности такая же картинка будет получена для преобразователей другой мощности или другой фирмы, ведь схемы практически не отличаются друг от друга.

Если к выходу выпрямительного моста подключить электролитический конденсатор C4 47uFх400V, как показано пунктирной линией на рисунке 4, то напряжение на нагрузке примет вид, показанный на рисунке 4.

Рисунок 3. Подключение конденсатора к выходу выпрямительного моста

Рисунок 4. Напряжение на выходе преобразователя после подключения конденсатора C5

Однако, не следует забывать о том, что ток зарядки дополнительно подключенного конденсатора C4 приведет к перегоранию, причем достаточно шумному, резистора R1, который используется в качестве предохранителя. Поэтому этот резистор следует заменить более мощным резистором с номиналами 22Омх2Вт, назначение которого просто ограничить ток зарядки конденсатора С4. В качестве же предохранителя следует использовать обычный плавкий предохранитель на 0,5А.

Нетрудно заметить, что модуляция с частотой 100Гц прекратилась, остались лишь высокочастотные колебания с частотой около 40КГц. Даже если при этом исследовании и нет возможности воспользоваться осциллографом, то этот неоспоримый факт можно заметить по некоторому увеличению яркости лампочки.

Это говорит о том, что электронный трансформатор вполне пригоден для создания несложных импульсных блоков питания. Тут возможно несколько вариантов: использование преобразователя без разборки, только за счет добавления наружных элементов и с небольшими изменениями схемы, совсем небольшими, но придающими преобразователю совсем иные свойства. Но об этом более подробно мы поговорим в следующей статье.

Продолжение это темы: Как сделать блок питания из электронного трансформатора

Виды трансформаторов

В качестве понижающих устройств могут использоваться два вида трансформаторов. Первый вариант представлен тороидальным обмоточным трансформатором – надежным, доступным и простым в работе. Он обладает хорошими параметрами мощности и легко подключается в сети. Принцип действия этого прибора основан на взаимодействии его катушек между собой.

Существенным недостатком таких устройств является их большой вес, достигающий нескольких килограммов и значительные габариты. Данные характеристики ограничивают сферу использования приборов производственными, складскими и другими нежилыми помещениями. Будучи включенными, эти трансформаторы сильно нагреваются, провоцируют скачки напряжения, отрицательно влияют на галогенные лампочки.

Более широкое применение получили низковольтные импульсные трансформаторы, известные как электронные. Основными преимуществами данных устройств являются незначительные габариты и малый вес. Он выполняет качественную трансформацию электрического тока до нужных параметров и не нагревается в процессе работы.

В некоторых случаях электронный трансформатор для галогенных ламп оборудуется встроенной защитой, срабатывающей при коротких замыканиях и перенапряжениях. За счет этого увеличивается срок службы и работоспособность прибора. Эти устройства применяются при встраивании галогенных светильников в стены, мебель или труднодоступные места. Для трансформации электроэнергии в конструкции приборов предусмотрены специальные полупроводниковые устройства, электронные детали и элементы универсального действия.

Галогенные лампы могут функционировать и без трансформатора. Тем не менее, специалисты рекомендуют использование трансформаторных устройств, обеспечивающих необходимый контроль над работой осветительных приборов.

Принцип работы импульсного трансформатора

Поскольку трансформация касается токов высокой частоты, конструкция импульсных приборов отличается малыми размерами сердечника магнитопровода и небольшим количеством трансформаторных обмоток. Это дает возможность существенно снизить размеры и вес данных устройств по сравнению с обычным трансформатором. При этом выходная мощность обоих приборов будет одинаковой.

Для выпрямления напряжения используется диодный мост и сглаживающие конденсаторы. Электрический ток проходит через транзисторный ключ, находящийся в открытом состоянии и далее – через первичную обмотку. В этот момент происходит насыщение магнитопровода сердечника и создание ЭДС на сигнальной обмотке. Ток обмотки заряжает конденсатор, у которого на обкладках повышается напряжение, способное закрыть транзистор.

Постепенно на сигнальной обмотке напряжение уменьшается и пропадает. В результате, через нее происходит разрядка конденсатора и последующее открытие транзистора. Такой цикл повторяется постоянно с высокой частотой, составляющей десятки тысяч Герц.

К обычным лампам накаливания напряжение, поступающее со вторичной обмотки может быть подключено напрямую. Если же требуется запитать электронные устройства постоянным напряжением 12 вольт, то для его преобразования используются выпрямительные диоды. Под влиянием тока вторичной обмотки происходит образование противодействующего магнитного потока. В свою очередь, он способствует росту реактивного сопротивления в первичной обмотке и воздействует на сигнальную обмотку. За счет этого выходное напряжение стабилизируется.

В случае перегорания нити в цепи нагрузки возникает обрыв. Это приводит к нарушению баланса магнитных потоков и сбоям генерации импульсов. Следовательно, электронным трансформаторам необходима нагрузка, подключенная к выходу, при наличии которой они могут нормально функционировать. Отсутствие такой нагрузки быстро выводит прибор из строя. Поэтому при выборе нужной модели трансформатора необходимо знать возможный диапазон мощности ламп, которые требуется подключить. Эти данные должны соответствовать допустимым значениям, указанным в техническом паспорте устройства.

Как рассчитать и выбрать трансформаторное устройство

Потребная мощность трансформатора рассчитывается по определенным параметрам. Требуется получить максимально точные данные, поскольку приобретение слишком мощного устройства будет экономически невыгодным, а слабый трансформатор не выполнит свою функцию.

Расчет мощности трансформатора для галогенных ламп 12 В делается очень просто. Например, в помещении имеется 8 галогенных ламп по 25 ватт каждая, работающие от напряжения 12В. Общая мощность светильников составит 8 х 25 = 200 Вт. Необходимо добавить еще 10-15% на запас мощности и погрешность в расчетах. Получится значение 220-230 Вт. По этой характеристике и нужно делать выбор понижающего трансформатора. Большое количество моделей на современном рынке электроники позволит легко подобрать наиболее подходящий вариант. Существует стандартный ряд мощностей от 50 до 400 ватт, облегчающий выбор блока питания.

Отдельно рассчитываются провода, используемые для подключения. Расчет поперечного сечения выполняется в соответствии с тем значением тока, от которого питаются данные лампы.

Для галогенных светильников используется параллельное подключение по схеме «звезда». Каждую лампочку нужно соединить с трансформатором отдельными кабелями с одинаковым сечением и длиной. В противном случае яркость свечения каждого светильника будет отличаться. Следует учитывать падение напряжения, возникающее на проводе. В связи с этим рекомендуется выбирать максимально короткий проводник. Расстояние от трансформатора до лампы должно быть не менее 20 см, чтобы тепло, выделяемое светильником, не оказывало отрицательного влияния на прибор.

Максимально допустимое падение напряжения не должно превышать 5%. Для расчетов длины проводника используется формула L = 5 x U 2 /(3,6 x P), а для сечения – S = L x 3,6 x P/(5 x U 2 ). В этих формулах L – длина провода, Р – известная мощность, U – напряжение, S – сечение медного проводника.

Установка и подключение

Подключить понижающий трансформатор для галогенных лампочек 12 вольт к нескольким светильникам можно выполнить двумя способами:

  • Подключаются сразу все лампы с помощью одноклавишного выключателя.
  • Создаются отдельные группы светильников, подключаемых к собственным трансформаторам.

В первом случае провода фазы и нуля подключаются к входным клеммам блока питания. С противоположной стороны устройства галогенные светильники соединяются со вторичными клеммами на выходе. Для этого используются медные проводники с небольшим сечением, сводящие к минимуму потери электроэнергии. Иногда у трансформатора не хватает клемм, чтобы подключить все количество ламп. Проблема решается с помощью дополнительных клемм, приобретаемых в магазине электротоваров.

Далее нужно правильно подобрать длину проводов, которая должна быть примерно 1,5-3 метра, что исключает помехи и потери энергии в проводах. Слишком длинные проводники будут нагреваться в процессе работы, в результате яркость свечения ламп станет отличаться. Если длина проводника не может быть уменьшена, необходимо увеличить его сечение. Например, сечение провода длиннее трех метров, должно быть не меньше 2,5 мм 2.

Второй вариант предполагает разбивку светильников на несколько групп. Этот способ считается более практичным и простым в использовании.

На представленном рисунке видно, что все галогеновые лампы разбиты на две группы по три светильника в каждой. Соответственно, потребуется два отдельных трансформатора, аналогично отдельным автоматическим выключателям, защищающим различные приборы.

При замене галогеновых ламп на 12В в точечных светильниках светодиодными часто возникает вопрос: «нужно ли менять источник питания?». Для галогенок использовали электронные трансформаторы с выходным напряжением 12 вольт, а для светодиодных ламп продаются специальные блоки питания (БП) с выходным напряжением также 12 вольт. В чем же их различие и взаимозаменяемы ли они? Давайте разбираться!

Что такое электронный трансформатор?

Электронным трансформатором называют схему импульсного источника питания на основе трансформатора и высокочастотного генератора на полупроводниковых ключах. Они питаются от сети 220В переменного тока, а на их выходе переменное напряжение с действующим значением порядка 12В.

Структурная схема устройства изображена на рисунке ниже.

Здесь мы видим, что питание 220В сначала поступает на выпрямитель, после чего выпрямленное пульсирующее с частотой 100Гц напряжение поступает на узел силовых ключей и генератора, рассмотрим пример типовой принципиальной электрической схемы электронного трансформатора.

Здесь изображена типичная автогенераторная двухтактная схема. Её особенностью является то, что для работы ключей в режиме коммутации (переключений) на высокой частоте им не требуется ШИМ-контроллеров или других специализированных ИМС. Говоря простыми словами работа автогенератора заключается в переключении транзистора в результате напряжений, наводимых на обмотках импульсного трансформатора и положительной обратной связи.

Подобная схема лежит и в основе большинства зарядных устройств для мобильных телефонов, ЭПРА для питания люминесцентных ламп, в том числе в энергосберегающих или компактных люминесцентных лампах в некоторых вариациях и некоторыми доработками.

Рассмотрим выходные осциллограммы.

Здесь видно, что переменное напряжение амплитуда которого пульсирует от нуля до + и – 17Вольт. Такие изменения амплитуды с течением времени – повторяют пульсации выпрямленного сетевого(100Гц). Получается интересная ситуация – есть высокочастотное выходное напряжение, изменяющееся с частотой в десятки тысяч герц, при этом его амплитуда изменяется от 0 до 17 вольт с частотой в 100 Гц или выпрямленные 50 Гц. Если растянуть ось времени и рассмотреть форму на уровне периодов, то картинка примет следующий вид.

Здесь видно, что сигнал по форме далёк от синусоиды, а скорее прямоугольник с небольшим уклоном в сторону заднего фронта.

Блоки питания для светодиодных ламп 12В

Их часто называют блоками питания для светодиодных лент, фактически для подключения и лент и ламп нужен любой источник постоянного стабилизированного напряжения 12В с минимальными пульсациями. На практике в современном мире используются импульсные источники питания, рассмотрим типовую схему.

Или другой вариант:

Что общего у этих двух, казалось бы, разных схем? Они построены на интегральном ШИМ-контроллера который управляет силовыми ключами – транзисторами, они могут быть и полевыми, и биполярными. Кроме того, в выходном каскаде схемы вы видите выпрямитель и конденсаторы для сглаживания пульсаций (фильтр). Всё это значит, что на выходе мы получаем стабилизированный DC источник питания. Величина его пульсаций будет зависеть от нагрузки и ёмкости фильтрующих конденсаторов.

Её также можно реализовать на автогенераторной схеме, подобной электронному трансформатору, добавив цепи обратной связи для стабилизации выходного напряжения. В результате получится схема наподобие такой.

Аналогичная конструкция используется в упомянутых выше зарядных для мобильны телефонов здесь за стабилизацию отвечает цепочка обратной связи на 11 вольтовом стабилитроне VD9 и транзисторной оптопаре U1.

Принцип работы подобных ИИП мы рассматривали в статье ранее – Схемотехника блоков питания светодиодных лент.

5 особенностей и отличий БП для LED-лент и ламп от электронных трансформаторов для галогенных ламп

Итак, подведем итоги и ответим на вопрос: «почему нельзя питать светодиодные лампы от электронного трансформатора?». Для этого мы перечислим основные особенности этих источников питания и требования для работы светодиодных изделий.

Для включения светодиодных лент и ламп на 12В нужно постоянное напряжение. Так как у светодиодов нелинейная вольтамперная характеристика – они очень чувствительны к отклонениям напряжения питания от номинального, и при его превышении быстро выйдут из строя.

Электронные трансформаторы выдают пульсирующее переменное высокочастотное напряжение. Величина всплесков и пиков может достигать и 40 вольт в некоторых случаях. Это может привести к выходу из строя светодиодов или драйверов, встроенных в LED-лампу, а также к их нестабильной работе.

У электронных трансформаторов есть такая характеристика как минимальная нагрузка (смотрите рисунок ниже). Это значит, что, если подключить нагрузку меньше указанной на блоке питания он может либо не запуститься, либо выдавать большие пульсации, а также отключаться или другим образом отклоняться от нормального режима работы. Это критично, поскольку галогенные лампы потребляют в разы большую мощность, чем светодиодные, поэтому электронный трансформатор может проявлять себя подобным образом.

Мощность указана от 20 до 105 Вт, что говорит об ограничении по минимальной подключаемой мощности.

У блоков питания для ламп на 12В выходное напряжение и постоянное, и стабилизированное при этом.

Для питания галогеновых ламп не разницы в роде тока (постоянный или переменный), которым её будут питать. Важно действующее значение напряжения на ней. Поэтому они подойдут под оба варианта источников питания.

Нельзя использовать электронный трансформатор для питания светодиодных изделий. Подбирайте блок питания с постоянным стабилизированным выходным напряжением. В противном случае ваши светильники и лампы могут выйти из строя. Также будьте внимательны – сейчас популярны светильники, предназначенные для питания источником постоянного тока – драйвером, это отдельный вид устройств! Об этом читайте здесь – В чем отличие блока питания от драйвера для светодиодов

В номере

Ресурс работы ламп накаливания — и обычных, и галогенных, существенно зависит от количества и режима включений/выключений. Например, плавное включение позволяет избежать резкого нагрева нити, ведущего к её разрушению — и увеличить срок их службы в 5–10 раз. А функция изменения освещенности в отдельном помещении или на участке как в производственных, так и в домашних условиях, позволяет повысить световой комфорт, снизить расходы на электроэнергию.

Для этого применяются диммируемые системы освещения, в которые входят современные электронные трансформаторы и светорегуляторы.

Фирма ШЕПРО из наукограда Королёва предлагает свою разработку многофункционального понижающего электронного трансформатора (ТЭ) с встроенным микроконтроллерным управлением для применения в самых разных условиях в светильниках с галогенными и другими лампами накаливания на 12 В.

Эти аппараты — ТЭ320 (Л8854 по нашему прайс-листу) и ТЭ430 (Л8855) имеют два изменяемых режима работы «LS» («плавный пуск») и «D» (работа с внешними регуляторами света). Они позволяют осуществлять плавное (в течение 2–3 сек) включение и плавное выключение ламп, быстрое (без задержки) включение и выключение, изменять накал ламп — т. освещённость — с помощью диммера (любого типа) или самостоятельно (ТЭ запоминают уровень яркости при последнем выключении). Благодаря высокому КПД (98 %) мощность потребления пропорциональна изменению нагрузки трансформатора.

Для управления электронными трансформаторами с внутренней функцией диммирования применяется специальный адаптер (Л8856).

Приборы ТЭ от ШЕПРО — самые мощные из всех электронных бытовых трансформаторов (320 и 430 Вт). Они оборудованы безупречной системой самовосстанавливающейся защиты (автоматического включения через 5–6 сек после устранения неисправности) — от короткого замыкания, от недогрузки и перегрузки по выходной мощности, обрыва линии, перегрева (хотя тепловыделение, относительно мощности, и так сверхмалое). Работают бесшумно и при внутреннем, и при внешнем диммерном управлении. Закрытый корпус соответствует классу защиты IP-54. Габариты 193,5х56,5х43 и 205,5х56,5х49,5 мм, вес 340 и 410 г.

Ведущие специалисты ШЕПРО, в прошлом сотрудники РКК Энергия, строили приборы для космических летательных аппаратов, а сейчас компания разрабатывает разнообразные электронные устройства высокой сложности для систем освещения — как утверждают на фирме, не имеющие аналогов в России и за рубежом. Впрочем, можете сравнить.

Германская компания Vossloh Schwabe (входит в состав японского концерна Matsushita, имеет предприятия в Германии, Франции, Тунисе и Таиланде) является признанным лидером на рынке аппаратов и комплектующих для светотехники.

Её трансформаторы серии LiteLine типа EST мощностью 10–60, 20–70, 20–105, 50–150 и 35–200 Вт (Л8869—Л8874) — это безопасные электронные конвертеры для галогенных ламп 12 В. Могут подключаться к светорегуляторам, имеющим функцию работы с электронными трансформаторами.

Имеют интегрированное устройство, снижающее натяжение кабеля.

Корпус из теплостойкого полиамида, IP20, размерами 128х37х28, 175х42х31,5, 182х42х16 мм (вес 70–100 г) пригоден для встраивания в мебель и установке на горючие материалы.

Как считают создатели, электронные трансформаторы Vossloh Schwabe LiteLine по техническим характеристикам ни в чём не уступают аналогам конкурентных фирм и весьма привлекательны по цене.

Трансформаторы HALOTRONIC производства Osram (Л8891—Л8894) используются для регулирования яркости 12-ти вольтовых ламп накаливания в скрытых и наружных потолочных светильниках, системах установки на трубах, светильниках для мебели, декоративной подсветки в помещениях любого назначения. Щадящий режим во всем диапазоне частичной нагрузки обеспечивает лампам большой срок службы.

Разработчики HALOTRONIC предусмотрели подавление радиопомех и защиту трансформаторов от короткого замыкания, перегрузки и перегрева — реверсируемую с помощью электроники (это то же, что самовосстанавливающаяся защита у ШЕПРО и автоматический перезапуск у Vossloh Schwabe). Благодаря низкой мощности потерь эти аппараты выделяют значительно меньше тепла, чем обычные.

С трансформаторами HALOTRONIC применяются только диммеры для работы с индуктивными нагрузками. Светорегуляторы для активных нагрузок, здесь не подходят.

Предназначены для независимого монтажа, оборудованы компенсатором натяжения кабеля, готовы к подключению.

В ассортименте ЗАО «МПО Электромонтаж» имеются трансформаторы HALOTRONIC двух типов. Модель HTL 225/230–240 (Л8894), 50–225 Вт исполнена в удлинённом корпусе, 170х44х34 мм, вес 200 г. Компактные НТМ «Mouse» (Л8891—Л8893) оптимизированы для встраивания в потолки с ограниченным монтажным пространством — от 60 мм по высоте. Выходная мощность 20–70, 35–105, 50–150 Вт, размеры 108х52х33–153х54х36 мм, вес 110–200 г.

Все эти новинки — регулируемые электронные трансформаторы для галогенных ламп 12 В — сертифицированы на соответствие требованиям международных и российских стандартов. Соответствуют ли они вашим требованиям к этим изделиям и световому дизайну интерьера, уточните с помощью технических консультантов в наших торговых офисах.

При замене галогеновых ламп на 12В в точечных светильниках светодиодными часто возникает вопрос: «нужно ли менять источник питания?».

Из письма с вопросом одного из постоянных посетителей сайта: «Можно ли заменить галогенные лампы на нормальные светодиоды? Я снимаю квартиру, где основное освещение состоит из примерно 30-40 галогенных ламп по 10 Вт каждая, питаемых от 12 В. Лампочки практически дают мало света, а электричество, безусловно, потребляют больше, чем светодиоды. Не говоря уже о том, что эти галогенные лампочки умирают, как мухи, и их нужно довольно часто менять. И еще они шумят. Можно ли эти лампочки заменить на светодиодные не заменяя всю люстру?»

В данном случае просто заменить старые 12-вольтовые галогенные лампы на светодиодные не получится. Нужно разобраться с источником питания.

Для галогенок чаще всего использовали электронные трансформаторы с выходным напряжением 12 вольт, а для светодиодных ламп продаются специальные блоки питания (БП) с выходным напряжением также 12 вольт. В чем же их различие и взаимозаменяемы ли они? Давайте разбираться!

Из этой статьи вы узнаете:

  • Что такое электронный трансформатор,
  • Как устроен и работает электронный трансформатор,
  • Как устроен и работает блок питания для светодиодных ламп 12В,
  • В чем отличия блоков питания для LED-лент и ламп от электронных трансформаторов для галогенных ламп.

Что такое электронный трансформатор?

Электронным трансформатором называют схему импульсного источника питания на основе трансформатора и высокочастотного генератора на полупроводниковых ключах. Они питаются от сети 220В переменного тока, а на их выходе переменное напряжение с действующим значением порядка 12В.

Структурная схема устройства изображена на рисунке ниже.

Здесь мы видим, что питание 220В сначала поступает на выпрямитель, после чего выпрямленное пульсирующее с частотой 100Гц напряжение поступает на узел силовых ключей и генератора, рассмотрим пример типовой принципиальной электрической схемы электронного трансформатора.

Здесь изображена типичная автогенераторная двухтактная схема. Её особенностью является то, что для работы ключей в режиме коммутации (переключений) на высокой частоте им не требуется ШИМ-контроллеров или других специализированных ИМС. Говоря простыми словами работа автогенератора заключается в переключении транзистора в результате напряжений, наводимых на обмотках импульсного трансформатора и положительной обратной связи.

Подобная схема лежит и в основе большинства зарядных устройств для мобильных телефонов, ЭПРА для питания люминесцентных ламп, в том числе в энергосберегающих или компактных люминесцентных лампах в некоторых вариациях и некоторыми доработками.

Рассмотрим выходные осциллограммы.

Здесь видно, что переменное напряжение амплитуда которого пульсирует от нуля до + и – 17Вольт. Такие изменения амплитуды с течением времени – повторяют пульсации выпрямленного сетевого(100Гц). Получается интересная ситуация – есть высокочастотное выходное напряжение, изменяющееся с частотой в десятки тысяч герц, при этом его амплитуда изменяется от 0 до 17 вольт с частотой в 100 Гц или выпрямленные 50 Гц. Если растянуть ось времени и рассмотреть форму на уровне периодов, то картинка примет следующий вид.

Здесь видно, что сигнал по форме далёк от синусоиды, а скорее прямоугольник с небольшим уклоном в сторону заднего фронта.

Блоки питания для светодиодных ламп 12В

Их часто называют блоками питания для светодиодных лент, фактически для подключения и лент и ламп нужен любой источник постоянного стабилизированного напряжения 12В с минимальными пульсациями. На практике в современном мире используются импульсные источники питания, рассмотрим типовую схему.

Или другой вариант:

Что общего у этих двух, казалось бы, разных схем? Они построены на интегральном ШИМ-контроллера который управляет силовыми ключами – транзисторами, они могут быть и полевыми, и биполярными. Кроме того, в выходном каскаде схемы вы видите выпрямитель и конденсаторы для сглаживания пульсаций (фильтр). Всё это значит, что на выходе мы получаем стабилизированный DC источник питания. Величина его пульсаций будет зависеть от нагрузки и ёмкости фильтрующих конденсаторов.

Её также можно реализовать на автогенераторной схеме, подобной электронному трансформатору, добавив цепи обратной связи для стабилизации выходного напряжения. В результате получится схема наподобие такой.

Аналогичная конструкция используется в упомянутых выше зарядных для мобильны телефонов здесь за стабилизацию отвечает цепочка обратной связи на 11 вольтовом стабилитроне VD9 и транзисторной оптопаре U1.

Принцип работы подобных ИИП мы рассматривали в статье ранее — Схемотехника блоков питания светодиодных лент.

5 особенностей и отличий БП для LED-лент и ламп от электронных трансформаторов для галогенных ламп

Итак, подведем итоги и ответим на вопрос: «почему нельзя питать светодиодные лампы от электронного трансформатора?». Для этого мы перечислим основные особенности этих источников питания и требования для работы светодиодных изделий.

Для включения светодиодных лент и ламп на 12В нужно постоянное напряжение. Так как у светодиодов нелинейная вольтамперная характеристика – они очень чувствительны к отклонениям напряжения питания от номинального, и при его превышении быстро выйдут из строя.

Электронные трансформаторы выдают пульсирующее переменное высокочастотное напряжение. Величина всплесков и пиков может достигать и 40 вольт в некоторых случаях. Это может привести к выходу из строя светодиодов или драйверов, встроенных в LED-лампу, а также к их нестабильной работе.

У электронных трансформаторов есть такая характеристика как минимальная нагрузка (смотрите рисунок ниже). Это значит, что, если подключить нагрузку меньше указанной на блоке питания он может либо не запуститься, либо выдавать большие пульсации, а также отключаться или другим образом отклоняться от нормального режима работы. Это критично, поскольку галогенные лампы потребляют в разы большую мощность, чем светодиодные, поэтому электронный трансформатор может проявлять себя подобным образом.

Мощность указана от 20 до 105 Вт, что говорит об ограничении по минимальной подключаемой мощности.

У блоков питания для ламп на 12В выходное напряжение и постоянное, и стабилизированное при этом.

Для питания галогеновых ламп не разницы в роде тока (постоянный или переменный), которым её будут питать. Важно действующее значение напряжения на ней. Поэтому они подойдут под оба варианта источников питания.

Нельзя использовать электронный трансформатор для питания светодиодных изделий. Подбирайте блок питания с постоянным стабилизированным выходным напряжением. В противном случае ваши светильники и лампы могут выйти из строя. Также будьте внимательны – сейчас популярны светильники, предназначенные для питания источником постоянного тока – драйвером, это отдельный вид устройств! Об этом читайте здесь — В чем отличие блока питания от драйвера для светодиодов

Рекомендуем отключить VPN для стабильной работы сайта.

Современные альтернативы всем знакомой лампочке

Этот материал подготовлен специалистами компании «ЭлектроАС». Нужен электромонтаж или электроизмерения? Звоните нам!

Можно ли найти в торговой сети среди обилия новых и модных конструкций источников света именно тот, который будет обладать достаточной мощностью, экономностью, долговечностью службы и оптимальным дизайном? Отдать ли предпочтение привычной лампе накаливания или люминесцентным, светодиодным или компактным лампочкам – решить этот вопрос поможет более детальное рассмотрение преимуществ каждой из них.

Чем хороши лампы накаливания и галогенные лампы
Лампочки накаливания бывают больших размеров и совсем маленькие, работают по принципу свечения нагретой до температуры свыше 2700° К спирали из вольфрама. Срок службы таких лампочек – примерно 1000 часов. Галогенные лампочки более совершенны по техническим характеристикам. В колбу из кварцевого стекла закачан галогенный газ. Такая лампочка служит уже 4000 часов. Они широко используются в качестве осветительных приборов автомобилей, в частности, в фарах.

Лампы люминесцентные и компактные
Современные технологии превратили линейные люминесцентные лампы, предназначенные для производственных помещений, в маленькие и компактные. Эти лампочки снизили потребление электроэнергии по сравнению с лампами накаливания в 8 раз! Срок работы у них более длительный, за счет чего уменьшаются эксплуатационные расходы. Эти приборы работают по другому принципу, чем обычные лампы: свечение появляется в результате того, что ток проходит через пары ртути. Поскольку эти пары опасны для дыхания, утилизация этих ламп должна производиться отдельно от бытовых отходов, но на практике этого не происходит. Был разработан другой, безопасный вид лампочек – светодиодные.

Применение светодиодных ламп
Светодиодные лампочки по всем своим показателям гораздо лучше предыдущих моделей ламп. Пока их широкое применение тормозит более высокая стоимость, но прогресс не стоит на месте и снижение их стоимости поможет заменить светодиодными все другие источники света. Чтобы сориентироваться, насколько эта лампа ярко светит, нужно смотреть ее светоотдачу или потребляемую мощность. Светоотдаче 15 лм/Вт соответствует мощность 100-ваттной лампочки накаливания.

Светодиодные ленты и их подключение
Очень популярны сейчас светодиодные светильники в виде лент, с размещенными на них светодиодами. Они обладают гибкостью, могут излучать свет всех цветов, могут воплотить в жизнь любую фантазию при оформлении помещения, снабдить вывески, украшения автомобиля дополнительной подсветкой, использоваться для создания мягкого освещения аквариума или бассейна. Это только несколько примеров из длинного списка того, где применяются светодиодные ленты. Они имеют различную плотность расположения светодиодов на 1 метр длины ленты и защиту от действия окружающей среды. Для конкретного помещения делается расчет по освещенности в зависимости от размеров помещения, и тогда можно правильно подобрать ленту с необходимым количеством светодиодов. Цена монтажа светодиодной ленты зависит от уровня специалиста или компании, так как расценки на электромонтажные работы бывают разные. Лучше заказать просчет у нескольких компаний и выбрать подходящий для вас вариант.

RGB светодиодные ленты
Кроме монохромных светодиодных лент, применяющихся для освещения помещений и рабочих зон, в распоряжении дизайнеров есть светодиодная лента RGB. Она может излучать свет разного цвета, что позволяет иметь освещение, подходящее под настроение или соответствующее вкусу определенного человека. Установка этой ленты позволяет получить целое светомузыкальное шоу, которое проходит при прослушивании музыки. Сначала кажется, что только профессионалы могут произвести монтаж RGB ленты, но если ознакомиться с устройством светодиода этого типа, как он действует, а также как работает контроллер, схемой самой ленты, то подключить эту светодиодную ленту можно самостоятельно.

Как отремонтировать светодиодную LED лампу?
Сначала кажется, что предложение «отремонтировать лампочку» звучит странно. Ведь если лампочка сгорает, ее обычно заменяют на новую. Но теперь современные LED светильники и светодиодные лампочки можно чинить, так как они представляют собой радиоэлектронные устройства, к тому же дорогие, и подлежат ремонту так же, как телевизор или мобильный телефон. Устройство светодиодной LED лампочки не является сложным, однако все же надо ознакомиться с ним, научиться определять неисправные детали и заменять на новые LED или другие части схемы.

Можно ли починить систему?
Светодиодное освещение работает надежно, но если поломка все-таки случилась, можно быстро и экономично попытаться восстановить работу LED системы самостоятельно. Для этого достаточно понять структурную схему системы и как взаимодействуют составляющие ее блоки. Эта система и в LED, и в RGB освещении состоит из светодиодной ленты, блока питания и контроллера. Зная, как работает каждый блок и как провести проверку, можно самостоятельно определить тип светодиода и необходимое их количество.

Таблица параметров наиболее часто используемых SMD светодиодов
Есть специальная таблица, в которой указаны геометрические размеры светодиодов, что может помочь при определении неисправного светодиода и при ремонте всей системы. Также можно самому сделать светодиодный светильник, пользуясь этой таблицей, подбирая по ней необходимый тип светодиода и необходимое их количество.

Прочая и полезная информация

Прочая и полезная информация

Виды и характеристики трансформаторов для галогенных ламп

Галогеновые лампы с каждым днем все активнее применяются в украшении различных торговых комплексов и витрин. Яркая цветовая гамма, насыщенность в передаче изображения придают им все большую популярность. Срок их службы намного больше, чем у обычных ламп. При этом они могут длительно работать без выключения. В галогенках используются нити накала, но процесс свечения, в сравнении с лампами накаливания, у них отличается благодаря наполнению баллона особым составом. Такие лампочки используются в различных светильниках, люстрах, кухонной мебели и бывают 220 и 12 вольтовые. Блок питания для галогенок напряжением 12 вольт необходим, потому что при прямом их включении в электрическую сеть произойдет короткое замыкание.

Технические характеристики

Вольтаж галогенок бывает не только 220 и 12 вольт. В продаже можно найти лампочки на 24 и даже на 6 вольт. Мощность тоже может быть различной – 5, 10, 20 ватт. Галогеновые лампы от 220 В включаются прямо в сеть. Тем, которые работают от 12 В, необходимы специальные устройства, преобразующие ток из сети для 12 вольт, – так называемые трансформаторы или специальные блоки питания.

Двенадцативольтовые галогенки работают очень хорошо. Раньше, в 90-е годы, применялся трансформатор больших размеров на 50 Гц, который обеспечивал работу только одной галогеновой лампы. В современном освещении применяются импульсные высокочастотные преобразователи. По размерам очень маленькие, но могут потянуть 2 – 3 лампы одновременно.

На современном рынке встречаются как дорогие, так и дешевые блоки питания. В процентном соотношении дорогих продается около 5 %, а дешевки намного больше. Хотя, в принципе, дороговизна – это еще не гарантия надежности. В крутых преобразователях, к сожалению, не используются высококачественные детали, а лишь применяются хитроумные схемные «навороты», способствующие нормальной работе блока питания хотя бы в течение гарантийного срока. Как только он заканчивается, устройство сгорает.

Классификация

Трансформаторы бывают электромагнитными и электронными (импульсными). Электромагнитные доступны по цене, надежны, их можно сделать при желании своими руками. У них есть и свои минусы – приличный вес, большие габаритные размеры, повышение температуры при длительной работе. А перепады напряжения значительно сокращают срок работы галогеновых ламп.

Электронные трансформаторы весят намного меньше, у них стабильное напряжение на выходе, они сильно не нагреваются, могут иметь защиту от КЗ и плавный пуск, увеличивающий срок эксплуатации лампы.

Трансформаторы для галогеновых ламп

Разбор будет проведен на примере блока питания фирмы «Ферон Герман Технолоджи». На выходе этот трансформатор имеет ни много ни мало – 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры.

Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим:

  • мост из диодов;
  • RC цепь с динистором, чтобы запустился генератор;
  • генератор, собранный на полумостовой схеме;
  • трансформатор, понижающий входное напряжение;
  • низкоомный резистор, который служит в качестве предохранителя.

При большом перепаде напряжения такой преобразователь на 100% «сдохнет», приняв весь «удар» на себя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть.

Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока (ее просто нет!). Сомнение вызывает электрическая цепь (на схеме она красным цветом).

Фирма «Ферон Герман Технолоджи» выпускает галогеновые лампы мощностью до 60 ватт. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки.

При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие.

Расчет мощности трансформатора для ламп и схема подключения

Продаются сегодня различные трансформаторы, поэтому существуют определенные правила подбора необходимой мощности. Не стоит брать трансформатор слишком мощный. Он будет работать практически вхолостую. Недостаток мощности приведет к перегреву и дальнейшему выходу устройства из строя.

Рассчитать мощность трансформатора можно самостоятельно. Задачка скорее математическая и по силам каждому начинающему электрику. Например, необходимо установить 8 точечных галогенок напряжением 12 В и мощностью 20 ватт. Общая мощность при этом составит 160 ватт. Берем с запасом на 10 % примерно и приобретаем мощностью 200 ватт.

Схема №1 выглядит примерно таким образом: на линии 220 стоит одноклавишный выключатель, при этом оранжевый и синий провод подсоединяются ко входу трансформатора (первичные клеммы).

На линии 12 вольт все лампы подключаются к трансформатору (на вторичные клеммы). Соединяющие медные провода обязательно должны иметь одинаковое сечение, иначе яркость у лампочек будет разная.

Еще одно условие: провод, соединяющий трансформатор с галогеновыми лампами, должен быть длиной не менее 1,5 метров, лучше, если 3. Если сделать его слишком коротким, он начнет греться, и яркость лампочек снизится.

Схема №2 – для подключения галогеновых светильников. Здесь можно поступить по-другому. Разбить, к примеру, шесть светильников на две части. Для каждой установить понижающий трансформатор. Правильность такого выбора обусловлена тем, что при поломке одного из блоков питания вторая часть светильников все-таки будет продолжать работать. Мощность одной группы составляет 105 ватт. С небольшим коэффициентом запаса получаем, что приобрести необходимо два трансформатора на 150 ватт.

Совет! Каждый понижающий трансформатор запитайте своими проводами и соедините их в распределительной коробке. Места соединения оставьте в свободном доступе.

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий