«Работа и мощность электрического тока»
Работа и мощность электрического тока. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу. В результате электрическая энергия превращается в другие виды энергии: внутреннюю, механическую, энергию магнитного поля…
Как было рассказано ранее, напряжение (U) на участке цепи равно отношению работы (F), совершаемой при перемещении электрического заряда (q) на этом участке, к заряду: U = A/q. Отсюда А = qU.
Поскольку заряд равен произведению силы тока (I) и времени (t) q = It, то А = IUt. То есть работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.
Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы. Однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.
Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: А = U2t/R или А = I2Rt.
Мощность электрического тока
Мощность электрического тока равна отношению работы ко времени, за которое она совершена: Р = A/t или Р = IUt/t => Р = IU. То есть мощность электрического тока равна произведению напряжения и силы тока в цепи.
Используя закон Ома, можно получить другие формулы для расчета мощности тока: Р = U2P/R = I2R.
Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра. Но можно для измерения мощности использовать специальный прибор — ваттметр. В нем объединены амперметр и вольтметр.
Конспект урока «Работа и мощность электрического тока».
Следующая тема: «Закон Джоуля-Ленца».
Мощность электрического тока расчет и формулы
Для вычисления мощности тока в ваттах, силу тока в амперах умножаем на напряжение в вольтах. Обозначить мощность электрического тока латинским символом P, то приведенное выше правило можно записать в виде математической формулы P = I × U (1).
Воспользуемся этой формулой на практике. Необходимо вычислить, какая мощность электрического тока требуется для накала нити лампы, если напряжение накала равно 4 в, а ток накала 75 мА. Р= 0,075 А × 4 В = 0,3 Вт Мощность электрического тока можно определить и другим способом. Например, нам известны сила тока и сопротивление цепи, а напряжение величина неизвестная, тогда мы воспользуемся соотношением из закона Ома: U=I × R Подставим правую часть формулы (1) IR вместо напряжения U. P = I× U = I×IR или Р = I2×R.
Рассмотрим пример расчета: какая мощность теряется в реостате сопротивлением в 5 Ом, если через него идет ток, силой 0,5 А. Пользуясь формулой (2), вычислим:. P= I2 × R = 0,52×5 =0,25×5 = 1,25 Вт. Кроме того, мощность электрического тока можно рассчитать если известны напряжение и сопротивление, а сила тока величина неизвестна.
Для этого вместо силы тока I в формулу подставляется отношение U/R и тогда формула приобретает следующий вид: Р = I × U=U2/R (3) Разберем очередной практический пример с использованием этой формулы, при 2,5 вольта падения напряжения на реостате сопротивлением в 5 Ом поглощаемая реостатом мощность будет определяться: Р = U2/R=(2,5)2/5=1,25 Вт; Выводы: Для нахождения мощности необходимо знать любые две из величин, из закона Ома. Мощность электрического тока равна работе тока, производимой в течение времени. P = A/t
Работа электрического тока
Проходя по цепи, ток совершает работу. Как например, водный поток направить течь, на лопасти генератора, то пон будет совершать работу, вращая лопасти. Так же и ток совершает работу, двигаясь по проводнику. И эта работа тем выше, чем больше величина сила тока и напряжения. Работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока, напряжению и времени действия тока. Работа электрического тока обозначается латинским символом A. Так как, произведение I×U есть мощность, то формулу работы электрического тока можно записать: A = P×t
Единицей измерения работы электрического тока, является ватт в секундах или в джоулях. Поэтому, если мы хотим вычислить, какую работу осуществил ток, идя по цепи в течение временного интервала, мы должны умножить мощность на время Рассмотрим практический пример, через реостат с сопротивлением 5 Ом идет ток силой 0,5 А. Нужно вычислить, какую работу совершит ток в течение четырех часов. Работа в течение одной секунды будет: P=I2R = 0,52×5= 0,25×5 =1,25 Вт,
Тогда за 4 часа t=14400 секунд. Следовательно: А = Р×t= 1,25×14 400= 18 000 вт-сек. Ватт-секунда или один джоуль считаетсяя слишком малой велечиной для измерения работы. Поэтому на практике применяют единицу, называемую ватт-час (втч). Один ватт-час это эквивалентно 3 600 Дж. В электротехнике используются и еще большие единицы, гектоваттчас (гвтч) и киловаттчас (квтч): 1 квтч =10 гвтч =1000 втч = 3600000 Дж, 1 гвтч =100 втч = 360 000 Дж, 1 втч = 3 600 Дж.
Как рассчитать сопротивление и мощность
Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом. На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.
Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой Р=24х0,5=12 Вт.
Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит. Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.
Интересно почитать: все о законе Ома.
Мощность тока
Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.
Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т. ) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).
Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».
Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.
Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).
Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.
Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.
Что такое мощность электрического тока
Каждое физическое действие совершается под действием силы. С его помощью проложен определенный путь, значит работа сделана. С другой стороны, работа A, выполненная в данный момент времени t, будет значением мощности, выраженным формулой: N = A / t (W = Дж / с).
Другое понятие мощности связано со скоростью преобразования энергии конкретной системы. Одним из таких преобразований является сила электрического тока, с помощью которой также выполняется множество различных работ. Сначала его подключают к электродвигателям и другим устройствам, совершающим полезные действия.
Из приведенной формулы силы тока видно, что мощность одинаково зависит от силы тока и напряжения. Отсюда следует, что одинаковое значение этого параметра может быть получено за счет большого тока и низкого напряжения и, наоборот, при высоком напряжении и малом токе.
Эта функция позволяет передавать электроэнергию на большие расстояния от источника к потребителям. Во время передачи ток преобразуется с помощью трансформаторов, установленных на подъемных и нисходящих подстанциях.
Есть два основных типа электроэнергии — активная и реактивная. В первом случае происходит необратимое преобразование мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Единицей измерения для этого является ватт. 1 Вт = 1 В x 1 А. Более высокие значения — киловатты и мегаватты — используются в производстве и в повседневной жизни.
Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q — реактивная мощность, измеренная в Вар (реактивный вольт-ампер). Эти расчеты помогают эффективно решить вопрос о том, как найти мощность электрического тока, а существующая для этого формула позволяет быстро выполнять расчеты.
Обе силы можно ясно увидеть на простом примере. Для изготовления нагревательных элементов трубчатого электронагревателя (ТЭНа) используется материал с высоким сопротивлением. Когда через него протекает ток, все электричество преобразуется в тепло. Этот пример очень точно показывает активную электрическую мощность.
Конденсаторы обладают такими же свойствами из-за их электрической емкости при возврате накопленного заряда. Здесь также значения тока и напряжения изменяются, только в противоположном направлении. Эта энергия индуктивности и емкости со сдвигом фаз по отношению к значениям тока сети и есть реактивная электрическая мощность.
Из-за противоположного влияния индуктивности и емкости по отношению к фазовому сдвигу может выполняться компенсация реактивной мощности, тем самым повышая эффективность и качество источника питания.
От чего зависит мощность тока
Сила тока, различных устройств и оборудования, зависит сразу от двух основных величин — тока и напряжения. Чем выше ток, тем выше значение мощности, либо с увеличением напряжения мощность также увеличивается. Если напряжение и ток увеличиваются одновременно, мощность электрического тока увеличивается как произведение обеих величин: N = I x U.
Очень часто возникает вопрос, а какая измеренная текущая мощность? Базовая единица измерения этой величины — 1 ватт (Вт). Таким образом, 1 ватт — это мощность устройства, потребляющего 1 ампер при 1 вольт. Лампочка от обычного фонарика, например, имеет аналогичную мощность.
Расчетное значение мощности позволяет точно определить потребляемую мощность. Для этого нужно взять продукт силы и времени. Сама формула выглядит так: W = IUt, где W — потребление энергии, IU продукта — мощность, а t — количество затраченного времени. Например, чем больше продолжает работать электродвигатель, тем больше работы он выполняет. Соответственно увеличивается и потребление электроэнергии.
Как определить мощность тока
Чтобы рассчитать ток в ваттах, умножьте ток в амперах на напряжение в вольтах. Сила электрического тока обозначается латинским символом P, тогда приведенное выше правило можно записать в виде математической формулы P = I × U (1).
Воспользуемся этой формулой на практике. Необходимо рассчитать, сколько электрического тока необходимо для нагрева нити накала, если напряжение нити составляет 4 В, а ток нити — 75 мА. P = 0,075 А × 4 В = 0,3 Вт.
Мощность электрического тока можно определить и другим способом. Например, мы знаем силу тока и сопротивление цепи, но неизвестно напряжение, тогда воспользуемся соотношением из закона Ома: U = I × R Подставим правую часть формулы (1) IR вместо напряжения U.
Рассмотрим пример расчета: какая мощность теряется в реостате с сопротивлением 5 Ом, если через него протекает ток 0,5 А. По формуле (2) вычисляем: P = I² × R = 0,25 × 5 = 1,25 Вт. Кроме того, мощность электрического тока может быть рассчитана, если напряжение и сопротивление известны, но величина тока неизвестна.
Для этого вместо текущего I в формуле заменяется соотношение U / R, и тогда формула принимает следующий вид: P = I × U = U² / R (3).
Разберем еще один практический пример по формуле. При падении напряжения 2,5 В на реостате с сопротивлением 5 Ом определяют мощность, потребляемую реостатом: P = U² / R = (2,5)²/5 = 1,25 Вт.
Выводы: чтобы найти мощность, вам нужно знать любые две величины из закона Ома. Мощность электрического тока равна части тока, генерируемой с течением времени. P = A / t
Формулы расчета мощности для однофазной и трехфазной схемы питания
В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.
Как работает резистор
У полностью резистивного резистора синусоиды тока и напряжения совпадают и направляются на каждый полупериод одинаковым образом. Поэтому их продукт, выражающий силу, всегда положителен.
Его значение в любой момент времени t называется мгновенным и обозначается строчной буквой p.
Среднее значение мощности за один период называется активной составляющей. Его график переменного тока имеет симметричный пакетный образец с максимальным значением Pm в центре каждого полупериода T / 2.
Его площадь равна двум областям графиков активных составляющих любого полупериода. Если вы посмотрите на картинку повнимательнее, вы можете представить, что верхняя часть шприца срезана, перевернута и заполняет свободное пространство внизу.
Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока рассчитывается по одной и той же формуле, она не меняет своего знака.
График текущих значений активной мощности переменного тока на резисторе имеет вид повторяющихся положительных волн. Но за один период они выполняют ту же работу, что и с цепями постоянного тока и напряжениями.
На резисторе не возникает никаких реактивных потерь.
Как работает индуктивность
Катушка обмотки накапливает энергию магнитного поля своими витками. Из-за процесса его накопления индуктивное реактивное сопротивление сдвигает вектор тока вперед на 90 градусов по отношению к напряжению, приложенному к комплексной плоскости.
Частота изменения мощности на индуктивности вдвое превышает частоту ее составляющих: синусоид тока и напряжения. Он состоит из двух частей:
- активный, отмечен индексом PL;
- реактивный КЖ.
Реактивная часть индуктора образуется за счет постоянного обмена энергией между катушкой и используемым источником. На его значение влияет значение индуктивного сопротивления XL.
Как работает конденсатор
Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.
График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.
Как работает схема трехфазного электроснабжения
На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение, вырабатываемое промышленными генераторами.
Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:
Если пометить фазное выражение буквой ф. например Pф, то можно записать:
Аналогично будет вычисляться реактивная составляющая
Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.
Как учитывается трехфазная полная мощность
В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.
С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.
Примеры решения задач
По вышеуказанным причинам при расчете работы электрического тока время намного удобнее выражать в часах. Сама же работа часто выражается в следующих единицах: $ватт \cdot час$ ($Вт \cdot ч$), $гектоватт \cdot час$ ($гВт \cdot ч$), $киловатт \cdot час$ ($кВт \cdot ч$).
$1 \space Вт \cdot ч = 3600 \space Дж$,$1 \space гВт \cdot ч = 100 \space Вт \cdot ч = 360 \space 000 \space Дж$,$1 \space кВт \cdot ч = 1000 \space Вт \cdot ч = 3 \space 600 \space 000 \space Дж$.
Снятие показаний счетчика и расчет потребляемой энергии
Каждый месяц люди платят за «электричество». То есть за использованную электроэнергию в течение месяца, которая определяется совершенной работой электрического тока.
Сумма платежа рассчитывается исходя из показаний счетчика и действующего тарифа на электроэнергию.
В начале нового месяца фиксируются показания счетчика (рисунок 1, а). В конце месяца эти показания фиксируются еще раз (рисунок 1, б). Обратите внимание, что обычно последнее число, показанное на счетчике, — это десятые доли $кВт \cdot ч$. Эта последняя цифра может быть выделена цветной рамкой, или перед ней будет стоять точка.
Разница между этими показаниями — это и есть израсходованная за месяц электроэнергия. Она же эквивалентна работе электрического тока, совершенной во всех электроприборах за месяц. Рассчитаем ее:$A = 11706. 6 \space кВт \cdot ч \space — \space 10982. 6 \space кВт \cdot ч = 724 \space кВт \cdot ч$.
Действующий тариф (стоимость $1 \space кВт \cdot ч$) указывается в квитанциях на оплату. Он может различаться в зависимости от страны или ее региона.
Чтобы рассчитать стоимость потребленной энергии, нужно тариф умножить на количество (численное значение) этой энергии:$Стоимость = Тариф \cdot A$.
Пример задачи
Электрическая лампа рассчитана на ток мощностью $100 \space Вт$. Ежедневно лампа горит в течение $6 \space ч$. Найдите работу тока за один месяц (30 дней) и стоимость израсходованной энергии, считая, что тариф составляет 300 копеек за $1 \space кВт \cdot ч$.
$A — ?$$Стоимость — ?$
Работу электрического тока рассчитаем по формуле: $A = Pt$. $A = 100 \space Вт \cdot 180 \space ч = 18 \space 000 Вт \cdot ч = 18 \space кВт \cdot ч$.
Ответ: $A = 18 \space кВт \cdot ч$, $стоимость = 54 \space рубля$.
Упражнения
Дано:$P = 0. 6 \space кВт$$t = 1. 5 \space ч$
$A — ?$
Показать решение и ответ
$Стоимость — ?$
Показать решение и ответ
$Стоимость — ?$
Показать решение и ответ
Единицы измерения
Любая физическая величина, которая может быть превращена в энергию, будет измеряться в Джоулях (Дж). 1 Джоуль равен работе при перемещении точки, к которой приложена сила, равная 1 Ньютону, умноженному на Путь в 1 метр. Получается, что 1 Дж = 1 Н · 1 м.
Единица измерения мощности — это Ватт (Вт). Он равен работе 1 Дж, совершенной за единицу времени в 1 с. Таким образом, 1 Вт = 1 Дж : 1 с
Единица измерения мощности
Формула вычисления
В 1841 году английский ученый Джеймс Джоуль сформулировал закон для нахождения количественной меры теплового воздействия электрического тока. В 1842 году этот же закон был также открыт русским физиком Эмилием Ленцем. Из-за этого он получил двойное название закона Джоуля-Ленца. В общем виде закон записывается следующим образом: Q = I² • R • t.
Он имеет достаточно обобщенный характер, так как не имеет зависимости от природных сил, генерирующих ток. Сегодня этот закон активно применяется в быту. Например, для определения степени нагрева вольфрамовой нити, используемой в лампочках.
Закон Джоуля-Ленца определяет количество теплоты, выделяемое током. Но, тем не менее, это поможет узнать, по каким формулам вычисляется работа электрического поля. Всё потому, что она впоследствии проявляется в виде нагревания проводника. Это говорит о том, что работа тока равна теплоте нагревания проводника (A=Q). Работа эл тока, формула: А= I² • R • t. Это не единственная формула для нахождения работы. Если использовать закон Ома для участка цепи (I=U:R), то можно вывести еще две формулы: А=I•U•t или A=U²:R.
Вам это будет интересно Ручные пресс клещи Портреты Джоуля и Ленца
Общая формула для того, чтобы вычислять мощность, заключается в ее прямой пропорциональности работе и обратной зависимости от времени (P=A:t). Если говорить о мощности в электрическом поле, то исходя из предыдущих формул, можно составить целых три: Р= I² • R; Р=I•U; Р=U²:R.
Закон Ома для участка цепи
Интерпретация закона сохранения энергии. Закон Джоуля-Ленца
Закон Ома для однородного участка цепи при сопротивлении R отражает формула:
Умножим обе части выражения на IΔt и получим соотношение:
Полученный результат является выражением закона сохранения энергии для однородного участка цепи.
Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.
Данный закон называется законом Джоуля-Ленца.
Закон носит название сразу двух известных физиков, поскольку экспериментальным путем был установлен ими обоими в независимости друг от друга.
Мощность электрического тока есть отношение работы тока ΔA к интервалу времени Δt, за которое эта работа была произведена.
Можно сказать проще: мощность – это работа, выполненная в единицу времени. Запишем формулу, связывающую работу тока и его мощность:
Работу электрического тока выражают в джоулях (Дж), мощность тока измеряется в ваттах (Вт), время – в секундах (с): 1 Вт=1 Дж1 с. Измерение мощности тока происходит при помощи ваттметра, а работа находится расчетно как результат перемножения силы тока, напряжения и времени протекания тока по цепи: A=IUt.
Следующей разберем полную цепь постоянного тока, включающую в себя источник с электродвижущей силой δ и внутренним сопротивлением rи внешний однородный участок с сопротивлением R.
Закон Ома для полной цепи выглядит так:
Нужна помощь преподавателя?Опиши задание — и наши эксперты тебе помогут!Описать задание
Перемножим обе части выражения с Δq=IΔt и получим соотношение, которое будет служить выражением закона сохранения энергии для полной цепи постоянного тока:
Левая часть выражения содержит ΔQ=RI2Δt(тепло, которое выделяется на внешнем участке цепи за время Δt) и ΔQист=rI2Δt (тепло, которое выделяется внутри источника за такое же время).
Выражение δIΔt является равным работе сторонних сил ΔAст, которые действуют внутри источника.
При протекании электрического тока по замкнутой цепи происходит преобразование работы сторонних сил ΔAст в тепло, которое выделяется во внешней цепи (ΔQ) и внутри источника (ΔQист).
Необходимо отметить следующий факт: в указанное соотношение не включена работа электрического поля. Когда ток проходит по замкнутой цепи, электрическое поле работы не совершает; значит тепло производится лишь посредством сторонних сил, которые действуют внутри источника. Электрическое поле здесь выполняет перераспределение тепла между различными участками цепи.
Внешней цепью может служить не только проводник с сопротивлением R, но и какое-то устройство, которое потребляет мощность, к примеру, электродвигатель постоянного тока. Тогда R необходимо расценивать как эквивалентное сопротивление нагрузки. Энергия, которая выделится во внешней цепи, имеет возможность частично или полностью преобразоваться как в тепло, так и в иные виды энергии, к примеру, в механическую работу, совершаемую электродвигателем. Таким образом, тема использования энергии источника тока имеет важное практическое значение.
Работа, мощность и тепловое действие электрического тока
Работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа. Единицей работы является джоуль (1 Дж).
Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.
Полная мощность — величина, равная произведению действующих значений периодического электрического тока.
Под тепловым действием электрического тока понимают выделение тепловой энергии в процессе прохождения тока по проводнику. Когда через проводник проходит ток, образующие ток свободные электроны сталкиваются с ионами и атомами проводника, нагревая его
Работа электрического тока
Выясним, как вычисляется работа тока в электрической цепи.
Полную работу тока на участке цепи, который является потребителем, можно найти по формуле (15. 10):
где — напряжение на участке цепи, а — заряд, перенесенный через поперечное сечение проводника за время прохождения тока. Так как , то
Поскольку напряжение и ток на участке цепи можно измерить вольтметром и амперметром, формула (17. 1) удобна на практике для вычисления полной работы тока. По этой формуле работу можно вычислить независимо от того, в какой вид энергии превращается электрическая энергия на рассматриваемом участке цепи.
Когда вся электрическая энергия превращается во внутреннюю энергию (т. затрачивается на нагревание участка цепи), справедлива формула (16. 11):. Подставляя это выражение в (17. 1), получим другую формулу для вычисления работы тока на участке цепи без э
Поскольку , формулу (17. 1) можно записать еще следующим образом:
Итак, при вычислении работы тока на участке цепи без э. можно пользоваться любой из формул (17. 1) — (17.
Рассмотрим теперь участок цепи с э. Вспомним, что когда у потребителя имеется противо-э. , то электрическая энергия частично превращается во внутреннюю энергию и частично — в другие виды энергии. Электрическая энергия, израсходованная в этом случае, вычисляется по формуле (17. Остается установить, как подсчитать количество электрической энергии, которое превратилось во внутреннюю энергию на таком участке цепи.
Поскольку падение напряжения показывает, какое количество электрической энергии превратилось во внутреннюю энергию участка цепи при прохождении единичного заряда, то, если по участку цепи пройдет заряд , увеличение внутренней энергии участка будет равно , но поскольку , получаем. Таким образом, работа тока, определяющая электрическую энергию, которая затрачивается на тепловое действие в данном участке цепи, выражается формулой (17. 3):
Заметим, что эта формула справедлива для любого участка цепи, в том числе и для генератора.
Работа сторонних сил в генераторе, которой оценивают полученное в нем количество электрической энергии засчет других видов энергии, находится из соотношения (16. Так как , получаем
Формулу (17. 4) можно применять и к потребителю. В этом случае обозначает противо-э. , а работа А определяет, какое количество электрической энергии превратилось в механическую или химическую энергию.
Напомним, что при вычислениях в СИ работа получается в джоулях (ватт-секундах). Однако в электротехнике работу обычно выражают в ватт-часах или в киловатт-часах:
Поскольку час содержит 3,6. 103 с, то для вычисления работы тока в ватт-часах достаточно подставлять в приведенные выше формулы время в часах (вместо секунд). Заметим, что прибор для измерения работы тока называют электрическим счетчиком, а стоимость единицы работы тока — тарифом. Например, для населения Москвы тариф составляет 4 коп. (или 2 коп. ) за 1 кВт-ч.
Мощность электрического тока
Вспомним, что мощностью называют величину, характеризующую скорость выполнения работы. Мощность тока на участке цепи измеряют работой тока за единицу времени. Поскольку в электротехнике мощность принято обозначать Р, имеем
Единицей мощности в СИ является ватт: 1 Вт=1 Дж/с.
Подставляя в (17. 5) значения А из формул предыдущего параграфа, получим формулы для вычисления мощности в электрических цепях. Мощность тока на участке цепи без э. можно вычислять по любой из следующих формул (при расчетах надо выбирать ту из них, которая удобнее для рассматриваемого случая):
Когда потребитель имеет э. , формула
дает полную мощность тока, а формула
дает мощность тока, затрачиваемую на тепловое действие. Формула
позволяет определить мощность тока, затраченную на получение других видов энергии, кроме внутренней. Для генератора формула (17. 9) определяет мощность, затраченную на получение электрической энергии в генераторе.
При расчетах следует помнить, что мощность тока во всей внешней цепи при любом соединении равна сумме мощностей на отдельных участках цепи. Отметим, что мощность тока в подводящих проводах часто называют потерей мощности.
Тепловое действие электрического тока
Закон Джоуля — Ленца. Тепловое действие тока на опытах было изучено английским ученым Дж. Джоулем и русским физиком Э. Ленцем. Количество тепла, выделенного током в проводнике, равно работе электрического поля по преодолению сопротивления проводника:
Формула (17. 10) является математическим выражением закона Джоуля — Ленца: количество тепла, выделенного током в проводнике, прямо пропорционально сопротивлению проводника, квадрату силы тока и времени его прохождения. Заметим еще раз, что формула (17. 10) позволяет вычислять количество теплоты, выделенной током в любом участке цепи с сопротивлением.
При последовательном соединении проводников с сопротивлениями и (рис. 1, а) количество выделенного в них тепла можно выразить следующим образом:
откуда вытекает, что
Следовательно, количество теплоты, выделенной током в каждом проводнике при последовательном соединении, прямо пропорционально сопротивлению этих проводников.
При параллельном соединении двух участков цепи без э. С сопротивлениями и (рис. 1,б) количество тела, выделенного током в каждом участке в отдельности, равно
Количество теплоты, выделенной током в параллельно соединенных участках цепи без э. , обратно пропорционально сопротивлению этих участков.
Из (17. 11) и (17. 12) видно, что при последовательном соединении большее количество теплоты выделяется в проводнике с большим сопротивлением, а при параллельном соединении — с меньшим.
Определение работы электротока
Работа как таковая представляет собой величину, описывающую переход энергии в другую форму. К примеру, когда некоторый предмет движется, он обладает кинетической энергией. После того, как движение прекращается, а предмет поднимается на определенную высоту, можно говорить о переходе энергии в потенциальную форму.
Когда электрические заряды перемещаются в цепи по проводниковому материалу, их движение инициируется электрополем, поэтому можно говорить о том, что рабочая нагрузка лежит на последнем. Таким образом, работа электрического тока – величина, характеризующая трансформацию электроэнергии в иные разновидности, например, механическую энергию или тепло. В формульных представлениях величина обозначается заглавной латинской литерой А.
Важно! Работа эл тока по модулю равна произведению периода времени, в течение которого она совершалась, на значение токовой силы и на напряжение на концах фрагмента электроцепи. Когда любой из компонентов произведения растет или понижается, в этом же направлении изменится и рабочий показатель. Сама величина показывает, какое количество электрической энергии претерпело трансформацию в другие ее виды за определенный промежуток времени.
Преобразование переменного тока в постоянный
Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”. Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.
История открытия переменного тока
Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.
Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.
Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.
Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.
Школьный вариант трактовки переменного и постоянного тока
Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природные двух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:
- Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть – замалчивает работы с переменным током. Подобно Георгу Ому, ученый – талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
- Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.
Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.
Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.
Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.
Никола Тесла изучал электрические машины
Вопросы безопасности и эффективности
Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.
Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:
- Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
- В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.
Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.
Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.
ПОСТОЯННЫЙ ТОК
Электрический ток — это упорядоченное движение заряженных частиц (электронов и ионов). За направление тока условно принято направление движения положительных зарядов, т. от « + » к « — ».
Условия, необходимые для существования электрического тока:
- Наличие свободных заряженных частиц;
- Наличие электрического поля, действующего на заряженные частицы с силой в определённом направлении;
- Наличие замкнутой электрической цепи.
- Тепловое: проводник по которому течет ток нагревается.
- Химическое: электрический ток может изменять химический состав проводника (электролита).
- Магнитное: ток оказывает силовое воздействие на соседние токи и намагниченные тела. Вокруг проводника с током существует магнитное поле.
Электродвижущая сила
Если два заряженных тела соединить проводником, то через него пойдет кратковременный ток. Избыточные электроны с отрицательно заряженного тела перейдут на положительно заряженное. Потенциалы тел окажутся одинаковыми, значит, напряжение на концах проводника станет равно нулю, и ток прекратится. Для существования длительного тока в проводнике нужно поддерживать разность потенциалов на его концах неизменной. Этого можно достичь, перенося свободные электроны с положительного тела на отрицательное так, чтобы заряды тел не менялись со временем.
Силы электрического взаимодействия сами по себе не способны осуществлять подобное разделение зарядов. Они вызывают притяжение электронов к положительному телу и отталкивание от отрицательного. Поэтому внутри источника тока должны действовать сторонние силы, имеющие неэлектрическую природу и обеспечивающие разделение электрических зарядов.
Сторонние силы — любые силы, действующие на электрические заряженные частицы, за исключение сил, электростатического происхождения (т. кулоновских).
ЭДС – электродвижущая сила – физическая величина, определяемая работой , совершаемой сторонними силами при перемещении единичного положительного заряда от «+» полюса к «-» полюсу внутри источника тока. Является энергетической характеристикой источника тока.
Основные характеристики электрического тока (таблица)
Важным примером применения последовательного и параллельного соединения проводов являются различные схемы включения электроизмерительных приборов. Допустим, что имеется некоторый амперметр, рассчитанный на максимальный ток Imax, а требуется измерить большую силу тока. В этом случае параллельно к амперметру присоединяют малое сопротивление r, по которому направится большая часть тока. Его называют обычно шунтом. Сопротивление амперметра – R, и пусть R/r=n. Сила тока в цепи, амперметре и в шунте равны соответственно I, Iа и Iш
Параллельное присоединение шунта к измерительному прибору с целью изменения его чувствительности называют шунтированием. Схема шунтирования амперметра добавочным малым сопротивлением r.
Постоянный ток. Работа и мощность. Закон Джоуля – Ленца.
Работа электрического поля по перемещению заряда ∆ q из одной точки в другую равна произведению напряжения U между этими точками на величину заряда Dq: A=DqU
Учитывая, что Dq = IDt получаем: A= IUDt = I2RDt = Dt
При прохождении тока через проводник происходит его нагревание, значит электрическая энергия переходит в тепловую.
Закон Джоуля – Ленца гласит: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивлению проводника и времени.
Q = I2 • R • t – закон Джоуля — Ленца.
Закон открыт экспериментально независимо друг от друга Дж. Джоулем и Э. Ленцем. Q = А – по закону сохранения энергии.
Мощность электрического тока равна работе, которая совершается током за единицу времени.
Дополнительные материалы по теме
Конспект урока «Постоянный ток. Формулы и схемы».
Следующая тема: «Магнитное поле. Формулы и схемы».
Работа и мощность тока
Прежде чем перейти к решению задач, давайте разберемся с основными определениями данного раздела физики.
Работа электротока на участке цепи определяется произведением напряжения на концах этого участка, силы тока и времени, за которое эта работа была совершена. Физическая величина обозначается большой латинской буквой A и измеряется в Джоулях.
При прохождении электротока по однородному участку цепи, можно говорить о том, что электрическое поле на этом участке цепи совершает определенную работу.
Мощность электротока — это работа тока, совершенная за 1 единицу времени. Физическая величина обозначается символом P и измеряется в Ваттах.
Необходимые формулы
Чтобы рассчитать работу и мощность электротока, понадобятся следующие формулы:
Уравнение для вычисления работы тока:
где U — напряжение электрического поля, q — электрический заряд, проходящий по участку цепи.
\(A=U\times I\times t\)
где U — напряжение поля, I — сила тока на этом участке цепи, t — время прохождения заряда.
Формула для нахождения мощности тока:
где A — работа электротока, t — время.
где U — напряжение, I — сила тока.
\(Q=A=I^2\times R\times t\)
где R — сопротивление проводника.
Вопросы на работу и мощность электрического тока
Теоретические вопросы на работу и мощность электрического тока могут быть следующими:
- Что за физическая величина работа электрического тока? (Ответ дан в нашей статье выше).
- Что такое мощность электротока? (Ответ дан выше).
- Дайте определение закону Джоуля-Ленца. Ответ: Работа электротока, который течет по неподвижному проводнику, имеющему сопротивление R, превращается в тепло в проводнике.
- В чем измеряется работа тока? (Ответ выше).
- В чем измеряется мощность? (Ответ выше).
Это примерный список вопросов. Суть теоретических вопросов по физике всегда одна: проверить понимание физических процессов, зависимости одной величины от другой, знание формул и единиц измерения, принятых в международной системе СИ.
Задачи на Работу электрического тока с решениями
Формулы, используемые на уроках «Задачи на Работу электрического тока».
Название величины
Обозначение
Единица измерения
Формула
Сила тока
I = U / R
Напряжение
U = IR
Время
t = A / IU
Работа тока
A = IUt
1 мин = 60 с; 1 ч = 60 мин; 1 ч = 3600 с.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача № 1. Какую работу совершит электрический ток в электродвигателе вентилятора за 20 мин, если сила тока в цепи 0,2 А, а напряжение 12 В?
Задача № 2. Какую работу совершит электрический ток в паяльнике за 30 мин, если сопротивление паяльника 40 Ом, а сила тока в цепи 3 А?
Задача № 3. Сколько времени работал электродвигатель игрушечной машины, если при напряжении 12 В и силе тока 0,1 А электрический ток совершил работу 360 Дж?
Задача № 4. Рассчитайте расход энергии электрической лампой, включенной на 10 мин в сеть напряжением 127 В, если сила тока в лампе 0,5 А.
Задача № 5. По данным рисунка определите энергию, потребляемую лампой в течение 10 с. Как будет изменяться потребляемая лампой энергия, если ползунок реостата переместить вверх; вниз?
Краткая теория для решения Задачи на Работу электрического тока.
Это конспект по теме «ЗАДАЧИ на Работу электрического тока». Выберите дальнейшие действия:
- Перейти к теме: ЗАДАЧИ на Мощность электрического тока
- Посмотреть конспект по теме Работа и Мощность электрического тока
- Вернуться к списку конспектов по Физике.
- Проверить свои знания по Физике.