Как определить величину сопротивления
Эту задачу в 1826 г. решил немецкий ученый Георг Ом. Он провел большое число экспериментов с образцами разных проводников. С помощью набора источников тока он подавал напряжение U на исследуемые образцы и, одновременно измерял c помощью амперметра электрический ток I. Полученные результаты позволили ему вывести формулу, названную законом Ома:
$ U = I * R $ (1)
U — напряжение, В;
I — сила тока, А.
Величина R была названа электрическим сопротивлением. Пользуясь формулой (1) можно получить уравнение для вычисления R по результатам измерения напряжения U и тока I:
Рис. Схема измерения напряжения и тока в экспериментах Георга Ома.
Единица измерения электрического сопротивления
Единицу измерения сопротивления назвали в честь Георга Ома. В Международной интернациональной системе единиц СИ электрическое сопротивление 1 Ом имеет участок цепи, на котором падает напряжение равное 1 В при силе тока 1 А:
Для определения сопротивления с помощью закона Ома требуется измерить предварительно напряжение и ток. Двух измерений можно избежать с помощью прибора, разработанного для непосредственного измерения сопротивления. Прибор называется омметром.
Рис. Приборы для измерения сопротивления – омметры.
На практике большинство используемых в электрических схемах и приборах сопротивлений гораздо больше, чем 1 Ом. Поэтому чаще применяются кратные единицы измерений : килоом и мегом:
- 1 кОм = 1000 Ом;
- 1 МОм = 1000 000 Ом.
Удельное электрическое сопротивление
Дальнейшие исследования позволили установить связь величины электрического сопротивления с его основными геометрическими размерами. Оказалось, что сопротивление проводника прямо пропорционально длине проводника L и обратно пропорционально площади поперечного сечения проводника S.
Эта функциональная связь хорошо описывается следующей формулой:
Постоянная для каждого вещества величина ρ была названа удельным сопротивлением. Значение этого параметра зависит от плотности вещества, его кристаллической структуры, строения атомов и прочих внутренних характеристик вещества. Из формулы (4) можно получить формулу для расчета удельного сопротивления, если имеются экспериментальные значения для R, L и S:
Для большинства известных веществ измерения были произведены и внесены в справочные таблицы электрических сопротивлений проводников.
Удельное сопротивление металлов, Ом*мм2/м
(при Т = 200С)
Экспериментально было обнаружено, что с понижением температуры сопротивление металлов уменьшается. При приближении к температуре абсолютного нуля, которая равна -2730 С, сопротивление некоторых металлов стремится к нулю. Это явление называется сверхпроводимостью. Атомы и молекулы как бы “замораживаются”, прекращают любое движение и не оказывают сопротивления потоку электронов.
Что мы узнали?
Итак, мы узнали, что способность проводника ограничивать величину электрического тока называется сопротивлением. Величину сопротивления проводника можно определить с помощью закона Ома, измерив напряжение и ток. Если известно удельное сопротивление проводника, его длина и поперечное сечение, то сопротивление можно вычислить с помощью формулы (4), не измеряя ток и напряжение.
Additional information
The access policies of a site define which visits are allowed. Your current visit is not allowed according to those policies.
Only the site owner can change site access policies.
Сила тока и сопротивление
Как усилить поток воды из шланга? Можно добавить напор (увеличить давление), но не слишком сильно, иначе шланг разорвёт. А можно взять шланг большего диаметра.
То же справедливо и для проводника: чем больше он в сечении, тем больший поток электронов может пропустить. Но если сила тока окажется слишком большой, проводник перегреется и сгорит.
Именно так работают плавкие предохранители в электронных приборах: при резком скачке силы тока тонкий проводок перегорает, и устройство отключается от сети.
Чем короче и шире шланг, тем большее количество воды он способен пропустить за единицу времени. Также и с электричеством: сила тока, проходящего через проводник за секунду, зависит от сопротивления проводника. Только кроме длины и площади сечения на сопротивление влияет материал, из которого проводник сделан.
Формула сопротивления выглядит так:
l — это длина проводника, S — площадь его сечения, а ρ — удельное сопротивление, у каждого материала оно своё.
Вещества с низким удельным сопротивлением называются проводниками, они проводят электричество наиболее эффективно. Вещества с высоким удельным сопротивлением называют диэлектриками — их можно использовать в качестве изоляторов. Среднее положение занимают полупроводники — они проводят электричество, но не так хорошо, как проводники.
Сопротивление измеряется в Омах. Проводник обладает сопротивлением в 1 Ом, если на его концах возникает напряжение в 1 Вольт при силе тока в 1 Ампер.
Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS82021 вы получите бесплатный доступ к курсу физики 8 класса, в котором изучается сила тока!
Существует специальный прибор для измерения силы тока — амперметр. Он подключается последовательно к проводнику, в котором нужно измерить силу тока. Для этого один из концов нужного проводника отсоединяют от электрической цепи и в получившийся разрыв включают амперметр с помощью двух клемм — со знаками «+» и «−». Клемму со знаком «+» подключают к точке разрыва, которая сохранила связь с положительным полюсом источника тока.
Поскольку сила тока на всех последовательных участках цепи одинакова (он нигде не «застаивается»), амперметр можно включать как до потребителя тока, так и после.
На схемах амперметр изображается буквой «А» в круге.
Существует много разных видов амперметров, различающихся по принципу действия. Проще всего устроен тепловой амперметр. Между двумя зажимами натянута проволока, соединённая нитью с пружиной. Нить охватывает петлёй неподвижную ось со стрелкой. Когда к зажимам подаётся ток, он проходит через проволоку и нагревает её. Нагретая проволока становится немного длиннее, из-за этого нить сильнее оттягивается пружиной. При движении нить поворачивает ось, и стрелка на ней показывает, чему равна сила тока.
Современные электрики пользуются мультиметрами — приборами, которые позволяют измерить и силу тока, и напряжение, и сопротивление.
Закон Ома
Сила тока на участке цепи всегда прямо пропорциональна напряжению на данном участке и обратно пропорциональна сопротивлению участка.
Подобное определение будет верно также для растворов электролитов. Общий закон Ома характерен при описании однородного участка цепи, который не содержит источников тока.
$R$ – сопротивление проводника.
Сопротивление принято измерять в омах (Ом).
Закон Ома является главным законом в электротехнике. С помощью его:
- изучаются и рассчитываются электрические цепи;
- устанавливается логическое соотношение между сопротивлением и напряжением.
Подобные характеристики в зависимости от ситуации могут приобретать различные формы и выражения. Наиболее простой вид вольтамперной характеристики выразил в формуле Георг Ом, в честь которого была названа единица сопротивления тока. Ученый подтвердил свою теорию многочисленными экспериментами, применяя опыты к металлическому проводнику.
Закон Ома необходимо понимать на теоретическом и практическом уровне, чтобы решать различные задачи. Если неправильно применять основные параметры закона, то результат приобретает неправильные черты, поэтому допускаются многочисленные ошибки.
Применение закона Ома для участка цепи
Каждый участок электрической цепи можно описать с помощью трех основных величин:
- сопротивления;
- напряжения;
- тока.
Такое сочетание также называют «треугольником Ома», поскольку величины характеризуют все процессы электротехники.
Все производимые расчеты имеют смысл только в тех случаях, когда напряжение на участке цепи выражается в вольтах (В), сопротивление — в омах (Ом), а ток – в амперах (А). При использовании иных единиц измерений или их кратных значений необходимо осуществлять дополнительный ряд действий, чтобы искомый результат полностью соответствовал задачам и целям расчетов. Для этого кратные единицы используемых величин переводят в традиционные величины.
Кратные единицы измерений:
- милливольты;
- миллиамперы;
- мегаомы.
При произведении расчетов в кратных единицах измерений величин напряжение всегда выражается в вольтах.
Для расчета сопротивления на участке цепи по закону Ома необходимо сначала определить ток на заданном участке цепи. Напряжение при этом делят на сопротивление конкретного участка цепи. Эти действия можно производить на любом участке без погрешности.
Для определения напряжения в цепи используют формулу $U = IR$.
Согласно указанной формуле, напряжение на обоих концах участка электрической цепи прямо пропорционально сопротивлению и току. Иными словами, если не стремиться все время изменять сопротивление на данном участке, то при увеличении тока применяется способ увеличения напряжения.
Значительному напряжению в цепи будет соответствовать больший ток. Эти правила действуют при постоянном сопротивлении. Для получении одинакового тока при различных сопротивлениях большее напряжение должно соответствовать большему сопротивлению.
Падение напряжения – это напряжение на определенном участке цепи. Это означает, что напряжение и падение напряжения – идентичные понятия, а слово «падение» никак не связано с потерей некоторого количества напряжения в цепи. Потерю напряжения следует различать от падения напряжения.
Расчет сопротивления
При многократном увеличении или уменьшении напряжения ток также изменяется в несколько раз в ту или иную сторону. Отношение напряжения к току, которое равно сопротивлению, всегда остается на неизменном уровне.
Сопротивление определенного проводника не зависит от напряжения и тока. Оно будет лежать в зависимости от материала проводника, его длины и площади сечения. Формула для расчета сопротивления на участке цепи очень похожа на формулу для определения тока, однако существует между ними принципиальное различие.
Оно состоит в том, что ток на конкретном участке цепи зависит от напряжения и сопротивления, поэтому изменяется таким же образом. Сопротивление на данном участке цепи – постоянная величина. Она не зависит от изменения значений тока и напряжения, однако равно отношению этих величин.
Вольтамперная характеристика
Закон Ома представляют в виде вольтамперной характеристики. Зависимость между двумя пропорциональными величинами выражается прямой линией на графике. Она проходит через начало координат. Подобную прямую пропорциональную зависимость величин также называют линейной зависимостью.
В графическом выражении закона Ома для участка цепи при отрицательных значениях напряжения и тока также рисуют прямую линию. Это означает, что ток в цепи проходит в разных направлениях одинаково. При большем сопротивлении меньшее значение имеет ток с таким же напряжением.
Вольтамперную характеристику составляют при помощи специальных приборов. Линейными называют такие приборы, у которых характеристика выражается прямой линией, и она проходит через начало координат.
Специалисты при составлении вольтамперной характеристики применяют также понятия линейные сопротивления и линейные цепи.
Для изучения зависимости электрических параметров соберём электрическую цепь, изображённую на схеме (рис. \(1\)).
Состав схемы (по часовой стрелке по ходу электрического тока):
- источник электрического напряжения (тока);
- электрический ключ для размыкания;
- последовательно подключённый амперметр для измерения силы тока в цепи;
- сопротивление (спираль никелиновой проволоки);
- вольтметр, подключённый параллельно к сопротивлению.
Рис. \(1\). Первая схема электрической цепи
При замыкании цепи отметим показания приборов. Используя регулятор напряжения на источнике, изменим напряжение в два раза. При этом показания вольтметра и амперметра также изменятся в два раза. Продолжим увеличивать напряжение на источнике. Наблюдения показывают, что при увеличении напряжения в \(3\) раза, вольтметр покажет увеличение напряжения на спирали в три раза. Во столько же раз увеличится и сила тока. Опыт показывает зависимость изменения силы тока от приложенного напряжения.
Эту зависимость можно изобразить графически:
Рис. \(2\). График зависимости силы тока в проводнике от напряжения между концами этого проводника
При включении в электрическую цепь источника тока различных проводников и амперметров увидим, что для разных проводников показания амперметров различны, значит, сила тока для каждого проводника отличается.
Рис. \(3\). Электрическая схема с набором различных сопротивлений \(AB\), \(CD\), \(EF\)
Графики тоже будут отличаться.
Рис. \(4\). Графики зависимости силы тока от напряжения для сопротивлений \(AB\), \(CD\), \(EF\)
Вольтметр подключим поочерёдно к концам этих проводников. Увидим равные значения напряжения. Значение силы тока на участке цепи пропорционально разности потенциалов на его концах и зависит от рода вещества проводника. Отличие электрических параметров \(U\) и \(I\) связано с тем, что проводники имеют разное электрическое сопротивление.
\(1\) мОм = \(0,001\) Ом;
\(1\) кОм = \(1000\) Ом;
\(1\) МОм = \(1 000 000\) Ом.
Почему существует сопротивление? Движению электронов под действием поля мешают ионы кристаллической решётки металла.
В середине \(XIX\) века Джеймс Кларк Максвелл объединил исследования Вольта, Эрстеда, Ампера, Ома, Фарадея в классическую электродинамику. Учёные придерживались гипотезы, что электричество переносят положительные частицы. Все законы строились на этом предположении.
\(29\) апреля \(1897\) года Джозеф Джон Томсон выступил на заседании Королевского общества с докладом о катодных лучах, что и считается датой открытия электрона.
В металлах электрический ток переносится электронами. Положительные ионы, связанные узлами кристаллической решётки, перемещаться не могут. Электроны, перемещаясь между ионами, сталкиваются с ними, отскакивают обратно, что уменьшает общий поток электронов.
Чтобы узнать, как зависит сила тока в цепи от сопротивления, обратимся к опыту (рис. \(4\)).
Рис. \(5\). Электрическая цепь с аккумулятором
На рисунке изображена электрическая цепь, источником тока в которой является аккумулятор.
- Напряжение \(2\) В на концах резисторов постоянно. Это подтверждают показания вольтметра, подключенного параллельно к резистору.
- Используются три постоянных резистора сопротивлениями \(1\), \(2\) и \(4\) Ом, которые подключаются в цепь поочерёдно.
- Сила тока в цепи измеряется амперметром, который подключен последовательно с резистором.
Таблица \(1\). Результаты опыта
По опытным данным (табл. \(1\)) прослеживается закономерность, которую обнаружил ещё в \(1827\) году Георг Ом.
При изменяющемся сопротивлении и постоянном напряжении на участке зависимость силы тока от сопротивления будет гиперболической:
Рис. \(6\). График зависимости силы тока от сопротивления проводника
Определить сопротивление проводника можно несколькими способами:
при помощи амперметра и вольтметра;
при помощи омметра;
при помощи мультиметра, который эксплуатируется в режиме омметра.
Таблица \(2\). Способы измерения сопротивления
Рис. Обозначение омметра в цепи (или мультиметра в режиме измерения сопротивления)
Удельное сопротивление
Проводимость принято в физике обозначать буквой G. Эта величина характеризует возможность тела или среды проводить электрический ток. По сути, она определяет возникновение электротока под воздействием электрического поля и является параметром, обратным сопротивлению.
Упорядочено движущиеся отрицательные носители, сталкиваясь с другими частицами, замедляют своё перемещение. Часть их энергии при этом рассеивается в виде тепла, что приводит к нагреванию проводника. Так как электроны для дальнейшего движения преодолевают некое препятствие, то говорят, что проводник, в котором происходит это явление, обладает электрическим сопротивлением.
Именно поэтому, если оно у тела небольшое, то при пропускании по нему электротока происходит слабый нагрев, если же велико — материал может даже раскалиться. Величина температуры, как подсказывает логика, должна зависеть не только от количества столкновений в теле, но и от физических размеров тела. Эксперименты, проводимые в XIX веке, позволили установить зависимость сопротивления проводника от его формы и размеров: R = p * (l / S), где:
- p — удельный коэффициент;
- l — длина проводника;
- S — площадь материала.
Для сравнения удельную сопротивляемость наиболее распространённых проводников, измеренную при температуре 200С, можно привести в таблице.
НазваниеОбозначениеЗначение (10-8 Ом * м)АлюминийAl2,8МедьCu1,7СереброAg1,6НикельNi42РтутьHg96ПлатинаPt10ВольфрамW5,5ЦинкZn0,6
Эксперименты также показали зависимость электрического сопротивления от температуры. Объяснить это можно тем, что при её повышении увеличиваются колебания атомов в узлах кристаллической решётки. Это, в свою очередь, затрудняет возможность «просачивания» электронов по структуре без столкновений.
Кстати, это ещё одна особенность, отличающая проводники от диэлектриков. В последних с ростом температуры проводимость увеличивается из-за высвобождения свободных носителей. При достижении определённого значения происходит пробой, то есть резкое снижение сопротивления практически до нуля.
Суть закона Ома
В 1826 году немецкий физик и экспериментатор Георг Симон Ом выступил на собрании Лондонского королевского общества, предоставив результаты своего опыта. На основании его исследований после был сформулирован закон, названный его именем. Открытие физика позволило качественно пересмотреть явление электричества, лучше понять природу протекания тока. По сути, Ом установил зависимость между тремя электрическими величинами: током, напряжением и сопротивлением.
В 1822 году Зеебек обнаружил зависимость силы тока от температуры, а также то, что при контакте двух различных веществ при их нагреве возникает разность потенциалов. Своё открытие он использовал для создания источника электродвижущей силы. Ом, заинтересовавшись устройством, начал проводить свои опыты над различными материалами.
Суть эксперимента учёного заключалась в следующем. Он взял несколько отрезков медной проволоки разной длины и, подключая их к источнику тока, оценивал величину электричества. В качестве измерительного приспособления использовались крутильные весы. Затем медь была заменена на латунь. На основании полученных результатов Ом построил график, где по оси игрек отложил обратную величину закручивания, а по координате икс — длину проволоки.
Как для первого, так и для второго материала график зависимости представлял собой прямую линию. Таким образом, он предположил, что протекающий ток обратно пропорционально зависит от длины тела, то есть от сопротивления проводника.
На то время из-за недостаточности понимания процессов общество не могло оценить важность открытия. Некоторые учёные даже скептически воспринимали полученные результаты. Лишь только в 1835 году авторитетный французский физик Пулье смог подтвердить опытным путём исследования немецкого физика. После этого британское научное общество признало закономерность истинным природным явлением.
Определение Ома дало толчок в развитии электричества. Благодаря его закону появилась возможность управлять параметрами электроцепи, вводя в случае необходимости элементы с известным сопротивлением. В электронике они даже получили своё название — резисторы. Это элементы, обладающие известным постоянным или переменным значением величины обратной проводимости.
Сопротивление проводника
Сопротивление проводника напрямую зависит от его геометрических размеров, а также материала изготовления. Меньшее сопротивление протеканию электрического тока будет оказывать проводник более толстого сечения и меньшей длины. Математически это выглядит следующим образом:
R = p l/S
- R – электрическое сопротивление проводника, Ом.
- p – удельное сопротивление проводника, Ом·мм2/м.
- l – длина проводника, м.
- S – площадь сечения проводника, м2.
Самыми меньшими удельными сопротивлениями обладают:
- серебро – 0,016 Ом·мм2/м;
- медь – 0,0175 Ом·мм2/м;
- золото – 0,023 Ом·мм2/м;
- алюминий – 0,029 Ом·мм2/м.
Наибольшие удельные сопротивления у графита – 13 Ом·мм2/м, фарфора – 1019 Ом·мм2/м, эбонита – 1020 Ом·мм2/м.
Как найти сопротивление цепи?
Чтобы рассчитать сопротивление электрической цепи, необходимо иметь в наличии:
- Амперметр – прибор для измерения силы тока, который необходимо устанавливать в цепь последовательно с нагрузкой. Более удобны в этом отношении токоизмерительные клещи, позволяющие проводить бесконтактные замеры.
- Вольтметр – прибор для измерения напряжения или ЭДС, устанавливаемый в обязательном порядке параллельно источнику или нагрузке электрической цепи.
Сняв показания этих двух приборов и разделив полученную величину напряжения на величину силы тока (R = U/I), легко определить сопротивление исследуемой цепи.
Приборы для измерения сопротивления
Сегодня промышленностью изготавливается множество видов и типов приборов, позволяющих измерять сопротивление (тестеры, мультиметры). Но все они содержат в себе омметр – электроизмерительный прибор, предназначенный для измерения активных (омических) сопротивлений. Изготовленные на базе современной электроники, они позволяют делать замеры как в цепях постоянного, так и переменного тока. В зависимости от диапазонов и величин измеряемых сопротивлений, омметры подразделяются на ряд модификаций:
- Микроомметры и миллиомметры.
- Мегаомметры, гигаомметры, тераомметры.
Для высокоточных измерений сопротивления используется измерительный мост, в одно из «плеч» которого подключается измерительный элемент. Если нет ни того ни другого, то собрав схему и включив в неё амперметр и вольтметр, сопротивление можно определить расчётно-экспериментальным путём.
Очень важно при всех этих манипуляциях не попасть под воздействие электрического тока, так как сопротивление тела человека, условно принятого величиной в 1 Ом, не предназначено для подобных воздействий, могущих вызвать необратимые последствия!
Формулировка и объяснение закона Ома
Закон немецкого учителя Георга Ома очень прост. Он гласит:
Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.
Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.
Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.
Пусть у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.
Закон запишется в следующем виде:
Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.
Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.
Как понять закон Ома?
Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.
Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.
Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)
Сила тока прямо пропорциональна напряжению.
Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.
Сила тока обратно пропорциональна сопротивлению.
Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.
В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.
В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.
Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!
Для рассмотрения характеристик электрических параметров рассмотрим назначение приборов:
- сила тока в цепи определяется амперметров, который подключается последовательно с соблюдением полярности;
- напряжение на участке цепи измеряется вольтметром, который подключается параллельно к тому участку или прибору, на котором нужно узнать разность потенциалов или напряжения;
- на деревянной изолирующей подставке — устройство, имеющее провода с различными значениями сопротивления;
- значение тока можно регулировать реостатом.
Рис. \(1\). Цепь с возможностью выбора проводника
Определим физические параметры (величины), влияющие на значение сопротивления проводника.
Эксперимент \(1\). Физическая величина — длина (прямая пропорциональность).
Эксперимент \(2\). Физическая величина — площадь поперечного сечения (обратная пропорциональность).
Эксперимент \(3\). Материал проводника, физическая величина — удельное сопротивление проводника (прямая пропорциональность).
Примечание: «эксперимент» следует понимать как включение в электрическую цепь проводников с конкретными одинаковыми и различающимися физическими параметрами и сравнение значений сопротивлений данных проводников.
Впервые зависимость сопротивления проводника от вещества, из которого он изготовлен, и от длины проводника обнаружил немецкий физик Георг Ом. Он установил:
Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причём у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход её в другой сосуд по толстой трубке произойдёт гораздо быстрее, чем по тонкой, т. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. первый оказывает ему меньшее сопротивление, чем второй.
Удельное сопротивление проводника зависит от строения вещества. Электроны при движении внутри металлов взаимодействуют с атомами (ионами), находящимися в узлах кристаллической решётки. Чем выше температура вещества, тем сильнее колеблются атомы и тем больше удельное сопротивление проводников.
В таблице приведены значения удельного сопротивления некоторых веществ при \(20\) °С.
При проводке электрических цепей, например, в квартирах не используют серебро, т. это дорого. Зато используют медь и алюминий, так как эти вещества обладают малым удельным сопротивлением. Порой необходимы приборы, сопротивление которых должно быть большим. В этом случаем необходимо использовать вещество или сплав с большим удельным сопротивлением. Например, нихром.
Очень часто нам приходится изменять силу тока в цепи. Иногда мы ее увеличиваем, иногда уменьшаем. Водитель трамвая или троллейбуса изменяет силу тока в электродвигателе, тем самым увеличивая или уменьшая скорость транспорта.
Реостат на рисунке состоит из провода с большим удельным сопротивлением (никелин, нихром), по которому передвигается подвижный контакт \(C\) по длине провода, плавно изменяя сопротивление реостата. Сопротивление такого реостата пропорционально длине провода между подвижным контактом \(C\) и неподвижным \(A\). Чем длиннее провод, тем больше сопротивление участка цепи и меньше сила тока. С помощью вольтметра и амперметра можно проследить эту зависимость.
Рис. \(2\). Реостат с подвижным контактом
На школьных лабораторных занятиях используют переменное сопротивление — ползунковый реостат.
Рис. \(3\). Ползунковый реостат
Он состоит из изолирующего керамического цилиндра, на который намотан провод с большим удельным сопротивлением. Витки проволоки должны быть изолированы друг от друга, поэтому либо проволоку обрабатывают графитом, либо оставляют на проволоке слой окалины. Сверху над проволочной обмоткой закреплен металлический стержень, по которому перемещается ползунок. Контакты ползунка плотно прижаты в виткам и при движении изолирующий слой графиты или окалины стирается, и тогда электрический ток может проходить от витков проволоки к ползунку, через него подводиться к стержню, имеющему на конце зажим \(1\).
Для соединения реостата в цепь используют зажим \(1\) и зажим \(2\). Ток, поступая через зажим \(2\), идёт по никелиновой проволоке и через ползунок подаётся на зажим \(1\). Перемещая ползунок от \(2\) к \(1\), можно увеличивать длину провода, в котором течёт ток, а значит, и сопротивление реостата.
Как и любой электрический прибор, реостат имеет допустимое значение силы тока, свыше которого прибор может перегореть. Маркировка реостата содержит диапазон его сопротивления и максимальное допустимое значение силы тока.
Существуют реостаты, в которых переключатель подключается на проводники заданной длины и сопротивления: каждая спираль реостата имеет определённое сопротивление. Поэтому плавно изменять силу тока с помощью такого прибора не получится.
Рис. \(4\). Реостат с переключением