Принцип работы форсунки дизельного двигателя

На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (см. рисунок 2 внизу страницы).

Назначение форсунок и требования к ним

Форсунка служит для подачи топлива в цилиндр двигателя, распыления и распределения топлива по камерам сгорания.

Условия работы форсунок очень тяжелые – они подвержены воздействию колоссальных давлений и тепловых нагрузок. Впрыск начинается при температуре в камере сгорания 700…900 ˚С и давлении 3…6 МПа, а заканчивается при температуре до 2000 ˚С и давлении 10…11 МПа.

К форсункам предъявляются следующие очень жесткие требования:

Форсунки бывают открытые и закрытые.
Открытые форсунки обеспечивают постоянную подачу топлива. В современных дизелях такие форсунки не применяются.
В дизельных двигателях применяют закрытые форсунки, которые открываются только в момент подачи топлива в камеру сгорания.

Закрытые форсунки могут быть двух типов – одно- и многодырчатые. Первые устанавливают на двигателях с вихревыми камерами сгорания, вторые с неразделенными камерами сгорания.

К отдельной категории устройств для впрыска топлива в цилиндры относятся насос-форсунки, представляющие собой своеобразный гибрид между ТНВД и форсункой в одном узле.

История изобретения форсунки

Как известно, Рудольф Дизель изначально планировал работу своего знаменитого детища на угольной пыли. Его система питания содержала специальный насос, вдувавший угольную пыль в цилиндр двигателя сжатым воздухом. Однако, уголь оказался низкокалорийным топливом, не способным дать высокой температуры сгорания, и Дизелю пришлось обратить свой гениальный взор к жидким топливам. Ведь разница температур в цикле работы двигателя – прямой путь к повышению КПД, как установил француз Николя Сади Карно.

Идея гидравлического впрыска топлива в дизельных двигателях принадлежит, как утверждает история, французскому инженеру Сабатэ, который, к тому же, предложил многократный впрыск, т. е. впрыск, осуществляемый в несколько этапов (эта идея используется в современных системах питания — Common Rail и насос-форсунка).

В 1899 году русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой. Эти форсунки устанавливались на дизелях, выпускавшихся Механическим заводом «Людвиг Нобель» в Петербурге в начале прошлого века («русские дизели»).

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, а также создал удачную модификацию бескомпрессорной форсунки. Эти устройства с различными усовершенствованиями используются в системах питания дизельных двигателей и в наши дни.

Дизельные двигатели, использующие в системе питания повышение давления топлива перед впрыском, называют «бескомпрессорными дизелями».
В настоящее время классические компрессорные дизели не имеют практического применения. В современных двигателях впрыск осуществляется бескомпрессорными способами.

Однако, наука и техника не стоят на месте, и, благодаря широкой компьютеризации всех систем автомобиля, в настоящее время механические форсунки постепенно вытесняются более совершенными устройствами, управляемыми электроникой.

Принцип действия многодырчатой форсунки

При подаче топлива насосом сила давления топлива на поясок Г становится больше силы пружины, игла поднимается, и через сопло А с большой скоростью топливо впрыскивается в камеру сгорания. После окончания подачи топлива давление падает, пружина возвращает иглу на место, запирая выходные отверстия распылителя, и впрыск прекращается.

Подъем иглы ограничен упором ее верхних заплечиков в корпус 5 форсунки и составляет 0,2…0,25 мм.

Устройство многодырчатой форсунки

На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (см. рисунок 2 внизу страницы).

Устройство однодырчатой штифтовой форсунки

Однодырчатые форсунки иногда называют штифтовыми, поскольку конец ее иглы выполняется в виде штифта. Такие форсунки устанавливают, как правило, в дизелях с разделенными камерами сгорания.
Конструкция распылителя таких форсунок обеспечивает объемно-пленочное смесеобразование, поскольку распыливание топлива более направленное, чем в многодырочных форсунках, и значительная часть топлива достигает стенок камер сгорания, образуя быстро испаряющуюся пленку.

Дизели с вихревыми (раздельными) камерами сгорания менее чувствительны к составу топлива и устойчивее работают в широком диапазоне частот вращения. Применяемые с ними форсунки рассчитаны на меньшее давление, следовательно, не требуют столь высокой точности изготовления, как форсунки для неразделенными камерами сгорания, а потому дешевле.

На рис. 1,в показан распылитель штифтовой однодырчатой форсунки. Такая форсунка устанавливается в вихревых камерах сгорания и имеет одно сопло.
Конец иглы 2 выполнен в виде штифта 13 конусной формы, выступающего за пределы корпуса распылителя. Штифт служит для формирования факела топлива в виде конуса.
Принцип работы однодырчатых форсунок не отличается от принципа работы многодырчатых форсунок.

Устройство некоторых типов форсунок, применяемых на автотракторных дизельных двигателях отечественного производства приведено на рисунке 2.

  • топливный насос высокого давления ТНВД;
  • насос-форсунки сами сжимают и впрыскивают топливо;
  • в системах Cоmmon Rail давление топлива поддерживается постоянно в специальном «аккумуляторе» высокого давления;

Начнем с того, что большинство форсунок для дизеля (за исключением насос-форсунок и систем Cоmmon Rail) устроены и работают по схожему принципу. Это значит, что их ремонт также предполагает похожие действия. Для лучшего понимания начнем с принципов работы.

Подача топлива на форсунки в дизелях реализована посредством его нагнетания под высоким давлением. Такое давление на каждую форсунку создает:

  • топливный насос высокого давления ТНВД;
  • насос-форсунки сами сжимают и впрыскивают топливо;
  • в системах Cоmmon Rail давление топлива поддерживается постоянно в специальном «аккумуляторе» высокого давления;

Теперь давайте рассмотрим работу наиболее распространенной системы питания с обычным ТНВД. Если просто, такой насос имеет механический привод и вращается от двигателя. Вращение шкива ТНВД позволяет плунжерным парам в устройстве насоса сильно сжимать дизельное топливо и выдавать давление около 300 кг/см². Затем происходит распределение дизтоплива на форсунки, что соответствует тактам работы двигателя.

Топливо поступает от насоса по магистралям высокого давления к форсунке, установленной на каждом цилиндре, после чего проходит через отдельный канал и оказывается внутри дизельной форсунки (в полости распылителя). Внутри распылителя конструктивным элементом является специальная конусная игла. Такая игла форсунки снизу притирается к седлу с очень большой точностью. Сверху иглу прижимает пружина. Указанная пружина давит на иглу через отдельную шайбу.

Шайба может иметь разную толщину, что определяет степень давления пружины на иглу. По этой причине шайбу называют регулировочной, так как от давления пружины будет зависеть и давление топлива, от которого сработает игла форсунки.

Срабатывание иглы происходит в результате того, что внутри форсунки накапливается нагнетаемое ТНВД топливо. Если иначе, когда горючее доходит до конуса иглы, дальнейший проход солярки становится невозможным, так как канал перекрыт иглой, плотно прижимаемой к седлу усилием пружины.

Однако ТНВД продолжает работать и нагнетать топливо, происходит рост давления, которое в определенный момент становится сильнее давления пружины. В результате игла приподнимается, горючее проходит в пространство между седлом и конусом иглы, попадает под высоким давлением в отверстия распылителя и далее происходит впрыск распыленного топливного заряда.

Время впрыска зависит от того, когда давление топлива внутри форсунки понизится до такой степени, чтобы пружина снова прижала иглу к седлу. Получается, канал для выхода топлива перекрывается, давление снова начнет расти и процесс повторяется.

Синхронная работа всего механизма предполагает точный впрыск топлива в цилиндре, в котором поршень приближается к ВМТ. Следующий впрыск в этом цилиндре в заданный момент будет возможен только при условии того, что игла закроется своевременно, то есть сразу после того, как давление топлива упадет.

Неисправности, которые могут привести к проблемам закрытия иглы после впрыска, не позволяют растущему давлению топлива снова открыть иглу строго в момент приближения поршня в ВМТ. В результате момент впрыска нарушается, дизельный двигатель начинает троить, функционировать с перебоями и т.д.

Например, если впрыск произойдет раньше, процесс сгорания топлива в цилиндре нарушается, дизель громко и жестко работает. Более того, значительно усиливается износ не только ДВС, но и проблемной форсунки.

Дело в том, что через неплотно закрытое седло происходит прорыв газов, механизм разрушается, подвергается сильному загрязнению от скопления нагара. На начальном этапе нагар удаляют путем промывки форсунок дизельного двигателя, то есть без ремонта.

При этом важно понимать, что нагарообразование является не причиной, а только результатом неполадок внутри самой форсунки. Другими словами, необходимо решать проблему точного срабатывания иглы, усилия пружины и эффективного перекрытия седла.

Однако форсунки инжекторных бензиновых моторах работают под относительно небольшим давлением в единицы атмосфер, в то время как форсунки дизельных двигателей работают под давлением в сотни, а иногда и в тысячи атмосфер.

Пьезоэлектрические форсунки — наиболее современное и надежное решение, которое сегодня находит все более широкое применение на дизельных двигателях с системой впрыска Common Rail. В целом принцип действия этой форсунки повторяет принцип, заложенный в форсунках электрогидравлического типа, однако в ней клапан, открывающий путь топливу из верхней камеры в сливную магистраль, срабатывает под действием пьезоэлектрического кристалла.

Как известно, в ряде кристаллов наблюдается пьезоэлектрический эффект — под воздействием внешней силы они деформируются с образованием электрического заряда. Такие кристаллы подвержены и обратному эффекту — под действием электричества они деформируются, изменяя свои размеры. В пьезоэлектрических форсунках используются кристаллы, которые при подаче напряжения увеличивают свою длину и толкают собой поршень клапана, выпускающего топливо из верхней камеры в сливную магистраль.

Большое преимущество пьезоэлектрических форсунок — их быстродействие. Изменение длины кристалла и открытие клапана в них происходит в среднем в 4 раза быстрее, чем открытие клапана электромагнитного типа. Это открыло путь к реализации многократного впрыска за один такт, что улучшает характеристики двигателя. В современных дизельных моторах впрыск может производиться до девяти раз за один такт.

Форсунки для дизельных двигателей – это детали топливной аппаратуры, которые наиболее подвержены износу. Считаются самыми простыми в обслуживании и проведении диагностики в условиях сервисных центров. От того, насколько эффективно работают форсунки, зависит качество сгорания топлива в цилиндрах двигателя, его запуск, динамика разгона автомобиля, экономичность и количество вредных выбросов.

Принцип работы форсунки дизельного двигателя – кратко о сложном

Работает насос-форсунка в импульсном режиме, что позволяет перед основным впрыском произвести предварительную подачу топлива. В результате чего значительно смягчается работа двигателя и снижается уровень токсичных выбросов.

Топливные форсунки в большинстве случаев нуждаются в простом уходе, чаще всего, для того чтобы вернуть их в рабочее состояние, достаточно просто их очистить и промыть. Независимо от того, сколько форсунок в двигателе, случается, что при резком нажатии на педаль газа ощущаются рывки и провалы или ощутимо снижается мощность, мотор начинает неустойчиво работать на низких оборотах, значит, произошла закупорка каналов форсунки твердыми смолянистыми отложениями. Что же делать?

Работа форсунки COMMON RAIL

Работа форсунки COMMON RAIL

a — форсунка закрыта,
b — форсунка открыта (впрыск);
1 — возврат топлива, 2 — электрические выводы, 3 — электромагнитный клапан, 4 — вход топлива из аккумулятора, 5 — шариковый клапан, 6 — жиклер камеры гидроуправления, 7 — «питающий» жиклер, 8 — камера гидроуправления, 9 — управляющий плунжер, 10 — канал к распылителю, 11 — игла форсунки.

Работа форсунки может быть разделена на четыре рабочих стадии при работающем двигателе и создании высокого давления ТНВД:

• Форсунка закрыта с приложенным высоким давлением;
• Форсунка открывается (начало впрыска);
• Форсунка полностью открыта;
• Форсунка закрывается (конец впрыска).

Эти рабочие стадии являются результатом действия сил, приложенных к деталям форсунки. При остановленном двигателе и отсутствии давления в аккумуляторе форсунка закрыта под действием пружины.

Форсунка закрыта — При закрытой форсунке питание на электромагнитный клапан не подается (рис. a). При закрытом жиклере камеры гидроуправления пружина якоря прижимает шарик к седлу, высокое давление, подаваемое в камеру и к распылителю форсунки из аккумулятора, увеличивается. Таким образом, высокое давление, действующее на торец управляющего плунжера, вместе с усилием пружины держат форсунку закрытой, преодолевая силы давления в камере распылителя.

В первом случае игла форсунки перекрывает подачу горючего путем перекрытия каждого отверстия. Второй тип форсунок означает, что игла перекрывает своеобразную камеру в нижней части распылителя.

Инжектор с двумя пружинами

На эффективность топливоподачи и последующего сгорания топлива в цилиндрах дизеля можно влиять, изменяя различные характеристики форсунки, такие как структура и количество каналов распылителя, усилие пружины и т.п. Одним из конструкторских решений стало внедрение в устройство форсунок специального датчика подъема иглы. Данный подъем учитывается специальными электронными блоками управления, которые взаимодействуют с ТНВД.

Такой подход позволил повысить равномерность, эффективность и полноценность сгорания смеси. Дизельный двигатель стал расходовать меньше горючего, снизилось количество токсичных примесей в выхлопных газах. Дизельные форсунки с двумя пружинами активно использовались на агрегатах с непосредственным впрыском топлива до момента появления систем питания под названием Commоn Rail.

3. пружина иглы распылителя

Все эти преимущества стали возможны благодаря использованию обратного пьезоэффекта в управлении форсункой, основанного на изменении размера пьезокристалла под действием напряжения.

Конструкция пьезоэлектрической форсунки схематично показана на рисунке:

1. игла распылителя

2. огнеупорная шайба

3. пружина иглы распылителя

4. блок дросселей

5. переключающий клапан

6. пружина клапана

7. поршень клапана

8. поршень толкателя

10. канал обратки

12. электрический разъем форсунки

13. канал подачи топлива

Как и в обыкновенной CR форсунке, пьезоэлектрической форсунке используется гидравлический принцип: В закрытом состоянии инжектора – игла остается посаженой на седло, за счет высокого давления. При поступлении с ЭБУ (блока управления) электрического сигнала на пьезоэлемент – увеличивается его длинна, открывая переключающий клапан. Топливо начинает сливаться в обратку – давление выше иглы падает и игла, под давлением в нижней части поднимается, производя впрыск дизельного топлива.

Количество впрыскиваемого топлива определяется двумя факторами: длительностью управляющего сигнала на пьезоэлемент и давлением топлива в рампе создаваемого наосом и регулируемого дозирующим клапаном.

В самое ближайшее время в 2015 году, в BOSCH Дизель Сервисах «БЕЛАВТОДИЗЕЛЬ», будет доступна возможность диагностики и восстановления пьезофорсунок BOSCH.

Зависимо от того или иного способа выполнения впрыска различают такие виды форсунок, как: электромагнитная, пьезоэлектрическая и электрогидравлическая.

  • Читайте также статью: Как промывать форсунки двигателя

Конструкция и принцип функционирования электромагнитной форсунки

Электромагнитное устройство такого плана, как правило, используют, на бензиновых двигателях, включая и те, которые имеют систему непосредственного впрыска. Данный вид оборудования характеризуется довольно простой конструкцией, которая состоит из сопла и включающего электромагнитного клапана, оснащенного иглой.

Работа электромагнитной форсунки происходит таким образом. Электронный блок управления, в точном соответствии с заложенным ранее алгоритмом, обеспечивает в необходимый момент на обмотку возбуждения клапана подачу напряжения. В процессе этого создается электромагнитное поле, которое преодолевает усилие пружины, затем втягивает якорь с иглой и, таким образом, освобождает сопло. После этого осуществляется впрыск топлива. Когда же напряжение пропадает, пружина иглу форсунки возвращает на седло.

  • распылительный узел
  • система гидропривода
  • клапанный узел

Необходимые время начала впрыска и величина подачи топлива (продолжительность впрыска) обеспечиваются открытием электромагнитного клапана каждой форсунки посредством команды от электронного блока управления ДВС, получающего сигналы о положении коленчатого вала и частоты его вращения через соответствующие датчики. Форсунка состоит из следующих основных функциональных блоков:

  • распылительный узел
  • система гидропривода
  • клапанный узел

Принцип действия форсунки

А – форсунка в состоянии покоя B – форсунка открыта C – форсунка закрыта

1 – обратная топливная магистраль; 2 – катушка электромагнита; 3 – якорь электромагнита; 4 – шарик клапана; 5 – камера управляющего давления; 6 – конус иглы распылителя; 7 – сопловые отверстия распылителя; 8 – дроссельное отверстие отвода топлива; 9 – магистраль высокого давления; 10 – дроссельное отверстие подачи топлива; 11 – мультипликатор;

30Н), превышает силу давления топлива снизу на конус 6 иглы распылителя. Вследствие этого игла прижимается к седлу распылителя и плотно закрывает сопловые отверстия 7 распылителя. В результате топливо в камеру сгорания не попадает.

Форсунка закрывается/ закрыта (Рис. С). После закрытия клапана давление над мультипликатором повышается, вследствие чего он перемещается вниз и через упругий стержень воздействует на иглу распылителя. Благодаря упругому стержню (за счет его распрямления) скорость перемещения иглы увеличивается, а время опускания уменьшается. Игла полностью опускается и перекрывает доступ к сопловым отверстиям распылителя.

Более подробно и наглядно принцип работы форсунки Common Rail описан в анимационном ролике «Как работает форсунка Common Rail», размещенном на сайте нашей компании в разделе «Видеотека».

В некоторых двигателях (например, версиях TDI моделей Mercedes, VW, BMW, Audi и пр.) одна из форсунок может быть оснащена датчиком подъема иглы. Положение иглы важно «знать» блоку управления моторами с электронно управляемыми топливными насосами.

Инжекторные бензиновые двигатели, в которых топливо впрыскивается во впускной тракт или цилиндры с помощью форсунок, составляют серьезную конкуренцию дизельным по показателю экономичности и экологичности. Это послужило толчком к совершенствованию систем питания дизелей, в частности – форсунок.

Инжекторные бензиновые двигатели, в которых топливо впрыскивается во впускной тракт или цилиндры с помощью форсунок, составляют серьезную конкуренцию дизельным по показателю экономичности и экологичности. Это послужило толчком к совершенствованию систем питания дизелей, в частности – форсунок.

Форсунки – элементы системы питания дизельных двигателей, которые обеспечивают поступление топлива непосредственно в камеру сгорания каждого цилиндра. Форсунка распыляет топливо в форме факела в надпоршневом объеме, а также участвует в процессе дозирования его продачи. И все это происходит с частотой от 400 до 2500 раз в минуту.

По своей конструкции все дизельные форсунки в зависимости от способа управления делятся на механические и электромеханические.

Проверенная механика

Работа классического дизеля основана на тех же принципах, что и сто лет назад, в эпоху создателя этого типа моторов Рудольфа Дизеля. Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль механической форсунки каждого цилиндра. Такие форсунки открываются исключительно «по команде» высокого давления в топливной магистрали и закрываются при его снижении.

Обычная механическая форсунка состоит из корпуса, распылителя с иглой и одной пружины (однопружинная). Игла свободно перемещается в пределах направляющего канала распылителя, обеспечивая в закрытом состоянии надежную герметизацию сопла. В нижней части она упирается в коническое уплотнение распылителя, к которому прижимается расположенной сверху пружиной.

Варьируя параметры форсунок (геометрию каналов распылителя и их количество, жесткость пружины и др.) и тем настраивая их на оптимальный режим работы, конструкторы научились управлять процессом сгорания топлива.

В некоторых двигателях (например, версиях TDI моделей Mercedes, VW, BMW, Audi и пр.) одна из форсунок может быть оснащена датчиком подъема иглы. Положение иглы важно «знать» блоку управления моторами с электронно управляемыми топливными насосами.

Сегодня доля двухпружинных конструкций составляет около четверти от общего количества. Такие форсунки применяли в дизелях с непосредственным впрыском**, пока их не потеснила система питания Commоn Rail.

Эпоха электроники

Един в двух лицах

Насос-форсунки оборудованы электроклапаном и могут работать в двухимпульсном режиме. Как и в предыдущих случаях, это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, смягчает работу мотора и снижает токсичность выхлопа. Негативная особенность насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии даже по сравнению с Common Rail.

* Разделенная камера сгорания – камера, состоящая из двух полостей – надпоршневой и вспомогательной в головке блока или в самом блоке. Применяется для увеличения энергии воздушных потоков
** Непосредственный впрыск в дизелях – подача топлива в камеру сгорания, состоящую из одного надпоршневого объема

Игорь Широкун
Фото Bosch

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Основной впрыск топлива завершается при открытии клапана. При этом падает давление топлива и закрывается игла распылителя.

Система впрыска насос-форсунками является современной системой впрыска топлива дизельных двигателей. В отличии от системы впрыска Common Rail в данной системе функции создания высокого давления и впрыска топлива объединены в одном устройстве – насос-форсунке. Собственно насос-форсунка и составляет одноименную систему впрыска.

Применение насос-форсунок позволяет повысить мощность двигателя, снизить расход топлива, выбросы вредных веществ, а также уровень шума.

В системе на каждый цилиндр двигателя приходится своя форсунка. Привод насос-форсунки осуществляется от распределительного вала, на котором имеются соответствующие кулачки. Усилие от кулачков передается через коромысло непосредственно к насос-форсунке.

Устройство насос-форсунки

Конструкция насос-форсунки включает плунжер, клапан управления, запорный поршень, обратный клапан и иглу распылителя.

Плунжер служит для создания давления топлива. Поступательное движение плунжера осуществляется за счет вращения кулачков распределительного вала, возвратное – за счет плунжерной пружины.

Клапан управления предназначен для управления впрыском топлива. В зависимости от привода различают электромагнитный и пьезоэлектрический клапаны. Пьезоэлектрический клапан пришел на смену электромагнитному клапану. Пьезоэлектрический клапан обладает большим быстродействием. Основным конструктивным элементом клапана является игла клапана.

Пружина форсунки обеспечивает посадку иглы распылителя на седло. Усилие пружины при необходимости поддерживается давлением топлива. Данная функция реализуется с помощью запорного поршня и обратного клапана. Игла распылителя предназначена для обеспечения непосредственного впрыска топлива в камеру сгорания.

Управление насос-форсунками осуществляет система управления двигателем. Блок управления двигателем на основании сигналов датчиков управляет клапаном насос-форсунки.

Принцип действия насос-форсунки

Конструкция насос-форсунки обеспечивает оптимальное и эффективное образование топливно-воздушной смеси. Для этого в процессе впрыска топлива предусмотрены следующие фазы:

  • предварительный впрыск;
  • основной впрыск;
  • дополнительный впрыск.

Предварительный впрыск производится для достижения плавности сгорания смеси при основном впрыске. Основной впрыск обеспечивает качественное смесеобразование на различных режимах работы двигателя. Дополнительный впрыск осуществляется для регенерации (очистки от накопленной сажи) сажевого фильтра.

Работа насос-форсунки осуществляется следующим образом. Кулачек распределительного вала через коромысло перемещает плунжер вниз. Топливо перетекает по каналам форсунки. При закрытии клапана происходит отсечка топлива. Давление топлива начинает расти. При достижении давления 13 МПа игла распылителя, преодолевая усилие пружины, поднимается и происходит предварительный впрыск топлива.

Предварительный впрыск топлива прекращается при открытии клапана. Топливо переливается в питающую магистраль. Давление топлива снижается. В зависимости от режимов работы двигателя может осуществляться один или два предварительных впрыска топлива.

Основной впрыск производится при дальнейшем движении плунжера вниз. Клапан снова закрывается. Давление топлива начинает расти. При достижении давления 30 МПа, игла распылителя, преодолевая усилие пружины и давление топлива, поднимается и происходит основной впрыск топлива.

Чем выше давление, тем больше количества топлива сжимается и соответственно больше впрыскивается в камеру сгорания двигателя. При максимальном давлении 220 МПа впрыскивается наибольшее количество топлива, тем самым обеспечивается максимальная мощность двигателя.

Основной впрыск топлива завершается при открытии клапана. При этом падает давление топлива и закрывается игла распылителя.

Дополнительный впрыск выполняется при дальнейшем движении плунжера вниз. Принцип действия насос-форсунки при дополнительном впрыске аналогичен основному впрыску. Обычно производится два дополнительных впрыска топлива.

Источники
http://k-a-t.ru/dvs_pitanie/66-dizel_forsunka/index.shtml
http://murmandiesel.ru/articles/390932
http://www.autoopt.ru/articles/products/3539322/
http://carnovato.ru/davlenie-forsunki-dizelnyj-dvigatel-chistka/
http://dizelms.ru/printsip-raboty-dizelnykh-forsunok-common-rail
http://krutimotor.ru/ustrojstvo-forsunki-dizel/
http://badiesel.ru/statii/pezoelektricheskaya-forsunka-ustrojstvo-princzip-rabotyi
http://fastmb.ru/auto_shem/377-forsunki-dvigatelya-8213-vidy-i-princip-raboty.html
http://www.automodern-msk.ru/remont/item/printsip-raboty-forsunki-common-rail
http://www.autocentre.ua/news/concept/ustroystvo-forsunok-dizelnykh-dvigateley-tysyachu-raz-v-minutu-291484.html
http://systemsauto.ru/feeding/nasos_forsunka.html

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий