Принцип работы трехфазного трансформатора

Так как токи в катушках смещены по фазе на 1/3 периода, то и создаваемые ими магнитные потоки также смещены во времени на 1/3 периода, т. е. наибольшие значения магнитных потоков в стержнях катушек следуют друг за другом через 1/3 периода.

Трехфазный ток можно трансформировать тремя совершенно отдельными однофазными трансформаторами. В этом случае обмотки всех трех фаз магнитно не связаны друг с другом: каждая фаза имеет свою магнитную цепь. Но тот же трехфазный ток можно трансформировать и одним трехфазным трансформатором, у которого обмотки всех трех фаз магнитно связаны между собою, так как имеют общую магнитную цепь.

Чтобы уяснить себе принцип действия и устройства трехфазного трансформатора , представим себе три однофазных трансформатора, приставленных один к другому так, что три стержня их образуют один общий центральный стержень (рис. 1). На каждом из остальных трех стержней наложены первичные и вторичные обмотки (на рис. 1 вторичные обмотки не изображены).

Предположим, что первичные катушки всех стержней трансформатора совершенно одинаковы и намотаны в одном направлении (на рис. 1 первичные катушки намотаны по часовой стрелке, если смотреть на них сверху). Соединим все верхние концы катушек в нейтраль О, а нижние концы катушек подведем к трем зажимам трехфазной сети.

Токи в катушках трансформатора создадут переменные во времени магнитные потоки, которые будут замыкаться каждый в своей магнитной цепи. В центральном составном стержне магнитные потоки сложатся и в сумме дадут ноль, ибо эти потоки создаются симметричными трехфазными токами, относительно которых мы знаем, что сумма мгновенных значений их равна нулю в любой момент времени.

Отсутствие потока в центральном стержне не означает отсутствия потоков в остальных стержнях. Если бы мы уничтожили центральный стержень, а верхние и нижние ярма соединили в общие ярма (см. рис. 2 ), то поток катушки АХ нашел бы себе путь через сердечники катушек BY и CZ, причем магнитодвижущие силы этих катушек сложились бы с магнитодвижущей силой катушки АХ. В таком случае мы получили бы трехфазный трансформатор с общей магнитною цепью всех трех фаз.

Так как токи в катушках смещены по фазе на 1/3 периода, то и создаваемые ими магнитные потоки также смещены во времени на 1/3 периода, т. е. наибольшие значения магнитных потоков в стержнях катушек следуют друг за другом через 1/3 периода.

Следствием сдвига по фазе магнитных потоков в сердечниках на 1/3 периода является такой же сдвиг по фазе и электродвижущих сил, индуктируемых как в первичных, так и во вторичных катушках, наложенных на стержнях. Электродвижущие силы первичных катушек почти уравновешивают приложенное трехфазное напряжение. Электродвижущие силы вторичных катушек при правильном соединении концов катушек дают трехфазное вторичное напряжение, которое подается во вторичную цепь.

В отношении конструкции магнитной цепи трехфазные трансформаторы, как и однофазные, разделяются на стержневые рис. 2. и броневые.

Стержневые трехфазные трансформаторы подразделяются на:

а) трансформаторы с симметричной магнитной цепью и

б) трансформаторы с несимметричной магнитной цепью.

На рис. 3 схематически изображен стержневой трансформатор с симметричной магнитной цепью, а на рис. 4 изображен стержневой трансформатор с несимметричной магнитной цепью. Как видно из из трех железных стержней 1, 2 и 3, схваченных сверху и снизу железными накладками-ярмами. На каждом стержне находятся первичная I и вторичная II катушки одной фазы трансформатора.

У первого трансформатора стержни расположены по вершинам углов равностороннего треугольника; у второго трансформатора стержни расположены в одной плоскости.

Расположение стержней по вершинам углов равностороннего треугольника дает равные магнитные сопротивления для магнитных потоков всех трех фаз, так как пути прохождения этих потоков одинаковы. В самом деле, магнитные потоки трех фаз проходят каждый в отдельности через один вертикальный стержень полностью и через два других стержня но половине.

На рис. 3 пунктиром изображены пути замыкания магнитного потока фазы стержня 2. Легко видеть, что для потоков фаз стержней 1 и 3 пути замыкания их магнитных потоков совершенно одинаковы. Это значит, что у рассматриваемого трансформатора магнитные сопротивления для потоков равны между собою.

Расположение стержней в одной плоскости приводит к тому, что магнитное сопротивление для потока средней фазы (на рис. 4 для фазы стержня 2) меньше, нежели для потоков крайних фаз (на рис. 4 — для фаз стержней 1 и 3).

Действительно магнитные потоки крайних фаз проходят по несколько более длинным путям, чем поток средней фазы. Кроме того, поток крайних фаз, выйдя из своих стержней, проходит в одной половине ярма полностью, и только в другой половине (после ответвления в средний стержень) проходит его половина. Поток же средней фазы по выходе из вертикального стержня тотчас же разветвляется на две половины, и потому в обеих частях ярма проходит лишь половина потока средней фазы.

Таким образом потоки крайних фаз насыщают ярмо в большей степени, чем поток средней фазы, а потому магнитное сопротивление для потоков крайних фаз больше, чем для потока средней фазы.

Следствием неравенства магнитных сопротивлений для потоков разных фаз трехфазного трансформатора является неравенство токов холостой работы в отдельных фазах при одном и том же фазном напряжении.

Однако при небольшой насыщенности железа ярма и хорошей сборке железа стержней это неравенство токов незначительно. Так как конструкция трансформаторов с несимметричной магнитной цепью значительно проще, чем трансформатора с симметричной магнитной цепью, то первые трансформаторы и нашли себе преимущественное применение. Трансформаторы с симметричною магнитною цепью встречаются редко.

Рассматривая рис. 3 и 4 и предполагая, что во всех трех фазах проходят токи, легко видеть, что все фазы магнитно связаны друг с другом. Это значит, что магнитодвижущие силы отдельных фаз влияют друг на друга, чего мы не имеем, когда трехфазный ток трансформируется тремя однофазными трансформаторами.

Вторую группу трехфазных трансформаторов составляют броневые трансформаторы. Броневой трансформатор можно рассматривать как бы состоящим из трех однофазных броневых трасформаторов, приставленных один к другому своими ярмами.

На рис. 5 схематически изображен броневой трехфазный трансформатор с вертикально расположенным внутренним стержнем. Легко видеть из рисунка, что плоскостями АВ и CD он может быть разбит на три однофазных броневых трансформатора, магнитные потоки которых могут замыкаться каждый по своей магнитной цепи. Пути прохождения магнитных потоков на рис. 5 указаны пунктирными линиями.

Как видно из рисунка, в средних вертикальных стержнях а, на которых наложены первичная I и вторичная II обмотки одной фазы, проходит полный поток, тогда как в ярмах b-b и боковых стенках проходит по половине потока. При одной и той же индукции сечения ярма и боковых стенок должны быть вдвое меньше сечения среднего стержня а.

Что касается магнитного потока в промежуточных частях с-с, то его величина, как мы увидим далее, зависит от способа включения средней фазы.

Главным преимуществом броневых трансформаторов перед стержневыми трансформаторами являются короткие пути замыкания магнитных потоков, а следовательно, небольшие токи холостой работы.

К недостаткам броневых трансформаторов можно отнести, во-первых, малую доступность обмоток для ремонта, в виду того, что они окружены железом, и, во-вторых, худшие условия охлаждения обмотки — по той же причине.

У стержневых трансформаторов обмотки почти целиком открыты и потому более доступны для осмотра и ремонта, а также и для охлаждающей среды.

  • Испытательные трансформаторы. К ним принято относить трехфазные автотрансформаторные системы.
  • Устройства, используемые для питания специальной аппаратуры: сварочных агрегатов, в частности.
  • Симметрирующие трансформаторные агрегаты.

Назначение и виды

Классический станционный трехфазный силовой трансформатор используется для преобразования высоковольтной энергии в удобную для потребителя форму. На его первичные обмотки подается высокое напряжение (6,3-10 киловольт), а на выходе получают более удобные для использования в быту 220 Вольт. Эта величина измеряется между фазами и нулевой жилой трансформатора, называемой нейтралью. Ее принято обозначать как фазное напряжение, в отличие от линейных 380 Вольт, отсчитываемых между каждой из фаз.

Трехфазные понижающие трансформаторы этого класса обеспечивают передачу тока от местной подстанции по подземному кабелю или линии электропередач непосредственно до конечного потребителя. Для этих целей используется специальный 4-хжильный кабель в бронированном сердечнике, либо воздушный провод марки СИП. По ним электрическая энергия доставляет прямо по назначению – на вводно-распределительные устройства обслуживаемых территорий и объектов.

По своему функциональному назначению 3 фазные трансформаторы подразделяются на следующие классы:

  • линейные (станционные) устройства;
  • специальные преобразовательные агрегаты.

Специальные устройства делятся на следующие виды:

  • Испытательные трансформаторы. К ним принято относить трехфазные автотрансформаторные системы.
  • Устройства, используемые для питания специальной аппаратуры: сварочных агрегатов, в частности.
  • Симметрирующие трансформаторные агрегаты.

Первые два типа применяются в исследовательских целях. Трансформаторы симметрирующие трехфазные используются для устранения перекоса фаз, возникающего в электрических сетях из-за неравномерности распределения нагрузок.

В электротехнике также встречаются варианты двухфазных трансформаторов, нередко применяемых в электронных схемах и устройствах автоматики. Они устроены так, что два выходных напряжения сдвинуты одно относительно другого на 90 электрических градусов. Чаще всего такие электротехнические решения используются в сварочном оборудовании.

Рассматривая рис. 3 и 4 и предполагая, что во всех трех фазах проходят токи, легко видеть, что все фазы магнитно связаны друг с другом. Это значит, что магнитодвижущие силы отдельных фаз влияют друг на друга, чего мы не имеем, когда трехфазный ток трансформируется тремя однофазными трансформаторами.

Трехфазный ток можно трансформировать тремя совершенно отдельными однофазными трансформаторами. В этом случае обмотки всех трех фаз магнитно не связаны друг с другом: каждая фаза имеет свою магнитную цепь. Но тот же трехфазный ток можно трансформировать и одним трехфазным трансформатором, у которого обмотки всех трех фаз магнитно связаны между собою, так как имеют общую магнитную цепь.

Чтобы уяснить себе принцип действия и устройства трехфазного трансформатора, представим себе три однофазных трансформатора, приставленных один к другому так, что три стержня их образуют один общий центральный стержень (рис. 1). На каждом из остальных трех стержней наложены первичные и вторичные обмотки (на рис. 1 вторичные обмотки не изображены).

Предположим, что первичные катушки всех стержней трансформатора совершенно одинаковы и намотаны в одном направлении (на рис. 1 первичные катушки намотаны по часовой стрелке, если смотреть на них сверху). Соединим все верхние концы катушек в нейтраль О, а нижние концы катушек подведем к трем зажимам трехфазной сети.

Токи в катушках трансформатора создадут переменные во времени магнитные потоки, которые будут замыкаться каждый в своей магнитной цепи. В центральном составном стержне магнитные потоки сложатся и в сумме дадут ноль, ибо эти потоки создаются симметричными трехфазными токами, относительно которых мы знаем, что сумма мгновенных значений их равна нулю в любой момент времени.

Отсутствие потока в центральном стержне не означает отсутствия потоков в остальных стержнях. Если бы мы уничтожили центральный стержень, а верхние и нижние ярма соединили в общие ярма (см. рис. 2), то поток катушки АХ нашел бы себе путь через сердечники катушек BY и CZ, причем магнитодвижущие силы этих катушек сложились бы с магнитодвижущей силой катушки АХ. В таком случае мы получили бы трехфазный трансформатор с общей магнитною цепью всех трех фаз.

Так как токи в катушках смещены по фазе на 1/3 периода, то и создаваемые ими магнитные потоки также смещены во времени на 1/3 периода, т. е. наибольшие значения магнитных потоков в стержнях катушек следуют друг за другом через 1/3 периода.

Следствием сдвига по фазе магнитных потоков в сердечниках на 1/3 периода является такой же сдвиг по фазе и электродвижущих сил, индуктируемых как в первичных, так и во вторичных катушках, наложенных на стержнях. Электродвижущие силы первичных катушек почти уравновешивают приложенное трехфазное напряжение. Электродвижущие силы вторичных катушек при правильном соединении концов катушек дают трехфазное вторичное напряжение, которое подается во вторичную цепь.

В отношении конструкции магнитной цепи трехфазные трансформаторы, как и однофазные, разделяются на стержневые рис. 2. и броневые.

Стержневые трехфазные трансформаторы подразделяются на:

а) трансформаторы с симметричной магнитной цепью и

б) трансформаторы с несимметричной магнитной цепью.

На рис. 3 схематически изображен стержневой трансформатор с симметричной магнитной цепью, а на рис. 4 изображен стержневой трансформатор с несимметричной магнитной цепью. Как видно из из трех железных стержней 1, 2 и 3, схваченных сверху и снизу железными накладками-ярмами. На каждом стержне находятся первичная I и вторичная II катушки одной фазы трансформатора.

У первого трансформатора стержни расположены по вершинам углов равностороннего треугольника; у второго трансформатора стержни расположены в одной плоскости.

Расположение стержней по вершинам углов равностороннего треугольника дает равные магнитные сопротивления для магнитных потоков всех трех фаз, так как пути прохождения этих потоков одинаковы. В самом деле, магнитные потоки трех фаз проходят каждый в отдельности через один вертикальный стержень полностью и через два других стержня но половине.

На рис. 3 пунктиром изображены пути замыкания магнитного потока фазы стержня 2. Легко видеть, что для потоков фаз стержней 1 и 3 пути замыкания их магнитных потоков совершенно одинаковы. Это значит, что у рассматриваемого трансформатора магнитные сопротивления для потоков равны между собою.

Расположение стержней в одной плоскости приводит к тому, что магнитное сопротивление для потока средней фазы (на рис. 4 для фазы стержня 2) меньше, нежели для потоков крайних фаз (на рис. 4 — для фаз стержней 1 и 3).

Действительно магнитные потоки крайних фаз проходят по несколько более длинным путям, чем поток средней фазы. Кроме того, поток крайних фаз, выйдя из своих стержней, проходит в одной половине ярма полностью, и только в другой половине (после ответвления в средний стержень) проходит его половина. Поток же средней фазы по выходе из вертикального стержня тотчас же разветвляется на две половины, и потому в обеих частях ярма проходит лишь половина потока средней фазы.

Таким образом потоки крайних фаз насыщают ярмо в большей степени, чем поток средней фазы, а потому магнитное сопротивление для потоков крайних фаз больше, чем для потока средней фазы.

Следствием неравенства магнитных сопротивлений для потоков разных фаз трехфазного трансформатора является неравенство токов холостой работы в отдельных фазах при одном и том же фазном напряжении.

Однако при небольшой насыщенности железа ярма и хорошей сборке железа стержней это неравенство токов незначительно. Так как конструкция трансформаторов с несимметричной магнитной цепью значительно проще, чем трансформатора с симметричной магнитной цепью, то первые трансформаторы и нашли себе преимущественное применение. Трансформаторы с симметричною магнитною цепью встречаются редко.

Рассматривая рис. 3 и 4 и предполагая, что во всех трех фазах проходят токи, легко видеть, что все фазы магнитно связаны друг с другом. Это значит, что магнитодвижущие силы отдельных фаз влияют друг на друга, чего мы не имеем, когда трехфазный ток трансформируется тремя однофазными трансформаторами.

Вторую группу трехфазных трансформаторов составляют броневые трансформаторы. Броневой трансформатор можно рассматривать как бы состоящим из трех однофазных броневых трасформаторов, приставленных один к другому своими ярмами.

На рис. 5 схематически изображен броневой трехфазный трансформатор с вертикально расположенным внутренним стержнем. Легко видеть из рисунка, что плоскостями АВ и CD он может быть разбит на три однофазных броневых трансформатора, магнитные потоки которых могут замыкаться каждый по своей магнитной цепи. Пути прохождения магнитных потоков на рис. 5 указаны пунктирными линиями.

Как видно из рисунка, в средних вертикальных стержнях а, на которых наложены первичная I и вторичная II обмотки одной фазы, проходит полный поток, тогда как в ярмах b-b и боковых стенках проходит по половине потока. При одной и той же индукции сечения ярма и боковых стенок должны быть вдвое меньше сечения среднего стержня а.

Что касается магнитного потока в промежуточных частях с-с, то его величина, как мы увидим далее, зависит от способа включения средней фазы.

Главным преимуществом броневых трансформаторов перед стержневыми трансформаторами являются короткие пути замыкания магнитных потоков, а следовательно, небольшие токи холостой работы.

К недостаткам броневых трансформаторов можно отнести, во-первых, малую доступность обмоток для ремонта, в виду того, что они окружены железом, и, во-вторых, худшие условия охлаждения обмотки — по той же причине.

У стержневых трансформаторов обмотки почти целиком открыты и потому более доступны для осмотра и ремонта, а также и для охлаждающей среды.

Трехфазный трансформатор имеет основу – магнитный сердечник, собранный из трёх ферромагнитных стержней. На стержнях располагаются первичная обмотка высокого напряжения и вторичная обмотка низкого напряжения. Для соединения фаз первичных обмоток применяют схемы «треугольник» либо «звезда». Аналогичным способом соединения выполняются и вторичные обмотки.

Конструктивная особенность

Трехфазный трансформатор имеет основу – магнитный сердечник, собранный из трёх ферромагнитных стержней. На стержнях располагаются первичная обмотка высокого напряжения и вторичная обмотка низкого напряжения. Для соединения фаз первичных обмоток применяют схемы «треугольник» либо «звезда». Аналогичным способом соединения выполняются и вторичные обмотки.

На первичную обмотку подаётся электроэнергия из питающей сети, а на вторичную подключается нагрузка. Электроэнергия передаётся за счет электромагнитной индукции. Главная функция магнитопровода – обеспечить между обмотками магнитную связь. Магнитопровод изготавливают из тонких стальных пластин (так называемая, электротехническая листовая сталь). Чтобы сократить потери, стальные листы между собой изолируют, используя оксидную пленку или специальный лак.

Обмотки с магнитопроводом погружаются в бак, в котором находится трансформаторное масло. Оно одновременно выполняет функцию изоляции и охлаждающей среды. Такие трансформаторы называются масляными. Трехфазный трансформатор, у которого в качестве охлаждения и изоляции используется воздух, называют сухим. Недостаток масляных трансформаторов заключается в повышенной пожароопасности.

Схема трехфазного трансформатора подбирается с учетом рабочих параметров электрической сети, требований потребителей электроэнергии и бюджета затрат.

Трехфазный трансформатор это специализированное устройство для изменения величины напряжения в сети трехфазного переменного тока. Главный принцип работы трансформатора основан на эффекте электродвижущей силы (ЭДС) и электромагнитной индукции, что позволяет исключить гальваническую связь между обмотками высокого и низкого напряжения.

Трехфазные трансформаторы состоят из следующих основных конструктивных частей:

Схема трехфазного трансформатора подбирается с учетом рабочих параметров электрической сети, требований потребителей электроэнергии и бюджета затрат.

Все трехфазные трансформаторы классифицируют по многочисленным критериям:

Электротехническая компания «ЭЛЕКОМ» реализует широкую номенклатуру трехфазных трансформаторов от зарубежных и отечественных производителей. Мы предоставляем изделия, которые в полной степени соответствуют всем международным стандартам качества.

На рисунке приведено устройство трехфазного трансформатора при соединении обеих обмоток звездой (Y/Y). Такое соединение широко применяют для трансформаторов небольшой и средней мощности (примерно до 1800 кВ-А). Соединение звездой является наиболее желательным для высокого напряжения, так как при нем изоляция обмоток рассчитывается лишь на фазное напряжение. Чем выше напряжение и меньше ток, тем относительно дороже обходится соединение обмоток треугольником.

Схема трехфазного трансформатора

На рисунке приведено устройство трехфазного трансформатора при соединении обеих обмоток звездой (Y/Y). Такое соединение широко применяют для трансформаторов небольшой и средней мощности (примерно до 1800 кВ-А). Соединение звездой является наиболее желательным для высокого напряжения, так как при нем изоляция обмоток рассчитывается лишь на фазное напряжение. Чем выше напряжение и меньше ток, тем относительно дороже обходится соединение обмоток треугольником.

Соединение обмоток треугольником конструктивно удобнее при больших токах. По этой причине соединение Y/D широко применяется для трансформаторов большой мощности в тех случаях, когда на стороне низшего напряжения не требуется нейтрального провода.

Трансформацию трёхфазного напряжения можно осуществлять двумя способами:

Трехфазные трансформаторы применяются для питания от 3х-фазной сети. Обмотки трехфазных трансформаторов соединяются звездой или треугольником. Они позволяют обеспечить питание достаточно мощной нагрузки. Обычно мощность превышает несколько киловатт. Трансформаторы позволяют понизить напряжение сети и одновременно увеличить ток нагрузки. Еще одной причиной применения трехфазных трансформаторов является необходимость обеспечить непрерывность протекания тока в нагрузке.

В качестве первичного источника питания широко используется электрическая сеть. Форма напряжения электрической сети представляет собой синусоиду частотой 50 Гц. Однако при достаточно протяженных линиях электропередачи энергия излучается в пространство, вызывая дополнительные потери. В мощных цепях электропитания используется трехфазное напряжение. Впервые это решение было предложено немецкой фирмой Симменс при участии русского инженера М.О. Доливо-Добровольского.

Для уменьшения излучения в любой момент времени сумма напряжений всех трех фаз равна 0 (ea+eb+ec=0). Для этого синусоидальное напряжение в каждом проводе сдвинуто относительно соседнего по фазе на 120° При этом существует два варианта передачи энергии — черырехпроводная и трехпроводная линия передачи. Схемы включения фаз для этих вариантов приведены на рисунке 1,

Рисунок 1 Трехпроводная и четырехпроводная линии передачи трехфазного напряжения

В четырехпроводной линии потребителю может быть выдано либо фазное напряжение 220 В, либо линейное напряжение 380 В. В трехпроводной схеме присутствуют только линейные напряжения. Для понимания формирования линейного напряжения удобно воспользоваться векторной диаграммой напряжений фаз, приведенной на рисунке 2. На этом же рисунке показаны временные диаграммы напряжения всех трех фаз.


Рисунок 2 Временная диаграмма (а) и векторная диаграмма (б) трёхфазного напряжения

На временной диаграмме Т — это период частоты 50 Гц, U — напряжение одной фазы 220 B. Мгновенные значения напряжений фаз A, B, и C можно записать следующим образом:

(1)

За положительное чередование фаз условились считать увеличение фазы по часовой стрелке. Обмотки в трёхфазных трансформаторах можно соединить тремя способами: звездой Y, треугольником Δ и зигзагом Z. Из них наиболее распространенными схемами являются соединение звездой и треугольником. На рисунке 3 приведена схема соединения источника трехфазного напряжения и нагрузки. При этом и источник и нагрузка соединены звездой (схема звезда-звезда).


Рисунок 3 Схема соединения источника трехфазного напряжения и нагрузки звездой

В приведенной на рисунке 3 схеме линейный ток равен фазному. Обратите внимание, что наличие нулевого провода для нормального функционирования линии передачи необязательно. В случае симметричной нагрузки (токи IA, IB, IC равны) ток по нулевому проводу не протекает.

Теперь рассмотрим схему соединения источника трехфазного напряжения и нагрузки треугольником. Она приведена на рисунке 4.


Рисунок 4 Схема соединения источника и нагрузки треугольником

При таком соединении вторичных обмоток трехфазного трансформатора линейные напряжения будут соответствовать фазным для соединения звездой (220В), а при одинаковой потребляемой мощности линейные токи будут больше в раз, так как для них сложится ситуация, подобная приведенной на рисунке 2.

(2)

Мощность, передаваемая в трёхфазной цепи, не зависит от схемы соединения и складывается из мощностей потребления каждой фазы. При этом разделяют понятиеЖ

Полной мощности: (3)

Теперь рассмотрим линейные токи и напряжения. Так, при соединении звездой получаем:

(4)

При соединении треугольником:

(5)

То есть, действительно не зависит от схемы соединения.

Трансформацию трёхфазного напряжения можно осуществлять двумя способами:

  • тремя отдельными однофазными трансформаторами, как показано на рисунке 5а. Подобную схему включения называют групповым трансформатором.
  • одним трёхфазным трансформатором с общей магнитной системой. Его условно-графическое обозначение приведено на рисунке 5б


Рисунок 5 Условно-графическое обозначение группового (а) и трёхфазного (б) трансформаторов

На рисунке 5 как для первичной, так и для вторичной цепи использована схема включения звезда (звезда-звезда). Первичные обмотки трансформатора называются обмотками высшего напряжения (ВН) и обозначаются заглавными буквами, а вторичные обмотки называются обмотками низшего напряжения (НН) и обозначаются малыми буквами. Следует отметить, что как первичные, так и вторичные обмотки можно соединять и треугольником и звездой (треугольник-треугольник, звезда-треугольник, треугольник-звезда, звезда-звезда).


Рисунок 6 Трёхфазный трансформатор при включении звезда-зигзаг

Трёхфазная система напряжений является симметричной, значит и магнитная система трёхфазного трансформатора должна быть симметричной, как показано на рисунке 7а. Изготовить такую магнитную систему очень сложно. Пошли по другому пути. Учитывая, что в трехфазной системе , то и сумма магнитных потоков в центральном стержне . Необходимость в центральном стержне отпадает и, если сократить ярмо фазы В, то получится плоская, широко известная трёхфазная магнитная система:


Рисунок 7 Магнитная система трёхфазного трансформатора: а) симметричная, б) несимметричная


Рисунок 8 Внешний вид трехфазного трансформатора с плоской магнитной системой

В настоящее время [10] трёхфазные трансформаторы на мощности единицы киловатт и более изготавливают с симметричной магнитной системой, но такой, как показано на рисунке 9.


Рисунок 9 Магнитная система трёхфазного трансформатора: а) симметричная, б) несимметричная

Изготовление ярма сложности не представляет – его наматывают из стальной ленты c помощью оправки. Затем стержни с обмотками и оба ярма стягивают крепежом. Конструкция получилась симметричной и весьма технологичной.

Обмотки низшего напряжения часто соединяют треугольником, так как токи в них в раз меньше чем линейные, а поэтому уменьшается влияние асимметрии фазных нагрузок на первичную сеть.

  • Неприхотливость к условиям окружающей среды.
  • Привычная конструкция для электриков старшего поколения.
  • Отсутствие межвитковых и межслойных замыканий, благодаря теплопроводности масла.
  • Отсутствие вероятности появления микроскопических трещин в обмотках.
  • Наличие моделей, рассчитанных на значительные напряжение (375 кВ и выше) и мощность (40000 кВА и выше).

Назначение трехфазного трансформатора

Главная задача такого аппарата – преобразовать параметры электрического тока таким образом, чтобы потери при нагреве проводов были минимальными. Для решения этой проблемы необходимо снизить силу тока и увеличить значение напряжения до 6-500 кВ, чтобы значение мощности осталось постоянным. После доставки электрического тока потребителю напряжение необходимо снизить до требуемой величины – 380 В. И эту проблему тоже решают трехфазные аппараты.

Также эти устройства применяют для присоединения измерительных приборов, изменения напряжения при проведении испытаний или подключении силовой нагрузки.

Принцип действия и устройство силового трехфазного трансформатора

В конструкцию этого аппарата входят:

В каталоге силовых трансформаторов представлены «сухие» и «масляные» модели. В маломощных трансформаторах охлаждение осуществляется воздушным способом. Такие аппараты называют «сухими». Высокомощные устройства имеют масляное охлаждение, благодаря чему их называют «масляными». Масло не только охлаждает обмотки, которые нагреваются из-за протекания по ним электрического тока, но и повышает изоляционные характеристики.

  • При подключении первичной обмотки в сеть в ней начинает протекать переменный .
  • В сердечнике магнитопровода появляется магнитный поток, охватывающий обмотки всех фаз. В каждом витке присутствует ЭДС, равная по направлению и величине.
  • Если количество витков в первичной обмотке больше, чем число витков во вторичной обмотке, то выходное напряжение больше входного. И наоборот.

Силовые сухие трехфазные трансформаторы — особенности эксплуатации и характеристики

Преимущества сухих трехфазных трансформаторов с выходным напряжением 380 В:

Недостатки моделей «сухого» типа:

  • Чувствительность к условиям окружающей среды – температуре, влажности, запыленности, сейсмическим воздействиям.
  • Отсутствие моделей, рассчитанных на напряжение более 35 кВ и мощность выше 4000 кВА.
  • Вероятность появления микротрещин в обмотке, которые развиваются и становятся причиной выхода устройства из строя и даже его возгорания.

Цены на сухие трансформаторы зависят от мощности аппарата и материала (медь, алюминий), из которого изготовлены обмотки. Также на стоимость влияет исполнение: открытое, защищенное, герметичное.

Трехфазные силовые трансформаторы масляного типа – плюсы и минусы конструкции

Преимущества масляных силовых трехфазных трансформаторов:

  • Неприхотливость к условиям окружающей среды.
  • Привычная конструкция для электриков старшего поколения.
  • Отсутствие межвитковых и межслойных замыканий, благодаря теплопроводности масла.
  • Отсутствие вероятности появления микроскопических трещин в обмотках.
  • Наличие моделей, рассчитанных на значительные напряжение (375 кВ и выше) и мощность (40000 кВА и выше).

У обоих видов трансформаторов имеются собственные достоинства и недостатки. Поэтому при выборе конкретного типа оборудования инженеры-электрики учитывают запланированные эксплуатационные условия, требования СНиПов, ГОСТов, ПУЭ, рекомендации изготовителя.

Yz — n = N1 / N2 = √3 U1R / 2U2R

Анализ энергосистемы

Напряжение Uf1 … Uf3 — фазовое напряжение первичной стороны, а uf1 … uf2 — фазное напряжение вторичной стороны. На практике с первичной и вторичной сторон выходят три или четыре провода (четыре проводника возникают, когда получается так называемая нулевая точка). Отсюда вывод, что обмотки подключены перед выходом. Существует много способов подключения. Основные три показывают рисунок.

По соглашению символы метода соединения даются с использованием букв

Обмотки на первичной и вторичной сторонах могут быть подключены одинаково, т. е. Yy, Dd, Zz или смешанным образом Yd, Dy, Yz, Dz. Это, очевидно, влияет на свойства трансформатора. Одной из причин создания комбинации напряжений является правильное намагничивание сердечника для различных применений, что важно для несимметричных нагрузок вторичной стороны. Способы соединения также влияют на передачу напряжения и угловое смещение векторов выходного напряжения относительно входных напряжений.

Yy — n = N1 / N2 = U1R / U2R

Однако, если соединения смешиваются, то передачи катушки и напряжения различны

Dy — n = N1 / N2 = √3 U1R / U2R

Yd — n = N1 / N2 = U1R / √3U2R

Yz — n = N1 / N2 = √3 U1R / 2U2R

В дополнение к изменению отношения напряжения в смешанных соединениях происходит сдвиг фаз между первичным и вторичным напряжениями. Если, например, напряжениевторичной стороны смещается в фазе на 150◦, что соответствует перемещению часовой стрелки с 12 часов до 5 часов, то мы говорим, что часовой сдвиг равен 5.

Общей группой соединений является, например, Dy11. Это означает, что первичная обмотка подключена в треугольнике, поэтому трансформатор может питаться от трехпроводной сети электропитания, а вторичная сторона соединена звездой, что позволяет вывести четвертый провод, общий для так называемой нулевой точки. Напряжения вторичной стороны задерживаются относительно напряжений первичной стороны на угол 330 °, или их можно также сказать, что обгоняет напряжение первичной стороны на угол -30 °.

Трансформирование в трехфазной цепи может быть осуществлено либо группой, состоящей из трех однофазных трансформаторов, либо одним трехфазным трансформатором. В обоих случаях обмотки фаз высшего и низшего напряжений могут соединяться звездой или треугольником. Соединение звездой обозначается знаком Y, а треугольником — .

Трехфазные трансформаторы

Трансформирование в трехфазной цепи может быть осуществлено либо группой, состоящей из трех однофазных трансформаторов, либо одним трехфазным трансформатором. В обоих случаях обмотки фаз высшего и низшего напряжений могут соединяться звездой или треугольником. Соединение звездой обозначается знаком Y, а треугольником — .

Устройство и особенности трехфазных трансформаторов.

Обмотки трехфазного трансформатора расположены на стержнях так же, как и в однофазном трансформаторе, т.е. обмотки низшего напряжения НН размещаются ближе к стержню, а обмотки высшего напряжения ВН—на обмотках низшего напряжения.

На рис. 2.18 показано соединение обмоток трехфазного трансформаторапосхеме (для наглядности обмотки расположены одна над другой).

Для правильного соединения обмоток необходимо разметить начала и концы фаз высшего напряжения (A, В, С и X, У, Z) и низшего напряжения (а, b, с и х, у, z) и придерживаться этой маркировки. Ошибка в маркировке одной из фаз или ошибка в соединении фаз может привести к тому, что ЭДС, наведенные в одноименных фазах, будут не совпадать по фазе, а будут сдвинуты относительно друг друга на 180°.

Трехфазный трансформатор экономичнее, чем группа из трех однофазных.

Группа соединений обмоток.

На рис. 2.20, а, б показаны соединение обмоток Y/Y, т.е. звезда-звезда, и топографическая диаграмма фазных и линейных напряжений.

Номинальные данные трехфазных трансформаторов.

Трехфазные трансформаторы обычно выполняют на магнитопроводе стержневого типа с тремя стержнями.

Главная > Реферат >Физика

Министерство Образования и Науки Украины

Донецкий Национальный Технический Университет

Каф. Электромеханики и ТОЭ

по электрическим машинам на тему:

Конструкция и принцип действия трёхфазного силового трансформатора

Выполнил: ст. гр. АУП-05а

Проверил: Солёный С. В.

ПРИНЦИП ДЕЙСТВИЯ ТРАНСФОРМАТОРА 4

КОНСТРУКЦИЯ ТРАНСФОРМАТОРА 6

МАРКИРОВКА ТРАНСФОРМАТОРОВ 9

СПИСОК ССЫЛОК 13

Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно свя­занных обмоток и предназначенное для преобразования по­средством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

В настоящее время для высоковольтных линий электропередачи применяют силовые трансформаторы с масляным охлаждением напряжением 330, 500 и 750 кВ, мощностью до 1200—1600 МВА

В последнее время для возбуждения мощных турбо-и гидрогенераторов, электропривода и других целей все шире начинают применять трансформаторы с естественным воздушным охлаждением напряжением 3-24 кВ и мощностью 133-6300 кВА . Благодаря использованию в этих трансфор­маторах новой теплостойкой изоляции удается повысить их нагрузочную способность и в 1,3 — 1,5 раза сократить массо-габаритные показатели по сравнению с применявшимися ранее трансформаторами с масляным охлаждением.

ПРИНЦИП ДЕЙСТВИЯ ТРАНСФОРМАТОРА

Обмотку более высокого напряжения называют обмоткой высшего напряжения (ВН), а низкого напряжения — обмоткой низшего напряжения (НН). Начала и концы обмотки ВН обозначают буквами А и X ; обмотки НН — буквами а и х.

При подключении к сети в первичной обмотке возникает переменный ток I и который создает переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные ЭДС — е х и е 2 , пропорциональные, согласно закону Максвелла, числам витков и соответствующей обмотки и скорости изменения потока .

В трансформаторе преобразуются только напряжения и токи. Мощность же остается приблизительно постоянной (она несколько уменьшается из — за внутренних потерь энергии в трансформаторе). При увеличении вторичного напряжения трансформатора в к раз по сравнению с первичным, ток г 2 во вторичной обмотке соответственно уменьшается в к раз.

Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способ­ность его преобразовывать нагрузочное сопротивление. Если к источнику переменного тока подключить сопротивление R через трансформатор с коэффициентом трансформации K , то для цепи источника

Таким образом, трансформатор изменяет значение сопротивления R в к 2 раз. Это свойство широко используют при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источ­ников электрической энергии.

Трехфазные трансформаторы обычно выполняют на магнитопроводе стержневого типа с тремя стержнями.

Форма поперечного сечения стержней обычно многоступенчатая, причем число ступеней зависит от мощности трансформатора. Ступенчатое сечение стержней обеспечивает лучшее использование площади внутри обмотки, так как периметр ступенчатого стержня приближается к окружности. В трансформаторах большой мощности для улучшения теплоотдачи между пакетами стали магнитопровода устраивают вентиляционные каналы.

Обмотки трансформаторов выполняют из проводов круглого и прямоугольного сечения, которые, как указывалось выше, изолируются кабельной бумагой.

Наиболее распространены концентрические катушечные (непрерывные, винтовые) обмотки.

При этом обычно ближе к стержню располагают обмотку низкого напряжения (НН), так как она требует меньшей электрической изоляции от заземленного стержня, а затем обмотку высокого напряжения (ВН). Между обмотками делается вертикальный канал, в котором располагается изоляционный цилиндр из электрокартона, а также происходит циркуляция масла.

В комплект обмотки входят также отводы для присоединения к вводам, размещаемым на крышке трансформатора, ответвления для регулирования напряжения, емкостные кольца и электростатические экраны емкостной зашиты от перенапряжений.

Непрерывная обмотка состоит из катушек, соединенных между собой последовательно. Катушки наматываются прямоугольным проводом, располагаемым «плашмя».

Характерной особенностью непрерывной обмотки является выполнение так называемых перекладных катушек.

Между катушками размещаются прокладки из электрокартона, создающие горизонтальные каналы для охлаждения обмотки. Эти прокладки укрепляются на вертикальных рейках посредством специального выреза в виде «ласточкина хвоста».

Трехфазный силовой двухобмоточный трансформатор схематично можно представить следующим образом.

Магнитопровод трехфазного трансформатора образует как бы два «окна», которые так и принято называть. Для упрощения обычно ограничиваются представлением расположения в окне только одной фазы, предполагая, что другая фаза в этом окне располагается симметрично, а в соседнем — аналогично.

Кроме обмоток и магнитопровода, которые в совокупности образуют активную часть трансформатора, в его состав входят другие узлы и блоки: бак, система охлаждения, вводы и др.

Общий вид трехфазного силового масляного трансформатора класса напряжения 220 кВ представлен на.

На текущий момент производство силовых трансформаторов отечественными предприятиями обеспечивается в следующем спектре:

• силовые трансформаторы общего назначения мощностью до 400 MB·А и напряжением до 525 кВ (ОА ОХК «Электрозавод»);

• силовые трансформаторы мощностью до 400 MB·А, напряжением до 525 кВ (ОАО «Трансформатор»);

• силовые трансформаторы общего назначения мощностью до 125 MB·А и напряжением до 220 кВ (ОАО «Уралэлектротяжмаш»);

• распределительные трансформаторы мощностью до 6300 кВ·А и напряжением до 35 кВ (ОАО «Биробиджанский завод силовых трансформаторов»).

Каждый трансформатор снабжен щитком из материала, не подверженного атмосферным влияниям. Щиток прикреплен к баку трансформатора на видном месте и содержит его номинальные данные, которые нанесены травлением, гравировкой, выбиванием или другим способом, обеспечивающим долговечность знаков. На щитке трансформатора согласно ГОСТ 11677-65 указаны следующие данные:

Номер стандарта, которому соответствует изготовленный трансформатор.

Номинальная мощность. (Для трехобмоточных трансформаторов указывают мощность каждой обмотки).

Номинальные напряжения и напряжения ответвлений обмоток.

Номинальные токи каждой обмотки.

Схема и группа соединения обмоток трансформатора.

Напряжение короткого замыкания.

Род установки (внутренняя или наружная).

Полная масса трансформатора.

Масса активной части.

Положения переключателя, обозначенные на его приводе.

Для трансформатора с искусственным воздушным охлаждением дополнительно указана мощность его при отключенном охлаждении. Заводской номер трансформатора выбит также на баке под щитком, на крышке около ввода ВН фазы А и на левом конце верхней полки ярмовой балки магнитопровода.

Буква А в обозначении типа трансформатора означает автотрансформатор. В обозначении трехобмоточных автотрансформаторов букву А ставят либо первой, либо последней. Если автотрансформаторная схема является основной (обмотки ВН и СН образуют автотрансформатор, а обмотка НН дополнительная). Букву А ставят первой, если трансформаторная схема является дополнительной, букву А ставят последней.

Трансформаторы, имеющие довольно высокий КПД, достигающий 98%, нашли широкое применение в промышленности, а также в некоторых узлах бытовой техники.

Трансформаторы широко применяют для преобразования напряжения: в системах передачи и распределения электрической энергии, в выпрямительных установках, в устройствах связи, автоматики и вычислительной техники, а также при электрических измерениях (измерительные трансформаторы) и функциональных преобразованиях (вращающиеся трансформаторы).

1.Тихомиров П.М. Расчет трансформаторов. М.: Энергоатомиздат, 1986.

2.Лизунов С. Д., Лоханин А. К. Проблемы современного трансформаторостроения в России. — Электричество, 2000, № 8, 9.

3.Электрические машины: В 2-х ч. Ч. 1: Учеб. для электротех. спец. вузов. – 2-е изд. перераб. и доп./Д. Е. Брускин, А. Е. Зорохович, В. С. Хвостов. — М. :Высш. шк.,

Источники
Источник — http://electricalschool.info/main/osnovy/473-princip-dejjstvija-i-ustrojjstvo.html
Источник — http://strojdvor.ru/elektrosnabzhenie/konstrukciya-i-princip-dejstviya-trexfaznyx-transformatorov/
Источник — http://bourabai.ru/toe/3-phase-principe.htm
Источник — http://www.ruselt.ru/articles/printsip-deystviya-trekhfaznogo-transformatora/
Источник — http://elekom.ru/article/vse-pro-trehfaznye-transformatory-stroenie-vidy-printsip-raboty
Источник — http://www.mtomd.info/archives/2401
Источник — http://digteh.ru/BP/3_FazTransf/
Источник — http://www.litenergo.ru/pomoshch-pokupatelyu/trehfaznyj-silovoj-transformator/
Источник — http://energymuseum.ru/printsip-rabot-trehfaznogo-transformatora/
Источник — http://electrono.ru/elektricheskie-mashiny/trexfaznye-transformatory
Источник — http://works.doklad.ru/view/VrK8Tyg2W1o.html

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий