Турбовальный двигатель принцип работы

Сегодня продолжаем серию рассказов о типах авиационных двигателей.

Центробежная ступень компрессора ТВаД.

Сегодня продолжаем серию рассказов о типах авиационных двигателей.

Как известно, основной узел любого газотурбинного двигателя ( ГТД) – это турбокомпрессор. В нем компрессор работает в связке с турбиной , которая его вращает. Функции турбины этим могут и ограничиться. Тогда вся оставшаяся полезная энергия газового потока, проходящего через двигатель, срабатывается в выходном устройстве ( реактивном сопле ). Как говорил мой преподаватель «спускается на ветер» :-). Тем самым создается реактивная тяга и ГТД становится обычным турбореактивным двигателем (ТРД).

Но можно сделать и по-другому. Турбину ведь можно заставить кроме компрессора вращать и другие нужные агрегаты, используя ту самую оставшуюся полезную энергию. Это может быть, например, самолетный воздушный винт. В этом случае ГТД становится уже турбовинтовым двигателем, в котором 10-15% энергии все же расходуется «на воздух» :-), то есть создает реактивную тягу.

Принцип работы турбовального двигателя.

Но если вся полезная энергия в двигателе срабатывается на валу и через него передается для привода агрегатов, то мы уже имеем так называемый турбовальный двигатель ( ТваД ).

Компоновка двигателя Arriel 1E2.

Турбовальный двигатель ARRIEL 1E2.

Eurocopter BK 117 c 2-мя турбовальными двигателями Arriel 1E2.

Выходной вал ТваД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.

Компоновка двигателя Arrius 2B2.

Турбовальный двигатель ARRIUS 2B2.

Eurocopter EC 135 с 2-мя турбовальными двигателями Arrius 2B2.

Надо сказать, что редуктор – непременная принадлежность турбовального двигателя. Ведь скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.

Компоновка двигателя Makila 1A1.

Турбовальный двигатель MAKILA 1A1

Eurocopter AS 332 Super Puma с 2-мя турбовальными двигателями Makila 1A1

Компрессор у ТваД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, то есть в нем есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД. Примером разнообразия конструкций ТваД могут служить двигатели известной французской двигателестроительной фирмы TURBOMEKA . Здесь я представляю ряд иллюстраций на эту тему (их сегодня вообще много как-то получилось :-)… Ну много — не мало… :-)).

Компоновка двигателя Arrius 2K1

Турбовальный двигатель ARRIUS 2K1.

Вертолет Agusta A-109S с 2-мя турбовальными двигателями Arrius 2K1.

Основное свое применение турбовальный двигатель находит сегодня конечно же в авиации, по большей части на вертолетах. Его часто и называют вертолетный ГТД. Полезная нагрузка в этом случае – несущий винт вертолета. Известным примером ( кроме французов :-))могут служить широко распространенные до сих пор отличные классические вертолеты МИ-8 и МИ-24 с двигателями ТВ2-117 и ТВ3-117 .

Вертолет МИ-8Т с 2-мя турбовальными двигателями ТВ2-117.

Турбовальный двигатель ТВ2-117.

Вертолет МИ-24 с 2-мя турбовальными двигателями ТВ3-117.

Турбовальный двигатель ТВ3-117 для вертолета МИ-24.

Двигатель АЛ-21Ф-3 с турбостартером ТС-21.

Турбостартер ТС-21, снятый с двигателя.

Фронтовой бомбардировщик СУ-24М с 2-мя двигателями АЛ-21Ф-3.

На земле, так же как и в воздухе ГТД (турбовальный двигатель) применяется на транспорте.

Первое – это перекачка природного газа по крупным магистралям через газоперекачивающие станции. ГТД используются здесь в качестве мощных насосов.

Второе – это водный транспорт. Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходы . Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создается при помощи ГТД.

Газотурбоход «Циклон-М» с 2-мя газотурбинными двигателями ДО37.

Пасажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно « Циклон-М » появилось в очень неудобное для себя время в 1986 году. Успешно пройдя все испытания, оно «благополучно» перестало существовать для России. Перестройка… Более таких судов не строили. Зато у военных в этом плане дела обстоят несколько лучше. Чего стоит один только десантный корабль «Зубр» , самое большое в мире судно на воздушной подушке.

Десантный корабль на воздушной подушке «Зубр» с газотурбинными двигателями.

И наконец четвертое , самое, наверное, экзотическое… Танки . Грозные боевые машины. На сегодняшний момент достаточно широко известны два типа ныне использующихся боевых танков с газотурбинными двигателями. Это американский М1 Abrams и российский Т-80 .

Танк M1A1 Abrams с газотурбинным двигателем AGT-1500.

Во всех вышеописанных случаях применения ГТД (суть турбовальный двигатель), он обычно заменяет дизельный двигатель. Это происходит потому, что (как я уже описывал здесь) при одинаковых размерах турбовальный двигатель значительно превосходит дизельный по мощности, имеет гораздо меньший вес и шумность.

Танк Т-80 с газотурбинным двигателем ГТД-1000Т.

Однако у него есть и крупный недостаток.Он обладает сравнительно низким коэффициентом полезного действия, что обуславливает большой расход топлива. Это естественно снижает запас хода любого транспортного средства (и танка в том числе :-)). Кроме того он чувствителен к грязи и посторонним предметам, всасываемым вместе с воздухом. Они могут повредить лопатки компрессора. Поэтому приходится создавать достаточно объемные системы очистки при использовании такого двигателя.

Эти недостатки достаточно серьезны. Именно поэтому турбовальный двигатель получил гораздо большее распространение в авиации, чем в наземном транспорте. Там этот трудяга-движок, ничего не пуская «на ветер» :-), заставляет подниматься в воздух вертолеты. И они в родной для них стихии из несуразных, на первый взгляд, машин превращаются в изумительные по красоте и возможностям творения рук человеческих… Все-таки авиация – это здорово :-)…

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .

Смотреть что такое «Турбовальный двигатель» в других словарях:

ТУРБОВАЛЬНЫЙ ДВИГАТЕЛЬ — (ТвАД) это газотурбинный двигатель, в котором преобладающая доля энергии сгорания топлива преобразуется в работу на выводном валу. Существуют также турбовальные двигатели со свободной турбиной — в них выводной вал приводится во вращение… … Военная энциклопедия

турбовальный двигатель — ГТД, в котором преобладающая доля энергии сгорания топлива преобразуется в работу на выводном валу. [ГОСТ 23851 79] Тематики двигатели летательных аппаратов EN turboshaft engine DE Wellenleistungstriebwerk FR turbomoteur … Справочник технического переводчика

Турбовальный двигатель — 16. Турбовальный двигатель D. Wellenleistungs Triebwerk E. Turboshaft engine F. Turbomoteur ГТД, в котором преобладающая доля энергии сгорания топлива преобразуется в работу на выводном валу Источник: ГОСТ 23851 79: Двигатели газотурбинные… … Словарь-справочник терминов нормативно-технической документации

турбовальный двигатель — Рис. 1. Схема турбовального двигателя. турбовальный двигатель — разновидность газотурбинного двигателя, в котором полезная внешняя работа реализуется в турбине, вал которой не связан механически с валом (валами) турбокомпрессорной части… … Энциклопедия «Авиация»

турбовальный двигатель — Рис. 1. Схема турбовального двигателя. турбовальный двигатель — разновидность газотурбинного двигателя, в котором полезная внешняя работа реализуется в турбине, вал которой не связан механически с валом (валами) турбокомпрессорной части… … Энциклопедия «Авиация»

турбовальный двигатель — Рис. 1. Схема турбовального двигателя. турбовальный двигатель — разновидность газотурбинного двигателя, в котором полезная внешняя работа реализуется в турбине, вал которой не связан механически с валом (валами) турбокомпрессорной части… … Энциклопедия «Авиация»

турбовальный двигатель — Рис. 1. Схема турбовального двигателя. турбовальный двигатель — разновидность газотурбинного двигателя, в котором полезная внешняя работа реализуется в турбине, вал которой не связан механически с валом (валами) турбокомпрессорной части… … Энциклопедия «Авиация»

турбовальный двигатель со свободной турбиной — Турбовальный двигатель, в котором выводной вал приводится во вращение турбиной, механически не связанной с турбиной компрессораю [ГОСТ 23851 79] Тематики двигатели летательных аппаратов EN free turbine turbo shaft engine DE… … Справочник технического переводчика

Турбовальный двигатель со свободной турбиной — 17. Турбовальный двигатель со свободной турбиной D. Wellenleistungs Triebwerk mit freilaufender Turbine E. Free turbine turboshaft engine F. Turbomoteur à turbine libre Турбовальный двигатель, в котором выводной вал приводится во вращение… … Словарь-справочник терминов нормативно-технической документации

Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

Плюсы и минусы двигателя

Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.

Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.

Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.

Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.

Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД турбинных двигателей, например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.

Среди главных преимуществ агрегата можно также выделить:

  • Низкое содержание вредоносных веществ в выхлопных газах;
  • Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
  • Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
  • Низкий уровень шума во время работы;
  • Хорошая характеристика кривой крутящего момента;
  • Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
  • Повышенная удельная мощность.

Эксплуатация свободной силовой турбины весомо отражается на закономерностях влияния общих элементов двигателя, способах их регулирования. Кроме того, это оказывает влияние на конструктивные формы. Существенной для Т.д. является частота вращения свободной турбины.

29.07.2017 12:42

Эксплуатация свободной силовой турбины весомо отражается на закономерностях влияния общих элементов двигателя, способах их регулирования. Кроме того, это оказывает влияние на конструктивные формы. Существенной для Т.д. является частота вращения свободной турбины.

Режим работы на форсаже воздушно-реактивного двигателя осуществляется с помощью дополнительной камеры сгорания, или ФКС, которая устанавливается за основной камерой сгорания и турбиной. Во время запуска форсажа происходит сжигание дополнительного горючего в ФКС, при этом происходит интенсивный нагрев рабочего тела, который приводит к увеличению скорости его истечения из сопла и росту тяги двигателя.

За счет жаропрочности и жаростойкости лопаток турбины температура газов за основной камерой сгорания лимитируется. Установив форсаж за турбиной дополнительной камеры сгорания можно обойти это ограничение. Главным недостатком данного решения является резкое падение экономичности конструкции установки двигателя.

Переход двигателя из обычного режима работы на форсаж производится лишь в том случае, когда необходимо энергично разогнать летательный аппарат или перейти на полет повышенной скорости. Форсаж незаменим при маневрах летательного средства, обходе ПВО, выходу из боя и в прочих ситуациях, где необходимо резко увеличить тягу двигателя.

AIRSHOW CHINA 2018 – THE 12TH CHINA INTERNATIONAL AVIATION & AEROSPACE EXHIBITION

29.12.2018
«ВЕРТОЛЕТЫ РОССИИ» ПРОВЕЛИ В КИТАЕ ДЕМОНСТРАЦИОННЫЕ ПОЛЕТЫ МИ-171 С НОВЫМ ДВИГАТЕЛЕМ

ТУРБОВАЛЬНЫЙ ДВИГАТЕЛЬ ВК-2500. TURBOSHAFT ENGINE VK-2500

ВОЕННО-ТЕХНИЧЕСКОЕ СОТРУДНИЧЕСТВО

09.08.2018
АО «ОДК-КЛИМОВ» ПРИЗНАНО ОКБ ГОДА ЗА СОЗДАНИЕ НОВОГО ВЕРТОЛЕТНОГО ДВИГАТЕЛЯ ВК-2500ПС-03

08.11.2018
ОДК ПРЕДСТАВИЛА В КИТАЕ НОВЕЙШИЙ РОССИЙСКИЙ ВЕРТОЛЕТНЫЙ ДВИГАТЕЛЬ ВК-2500ПС-03

AIRSHOW CHINA 2018 – THE 12TH CHINA INTERNATIONAL AVIATION & AEROSPACE EXHIBITION

29.12.2018
«ВЕРТОЛЕТЫ РОССИИ» ПРОВЕЛИ В КИТАЕ ДЕМОНСТРАЦИОННЫЕ ПОЛЕТЫ МИ-171 С НОВЫМ ДВИГАТЕЛЕМ

AERO INDIA 2019 12-Я АВИАКОСМИЧЕСКАЯ ВЫСТАВКА
ВОЕННО-ТЕХНИЧЕСКОЕ СОТРУДНИЧЕСТВО

17.05.2019
ОДК-КЛИМОВ РАЗРАБОТАНА ПРОГРАММА МОДЕРНИЗАЦИИ СИЛОВЫХ УСТАНОВОК ВЕРТОЛЕТНОЙ ТЕХНИКИ

ВОЕННО-ТЕХНИЧЕСКОЕ СОТРУДНИЧЕСТВО

26.11.2019
СЕРТИФИКАТ ТИПА РОССИЙСКОГО ВЕРТОЛЕТНОГО ДВИГАТЕЛЯ ВК-2500ПС-03 ВАЛИДИРОВАН В КОЛУМБИИ

ВОЕННО-ТЕХНИЧЕСКОЕ СОТРУДНИЧЕСТВО

21.01.2020
УЛУЧШЕНЫ РЕСУРСНЫЕ ПОКАЗАТЕЛИ ДВИГАТЕЛЯ ВК-2500ПС-03

Турбовинтовые двигатели

Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД). Я постараюсь сделать это наиболее простым и понятным языком.

Авиационные ГТД можно можно разделить на:

  • турбореактивные двигатели (ТРД)
  • двухконтурные турбореактивные двигатели (ТРДД)
  • Турбовинтовые двигатели (ТВД)
  • Турбовальные двигатели (ТВаД)

Притом, ТРД и ТРДД могут содержать в себе форсажную камеру, в таком случае они будут ТРДФ и ТРДДФ соответственно. В этой статье мы их рассматривать не будем.

Начнём с турбореактивных двигателей.

Турбореактивные двигатели

Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.


Современная фотография Me-262, сделанная в 2016 году

Самый простой турбореактивный двигатель включает в себя следующие элементы:

  • Входное устройство
  • Компрессор
  • Камеру сгорания
  • Турбину
  • Реактивное сопло (далее просто сопло)

Можно сказать, что это минимальный набор для нормальной работы двигателя.

А теперь рассмотрим что для чего нужно и зачем.

Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.

*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.

Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).

Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так. Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).

Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.

С основными элементами разобрались. Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.

Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении. По такому циклу работают все ГТД.


Цикл Брайтона в P-V координатах

Н-В — процесс сжатия во входном устройстве
В-К — процесс сжатия в компрессоре
К-Г — изобарический подвод тепла
Г-Т — процесс расширения газа в турбине
Г-С — процесс расширения газа в сопле
С-Н — изобарический отвод тепла в атмосферу


Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя

ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.


Реальный двигатель такого вида в разрезе

Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам. Давайте рассмотрим их.

Двухконтурный турбореактивный двигатель


Схематичная конструкция двухвального двухконтурного турбореактивного двигателя

Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.


ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор

На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)


Д-18Т в разрезе изнутри

Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.

На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.

Турбовинтовые двигатели

Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.


Схематичная конструкция ТВД со свободной турбиной

Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны. Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.

На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.

Турбовальный двигатель


Схематичная конструкция турбовального двигателя


Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал

Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас. Все вопросы и замечания можете писать в комментариях.

Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.

Турбовинтовые двигатели

Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.


Схематичная конструкция ТВД


Схематичная конструкция ТВД со свободной турбиной

Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.

На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.

Авиационные двигатели (рис.1) делятся на три обширных класса:

Классификация авиационных двигателей

К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т. е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т. п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов «В-В», «В-3», «3-В», «3-3», авиакосмические системы и др.). Отсюда вытекает большое разнообразие применяемых двигателей — от поршневых до ракетных.

Авиационные двигатели (рис.1) делятся на три обширных класса:

  • поршневые (ПД);
  • воздушно-реактивные (ВРД включая ГТД);
  • ракетные (РД или РкД).

Более детальной классификации подлежат два последних класса, в особенности класс ВРД.

По принципу сжатия воздуха ВРД делятся на:

  • компрессорные, т. е. включающие компрессор для механического сжатия воздуха;
  • бескомпрессорные:
    • прямоточные ВРД (СПВРД) со сжатием воздуха только от скоростного напора;
    • пульсирующие ВРД (ПуВРД) с дополнительным сжатием воздуха в специальных газодинамических устройствах периодического действия.

Класс ракетных двигателей ЖРД также относится к компрессорному типу тепловых машин, так как в этих двигателях сжатие рабочего тела (топлива) осуществляется в жидком состоянии в турбонасосных агрегатах.

Ракетный двигатель твердого топлива (РДТТ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, где располагается заряд топлива.

По принципу действия существует такое деление: ПД и ПуВРД работают по циклу периодического действия, тогда как в ВРД, ГТД и РкД осуществляется цикл непрерывного действия. Это дает им преимущества по относительным показателям мощности, тяги, массе и др., что и определило, в частности, целесообразность их использования в авиации.

По принципу создания реактивной тяги ВРД делятся на:

  • двигатели прямой реакции;
  • двигатели непрямой реакции.

Двигатели первого типа создают тяговое усилие (тягу Р) непосредственно — это все ракетные двигатели (РкД), турбореактивные без форсажа и с форсажными камерами (ТРД и ТРДФ), турбореактивные двухконтурные (ТРДД и ТРДДФ), прямоточные сверхзвуковые и гиперзвуковые (СПВРД и ГПВРД), пульсирующие (ПуВРД) и многочисленные комбинированные двигатели.

Газотурбинные двигатели непрямой реакции (ГТД) передают вырабатываемую ими мощность специальному движителю (винту, винтовентилятору, несущему винту вертолета и т. п.), который и создает тяговое усилие, используя тот же воздушно-реактивный принцип (турбовинтовые, турбовинтовентиляторные, турбовальные двигатели — ТВД, ТВВД, ТВГТД). В этом смысле класс ВРД объединяет все двигатели, создающие тягу по воздушно-реактивному принципу.

На основе рассмотренных типов двигателей простых схем рассматривается ряд комбинированных двигателей, соединяющих особенности и преимущества двигателей различных типов, например, классы:

  • турбопрямоточных двигателейТРДП (ТРД или ТРДД + СПВРД);
  • ракетно-прямоточныхРПД (ЖРД или РДТТ + СПВРД или ГПВРД);
  • ракетно-турбинныхРТД (ТРД + ЖРД);

и многие другие комбинации двигателей более сложных схем.

В настоящее время Ми-171А2 проходит сертификацию в ряде стран. Соответствующие сертификаты уже открыли дорогу для продвижения нового вертолета в Индии и Колумбии . Ведутся работы по валидации машины в Бразилии и Перу. Иностранные специалисты осваивают работу на Ми-171А2 в учебном центре Улан-Удэнского авиационного завода.

Что еще нового в Ми-171А2

Вертолет оснащен более эффективным и менее шумным Х-образным рулевым винтом и новым несущим винтом с композитными лопастями и усовершенствованным аэродинамическим профилем. Это позволило снизить общую массу системы и повысить тягу винта на 700 кг. Показатели крейсерской и максимальной скорости Ми-171А2 относительно серийно выпускаемых вертолетов типа Ми-8/17 возросли на 10%, а грузоподъемность увеличилась на 25%.

Эти нововведения позволили существенно расширить возможности и без того многофункциональной машины, а также снизить расход топлива, упростить предполетное и послеполетное обслуживание и поиск неисправностей.

Максимальная взлетная и посадочная масса Ми-171А2 составляет 13 000 кг, а с грузом на внешней подвеске − 13 500 кг. Вертолет может поднимать внутри кабины 4 тонны груза и 5 тонн на внешней подвеске. Пассажирская версия машины может перевозить до 24 человек. По сравнению с предыдущими моделями Ми-8/17 максимальная скорость нового вертолета возросла с 250 до 280 км/ч, крейсерская − с 230 до 260 км/ч, а дальность полета с основными баками − с 715 до 800 км.

Ми-171А2 может эффективно применяться днем и ночью, в условиях высокогорья, при низких и высоких температурах, повышенной влажности и над водной поверхностью. Вертолет обеспечивает перевозку пассажиров и предлагается в транспортной, пассажирской и VIP-версиях.

Еще одно достоинство турбированного агрегата – снижение содержания вредных газов в выхлопе, поскольку топливовоздушная смесь сгорает значительно эффективнее. Кроме того, мотор с турбокомпрессором работает менее шумно, чем «атмосферник».

Итоги

Выбирать автомобиль с турбированным или атмосферным агрегатом стоит, исходя из своих личных предпочтений и возможностей. У каждого из этих типов моторов есть свои плюсы и минусы. Турбодвигатель будет мощнее и динамичнее, однако требователен в уходе и обходится дороже. Атмосферный двигатель не такой мощный, зато гораздо дешевле в плане эксплуатации и ремонта.

В наличии в компании Favorit Motors имеется множество разных моделей автомобилей как с атмосферными двигателями, так и с турбированными. Компетентный персонал поможет подобрать автомобиль, исходя из пожеланий и предпочтений каждого клиента.

Как турбированный, так и атмосферный силовой агрегат со временем может начать работать с перебоями или вообще отказать. Современные модели автомобилей оснащены высокотехнологичными электронными системами управления двигателем, поэтому диагностику и ремонт моторов следует выполнять только в специализированных автосервисах.

Специалисты компании Favorit Motors напоминают, что своевременное регламентное обслуживание способно значительно продлить срок эксплуатации силового агрегата. Необходимо регулярно менять масло в соответствии с пробегом и устранять выявленные неисправности.

Источники
Источник — http://avia-simply.ru/turbovalnij-dvigatel/
Источник — http://dic.academic.ru/dic.nsf/enc_tech/3671/%D0%A2%D1%83%D1%80%D0%B1%D0%BE%D0%B2%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9
Источник — http://avtodvigateli.com/vidy/gibridnyj/gazoturbinnyj-dvigatel.html
Источник — http://brickandpress.com/stati/article_post/turbovalnyy-dvigatel
Источник — http://bastion-karpenko.ru/vk-2500/
Источник — http://temofeev.ru/info/articles/aviatsionnye-gazoturbinnye-dvigateli/
Источник — http://m.habr.com/ru/post/455774/
Источник — http://www.avsim.su/wiki/%D0%90%D0%B2%D0%B8%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B5_%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D0%B8
Источник — http://rostec.ru/news/mi-171a2-novoe-pokolenie-legendarnoy-vosmerki/
Источник — http://online.favorit-motors.ru/article/turbirovannye-motory-atmosfernye

Оцените статью
( 1 оценка, среднее 1 из 5 )
Как Это Работает?
Добавить комментарий