Can шина принцип работы

Желание упростить электропроводку была такой: необходим всего один провод, подключить к нему все потребители и к каждому подвести устройство управления. Пропустить по этому проводу электроток к потребителям и сигналы управления устройствами.

С каждым годом автомобильные электрические схемы увеличивались в размере и усложнялись в конструкции. На первых выпущенных автомобилях от магнето работало зажигание, а аккумуляторной батареи и генератора не было совсем. В фарах использовались ацетиленовые горелки.

В 1975 году длина проводов в автомобильной электрической схеме была равна нескольким сотням метров и была сопоставима с электрикой лёгкомоторной авиации.

Желание упростить электропроводку была такой: необходим всего один провод, подключить к нему все потребители и к каждому подвести устройство управления. Пропустить по этому проводу электроток к потребителям и сигналы управления устройствами.

Видео

К 1991 году, благодаря прорыву цифровых технологий, фирмы Bosch и Intel создали сетевой интерфейс CAN (Controller Area Network) для мультипроцессорных систем бортовых компьютеров. В электронике такую систему называют «шиной».

В последовательной шине (serial bus) данные передаются импульс за импульсом по витой паре (двум проводам), а в параллельной шине (parallel bus), данные идут по нескольким проводам одновременно.

При большей производительности, параллельная шина усложняет электропроводку автомобиля. Последовательная шина передаёт информации до 1 Мбит/сек.

Разные блоки делятся данными, правило, по которому это происходит, называется протоколом. Протокол может отправлять разным блокам команды, запрашивать данные у одного или у всех. Помимо конкретного обращения к устройству, протокол может задать важность и командам. К примеру, команда включения вентилятора охлаждения двигателя будет приоритетней команды опускания бокового стекла.

Минимизация современной электроники позволила наладить выпуск дешёвых модулей управления и систем связи. В автомобильной сети они могут объединяться в цепи, звёзды и кольца.

Информация идёт в обе стороны, например, включив лампу дальнего света, на панели приборов загорится сигнал – светит она или нет.
Система управления двигателем выбирает наилучший режим, получая данные от всех устройств цепи, система освещения включит или отключит фары, система навигации проложит или изменит маршрут и так далее.

Благодаря такому протоколу диагностика двигателя и других устройств автомобиля упростилась.

Желание иметь всего один провод в автомобиле не осуществилось, но CAN – модуль и протокол передачи данных повысили надёжность системы и упростили электропроводку.

Видео

Схема подключения ЭБУ к высокоскоростной шине CAN

В CAN сети все ЭБУ подключены к шине параллельно. Обмен данными производится короткими пакетами — сообщениями.

CAN сообщение

Каждое сообщение содержит идентификатор, который в сети является уникальным (например, «Температура двигателя 100 град» или «Скорость автомобиля 50 км/ч»). При передаче, все ЭБУ в сети получают сообщение и каждый из них проверяет идентификатор. Если сообщение имеет отношение к данному ЭБУ, то оно обрабатывается, в противном случае – игнорируется. Идентификатор может быть длиной 11 бит или 29 бит.

Арбитраж

Физический уровень

В автомобиле может применяться несколько типов шин CAN.

Высокоскоростной CAN (High speed) применяется в основном в сети управления двигателем и управления шасси. Там, где необходима высокая скорость реакции. Скорость обмена по этой шине 500 или 250 кбит/сек.

Схема подключения ЭБУ к высокоскоростной шине CAN


Низкоскоростной CAN (Low speed) применяется в сети управления кузова. Скорость обмена по этой шине, как правило, равняется 125 кбит/сек.

Схема подключения ЭБУ к низкоскоростной шине CAN


Однопроводный CAN (1-wire) Это удешевлённый варинат Low speed CAN, применяется в основном концерном GM. Используется для коммуникации между ЭБУ кузова машины. Работает на скорости 33,3 кбит/сек.

Схема подключения ЭБУ к однопроводной шине CAN

Надёжность

Двухпроводная шина сохраняет свою работоспособность при обрыве или замыкании одного из проводов (для двухпроводной шины).

Фазы работы

Шина CAN используется в автомобилях достаточно давно. Изначально шина CAN использовалась в простых конфигурациях. Например, для надёжной и быстрой связи между ЭБУ мотора и ЭБУ автоматической коробки передач. В этой конфигурации шина использовалась только для передачи данных. В ЭБУ заводилась линия питания и линия от замка зажигания, диагностика производилась по отдельным К-линиям, идущим из каждого ЭБУ.

В более современных автомобилях, по шине CAN передаётся не только управляющая, но и диагностическая информация. Помимо этого, шина CAN стала управлять системой питания ЭБУ. В этой конфигурации все ЭБУ подключены к общему питанию и шине CAN. Замок зажигания является электронным блоком управления и информация о включении зажигания передаётся от него по CAN шине.

Можно выделить четыре основные фазы работы шины:

Ключевое значение придается переменной показателя. Если в сообщении нет данных о времени, тогда это сообщение принимается системой по факту его получения.

Как передается информация

Итак, CAN-шина представляет собой сеть, по которой происходит обмен информацией между устройствами. Возьмем для примера блок управления двигателем – он имеет не только основной микроконтроллер, но и CAN-устройство, которое формирует и рассылает импульсы по шинам H (CAN-высокий) и L (CAN-низкий), которые называются витая пара.

Каждый подключенный к CAN-шине блок имеет определенное входное сопротивление, в результате образуется общая нагрузка шины CAN.

Общее сопротивление нагрузки зависит от числа подключенных к шине электронных блоков управления и исполнительных механизмов.

Рис. 2. Фрагмент CAN-шины с распределением нагрузки в проводах: CAN High CAN Low

Системы и блоки управления автомобиля имеют не только различные нагрузочные сопротивления, но и скорости передачи данных, все это может препятствовать обработке разнотипных сигналов.Для решения данной технической проблемы используется преобразователь для связи между шинами.Такой преобразователь принято называть межсетевым интерфейсом, это устройство в автомобиле чаще всего встроено в конструкцию блока управления, комбинацию приборов, а также может быть выполнено в виде отдельного блока.

Рис. 3. Блок-схема межсетевого интерфейса

Признаки и причины

Инструкция по подключению сигнализации по CAN-шине

При монтаже противоугонной системы простой вариант ее соединения с бортовой сетью — связать охранную установку с цифровым интерфейсом. Но такой метод возможен при наличии КАН-шины в автомобиле.

Чтобы произвести установку автосигнализации и подключить ее к CAN-интерфейсу, необходимо знать место монтажа блока управления системой.

Если сигналку ставили специалисты, то надо обратиться за помощью с этим вопросом на СТО. Обычно устройство располагается за приборной панелью автомобиля или под ней. Иногда установщики ставят микропроцессорный модуль в свободное пространство за бардачком или автомагнитолой.

Что понадобится?

Для выполнения задачи потребуется:

  • мультиметр;
  • канцелярский нож;
  • изолента;
  • отвертка.

Пошаговые действия

Процедура подключения противоугонной установки к CAN-шине осуществляется так:

Пользователь Sigmax69 рассказал о соединении охранного комплекса с цифровым интерфейсом на примере автомобиля Хендай Солярис 2017.

Кан шина или цифровая шина работает со многими системами одновременно и постоянно занимается передачей данных. Но как и в каждой системе, в механизме CAN шины могут происходить сбои и от этого анализатор информации будет работать крайне некорректно. Проблемы с кан шиной могут возникать из-за следующих ситуаций:

CAN шина, как подключается автосигнализация к цифровой шине

Анализатор цифровой шины справляется не только со внутренними системами и устройствами автомобиля. Подключение внешних элементов –сигнализация, датчики, другие устройства, добавляет цифровому устройству больше нагрузки, но при этом его продуктивность остаётся прежней. Автосигнализация, которая имеет адаптер для подключения к цифровой шине устанавливается по стандартной схеме, а для того, чтобы подключиться к CAN необходимо пройти несколько простых шагов:

  1. Автосигнализация по стандартной схеме подключается ко всем точкам автомобиля.
  2. Владелец транспортного средства ищет оранжевый, толстый провод – он ведёт к цифровой шине.
  3. Адаптер сигнализации подключается к проводу цифровой шины автомобиля.
  4. Производятся необходимые закрепляющие действия –установка системы в надёжном месте, изоляция проводов, проверка правильности произведённого процесса.
  5. Настраиваются каналы для работы с системой, задаётся функциональный ряд.

Возможности современной цифровой шины велики, ведь виток из двух проводов объединяет в себе доступ до всех основных и дополнительных систем автомобиля. Это помогает избежать наличия большого количества проводов в салоне и упрощает работу всей системы. Цифровая шина работает по типу компьютера, а это в современном мире очень актуально и удобно.

Следует понимать, что данные по CAN-сети передаются в виде кадров. Наиболее важные из них – это поле идентификатора (Identifire) и система данных (Data). Наиболее часто используемый тип сообщения по Кан-шине – Data Frame. Данный тип передачи данных состоит из так называемого арбитражного поля и определяет приоритетную передачу данных в том случае, если сразу несколько узлов системы передают данные на CAN-шину.

1 О принципе работы сетевого интерфейса CAN-шина

Похожие статьи

  • регулировка скорости передачи данных посредством усиления или уменьшения подачи тока;
  • ограничение тока для предотвращения повреждения датчика или замыкания линий передачи;
  • тепловая защита.

На сегодняшний день признаны два вида трансиверов – High Speed и Fault Tolerant. Первый тип наиболее распространен и соответствует стандарту (ISO 11898-2), он позволяет передавать данные со скоростью до 1МБ в секунду. Второй тип приемопередатчиков позволяет создать энергосберегающую сеть, со скоростью передачи до 120 Кб/сек, при этом подобные передатчики не имеют чувствительности к каким-либо повреждениям на самой шине.

  • «Быстрая» шина, работающая на скорости 500 килобит в секунду, объединяет блоки управления двигателем, ABS, SRS и трансмиссией.
  • «Медленная» функционирует на скорости 100 кбит/с и объединяет блоки системы «Комфорт» (центральный замок, стеклоподъемники и так далее).
  • Третья работает на той же скорости, но передает информацию только между навигацией, встроенным телефоном и так далее. На старых машинах (например, Golf IV) информационная шина и шина «комфорт» были объединены физически.

Суть CAN-шины

Цифровая CAN-шина – это не конкретный физический протокол. Принцип работы CAN-шины, разработанный Bosch еще в восьмидесятых годах, позволяет реализовать ее с любым типом передачи – хоть по проводам, хоть по оптоволокну, хоть по радиоканалу. КАН-шина работает с аппаратной поддержкой приоритетов блоков и возможностью «более важному» перебивать передачу «менее важного».

Для этого введено понятие доминантного и рецессивного битов: упрощенно говоря, протокол CAN позволит любому блоку в нужный момент выйти на связь, остановив передачу данных от менее важных систем простой передачей доминантного бита во время наличия на шине рецессивного. Это происходит чисто физически – например, если «плюс» на проводе означает «единицу» (доминантный бит), а отсутствие сигнала – «ноль» (рецессивный бит), то передача «единицы» однозначно подавит «ноль».

Представьте себе класс в начале урока. Ученики (контроллеры низкого приоритета) спокойно переговариваются между собой. Но, стоит учителю (контроллеру высокого приоритета) громко дать команду «Тишина в классе!», перекрывая шум в классе (доминантный бит подавил рецессивный), как передача данных между контроллерами-учениками прекращается. В отличие от школьного класса, в CAN-шине это правило работает на постоянной основе.

Для чего это нужно? Чтобы важные данные были переданы с минимумом задержек даже ценой того, что маловажные данные не будут переданы на шину (это отличает CAN шину от знакомого всем по компьютерам Ethernet). В случае аварии возможность ЭБУ впрыска получить информацию об этом от контроллера SRS несоизмеримо важнее, чем приборной панели получить очередной пакет данных о скорости движения.

В современных автомобилях уже стало нормой физическое разграничение низкого и высокого приоритетов. В них используются две и даже более физические шины низкой и высокой скорости – обычно это «моторная» CAN-шина и «кузовная», потоки данных между ними не пересекаются. К всем сразу подключен только контроллер CAN-шины, который дает возможность диагностическому сканеру «общаться» со всеми блоками через один разъем.

Например, техническая документация Volkswagen определяет три типа применяемых CAN-шин:

  • «Быстрая» шина, работающая на скорости 500 килобит в секунду, объединяет блоки управления двигателем, ABS, SRS и трансмиссией.
  • «Медленная» функционирует на скорости 100 кбит/с и объединяет блоки системы «Комфорт» (центральный замок, стеклоподъемники и так далее).
  • Третья работает на той же скорости, но передает информацию только между навигацией, встроенным телефоном и так далее. На старых машинах (например, Golf IV) информационная шина и шина «комфорт» были объединены физически.

Интересный факт: на Renault Logan второго поколения и его «соплатформенниках» также физически две шины, но вторая соединяет исключительно мультимедийную систему с CAN-контроллером, на второй одновременно присутствуют и ЭБУ двигателя, и контроллер ABS, и подушки безопасности, и ЦЭКБС.

Физически же автомобили с CAN-шиной используют ее в виде витой дифференциальной пары: в ней оба провода служат для передачи единственного сигнала, который определяется как разница напряжений на обоих проводах. Это нужно для простой и надежной помехозащиты. Неэкранированный провод работает, как антенна, то есть источник радиопомех способен навести в нем электродвижущую силу, достаточную для того, чтобы помеха воспринялась контроллерами как реально переданный бит информации.

Но в витой паре на обоих проводах значение ЭДС помехи будет одинаковым, так что разница напряжений останется неизменной. Поэтому, чтобы найти CAN-шину в автомобиле, ищите витую пару проводов – главное не перепутать ее с проводкой датчиков ABS, которые так же для защиты от помех прокладываются внутри машины витой парой.

Диагностический разъем CAN-шины не стали придумывать заново: провода вывели на свободные пины уже стандартизированной в OBD-II колодки, в ней CAN-шина находится на контактах 6 (CAN-H) и 14 (CAN-L).

Поскольку CAN-шин на автомобиле может быть несколько, часто практикуется использование на каждой разных физических уровней сигналов. Вновь для примера обратимся к документации Volkswagen. Так выглядит передача данных в моторной шине:

Когда на шине не передаются данные или передается рецессивный бит, на обоих проводах витой пары вольтметр покажет по 2,5 В относительно «массы» (разница сигналов равна нулю). В момент передачи доминантного бита на проводе CAN-High напряжение поднимается до 3,5 В, в то время как на CAN-Low опускается до полутора. Разница в 2 вольта и означает «единицу».

На шине «Комфорт» все выглядит иначе:

Здесь «ноль» — это, наоборот, 5 вольт разницы, причем напряжение на проводе Low выше, чем на проводе High. «Единица» же – это изменение разности напряжений до 2,2 В.

Проверка CAN-шины на физическом уровне ведется с помощью осциллографа, позволяющего увидеть реальное прохождение сигналов по витой паре: обычным тестером, естественно, «разглядеть» чередование импульсов такой длины невозможно.

«Расшифровка» CAN-шины автомобиля также ведется специализированным прибором – анализатором. Он позволяет выводить пакеты данных с шины в том виде, как они передаются.

Сами понимаете, что диагностика шины CAN на «любительском» уровне без соответствующего оборудования и знаний не имеет смысла, да и банально невозможна. Максимум, что можно сделать «подручными» средствами, чтобы проверить кан-шину – это измерить напряжения и сопротивление на проводах, сравнив их с эталонными для конкретного автомобиля и конкретной шины. Это важно – выше мы специально привели пример того, что даже на одном автомобиле между шинами может быть серьезная разница.

Как подключить сигнализацию по CAN-шине

Что такое CAN-шина и принцип ее работы

КАН-шина представляет собой сеть контроллеров. Устройство используется для объединения всех управляющих модулей автомобиля в одну рабочую сеть с общим проводом. Этот девайс состоит из одной пары кабелей, которая называется CAN. Информация, передающаяся по каналам из одного модуля на другой, отправляется в закодированном виде.

Схема подключения устройств к CAN-шине в Мерседесе

Какие функции может выполнять CAN-шина:

Эта система работает в нескольких режимах:

Канал Виалон СУшка в своем видео рассказал о КАН-шине и что надо знать про ее эксплуатацию.

Плюсы и минусы

Какими преимуществами обладает КАН-шина:

Какие недостатки характерны для устройства:

Протокол CAN был разработан для автомобильной промышленности и впоследствии стал стандартом в области создания бортовых сетей автомобилей, железнодорожного транспорта и т.д. CAN позволяет создавать сети с развитыми средствами контроля ошибок, скоростью передачи до 1Мбит/с и пакетами содержащими не более восьми байтов данных.

В данной статье не будем полностью расписывать CAN протокол, а обратим внимание лишь на вещи, которые надо обязательно знать и понимать для использования или разработки электронных устройств с поддержкой CAN.

Протокол CAN был разработан для автомобильной промышленности и впоследствии стал стандартом в области создания бортовых сетей автомобилей, железнодорожного транспорта и т.д. CAN позволяет создавать сети с развитыми средствами контроля ошибок, скоростью передачи до 1Мбит/с и пакетами содержащими не более восьми байтов данных.

Канальный и физический уровни CAN

Структура узла сети CAN

Рассматриваемый нами узел сети CAN состоит из микроконтроллера, CAN контроллера и приемопередатчика (рисунок 1). Чаще всего мы используем микроконтроллеры с встроенным CAN контроллером для упрощения схемы, но иногда используется автономный контроллер CAN с интерфейсом SPI (MCP2510). Далее приемопередатчик подключается к витой паре, на концах которой размещены согласующие резисторы (терминатор) с сопротивлением 120 Ом.


Рисунок 1 – Узел сети CAN

Для формирования логической единицы в витой паре, или свободной шине, на оба провода подается напряжение, равное половине разности напряжения между 0 или Vcc. Логическому нулю соответствует подача на провода линии дифференциального напряжения (рисунок 2).


Рисунок 2 – Логические уровни на CAN-шине

Шина CAN позволяет передавать данные со скоростью 1 Мбит/c при длине кабеля не более 40 м. В обучающей литературе написано, что при снижении скорости передачи до 10кбит/с можно добиться длины сети в 1.5км.

Пакет сообщения CAN

Формат сообщения CAN показан на рисунке 3.


Рисунок 3 – Пакет сообщения CAN

По факту пакет сообщения формируется CAN контроллером, а прикладное ПО только устанавливает идентификатор сообщения, длину сообщения и предоставляет байты данных, поэтому полностью рассматривать пакет не будем, а посмотрим на данные которые мы изменяем при работе с CAN шиной.

Идентификатор (11 – битный )

Или идентификатор (29 – битный)

от 0 до 8 байт данных в пакете

Идентификатор сообщения используется для идентификации данных, отправленных в этом пакете. Каждое отправленное сообщение принимается всеми узлами сети и в данном случае идентификатор позволяет понять конкретному устройству, необходимо ли обрабатывать данное сообщение. Максимальная длина сообщения 8 байт, но можно уменьшить это значение для сохранения пропускной способности шины CAN. Для примера ниже по тексту есть несколько скриншотов CAN сообщений из автомобильной сети.

Арбитраж на шине CAN

Если без подробностей, то первым по шине CAN всегда передается сообщение с наименьшим идентификатором.

Настройка скорости передачи данных по шине CAN

Скорость передачи данных по CAN шине настраивается за счет формирования квантов времени, а не как во многих других протоколах последовательной передачи данных за счет делителя скорости. В большинстве случаев используются скорости 10Кбит/c, 20Кбит/c, 50Кбит/c, 100Кбит/c, 125Кбит/c, 500Кбит/c, 800Кбит/c, 1MBaud и настройки для этих скоростей уже посчитаны. На рисунке 4 изображено окно выбора скорости в программе PcanView.


Рисунок 4 – Выбор скорости передачи данных в программе PcanView


Рисунок 5 – Время передачи одного бита

Первый сегмент всегда фиксирован и равняется одному кванту. Далее идет два сегмента Tseg1 и Tseg2 и количество квантов в каждом сегменте определяется пользователем и может быть равно от 8 до 25. Точка выборки находится между Tseg1 и Tseg2, т.е. в конце первого и в начале второго сегмента. Так же пользователь может определить ширину скачка синхронизации (Synchronization Jump Width — SJW) для подстройки битовой скорости принимающего устройства, который может быть в диапазоне 1 – 4 квантов времени.

Теперь приведем формулу расчета скорости (Пример расчета скорости для CAN контроллера SJA1000):

BTR = Pclk/(BRP * (1 + Tseg1 + Tseg2))

BTR – скорость передачи данных,

Pclk – частота работы CAN контроллера,

BRP – значение предделителя частоты генератора скорости передачи

Tseg1 – первый сегмент

Tseg2 – Второй сегмент

Для проверки возьмем уже посчитанную скорость 125Кбит/c и попробуем получить настройки вручную. Pclk возьмем 16 МГц.

BRP = 16МГц /(125K * (1 + Tseg1 + Tseg2))

Затем подбираем интервал передачи бита находящийся в диапазоне от 8 до 25 квантов времени, так что бы получилось целое значение BRP. В нашем случае если взять (1 + Tseg1 + Tseg2) = 16, то BRP будет равен 30.

Далее нужно подобрать соотношение между Tseg1 и Tseg2, которое даст нам желаемое положение точки выборки (Sample Point – SP).

SP = ((1 + Tseg1 + Tseg2) * 70)/100

Подставляем значения и получаем 16 * 0.7 = 11.2, что соответствует соотношению Tseg1 = 10, Tseg2 = 5, т.е. 1 + 10 + 5 = 16. Далее смотрим если Tseg2 >= 5, то SJW = 4, если Tseg2
Рисунок 6 – Настройка CAN фильтра

Если все сделано правильно, то мы увидим сообщения от кресел (рисунок 7), а при нажатии кнопки наклона спинки на пульте управления мы увидим еще одно сообщение с адресом 1F4 идущее от пульта к креслу (рисунок 8).

Рисунок 7 – CAN сообщения от кресла с электроприводом

Рисунок 8 – CAN сообщения от кресла с электроприводом и сообщение от пульта управления к креслу

Теперь мы знаем какие должны быть адрес, длина и данные в CAN пакете для имитации нажатия кнопки изменения положения спинки. Во вкладке Transmit нажимаем NEW и в открывшемся окне создаем копию пакета 1F4, т.е. Length = 3, Data = 40 80 00. Period можно оставить 0 ms, тогда сообщения будут отправляться по факту нажатия кнопки пробел (рисунок 9).


Рисунок 9 – Создание CAN сообщения

На рисунке 10 отображено поле Transmit главного окна содержащее все отправляемые сообщения в CAN и информацию о них. При выделении сообщения и нажатии кнопки пробел произойдет отправка пакета в CAN сеть и кресло немного сдвинется в нужном направлении.

Рисунок 10 – Поле Transmit

Понятное дело, что добиться полноценного управления креслом в таком случае не получиться, т.к. мы не можем исключить из сети пакеты заводского пульта управления, но эта проблема вполне решаема.

Итог

Мы увидели как при определенных усилиях и навыках можно создавать собственные электронные системы с использованием высокотехнологичного протокола CAN и как можно подключаться, исследовать и управлять устройствами подключенными к автомобильной CAN шине.

Чтобы подключить охранный комплекс к цифровому интерфейсу, надо знать место установки микропроцессорного модуля управления сигнализаций. Это устройство устанавливается под приборной комбинацией машины. Возможен монтаж блока за вещевым ящиком или аудиосистемой.

По типу идентификаторов такие устройства делятся на два вида:

  1. CAN2, 0A. Это маркировка интерфейсов, которые могут работать в 11-битном формате передачи информации. Данная разновидность устройств не в состоянии определять ошибки импульсов от блоков, которые работают с 29 бит.
  2. CAN2, 0B. Это маркировка шин, работающих в формате 11 бит. Основная особенность заключается в возможности передачи информации на блоки управления при выявлении 29-битного идентификатора.

В зависимости от области применения, шины разделяются на три класса:

Канал «Diyordie» рассказал о назначении цифрового интерфейса, а также о его разновидностях в автомобиле.

• Возможность работы в режиме жёсткого реального времени.
• Простота реализации и минимальные затраты на использование.
• Высокая устойчивость к помехам.
• Надёжный контроль ошибок передачи и приёма.
• Широкий диапазон скоростей работы.
• Большое распространение технологии, наличие широкого ассортимента продуктов от различных поставщиков.

Задача: Получить доступ к показаниям штатных датчиков автомобиля без установки дополнительных.
Решение: Считывание данных с CAN-шины автомобиля.
  • обороты двигателя;
  • уровень топлива в баке;
  • пробег автомобиля;
  • температура охлаждающей жидкости двигателя ТС;
  • и т.д.

• Что такое CAN-шина?

• Откуда появилась задача считывания данных с CAN-шины?

Задача считывания данных с CAN-шины появилась как следствие задачи оптимизации расходов на эксплуатацию автотранспорта.

Именно таким решением стало получение информации с CAN-шины. Ведь оно имеет целый ряд преимуществ:

1. Экономия на дополнительных устройствах

Не нужно нести значительных расходов на приобретение и установку различных датчиков и устройств.

2. Сохранение гарантии на автомобиль

3. Получение доступа к информации со штатно установленных электронных устройств и датчиков.

• Какие достоинства и недостатки влечет за собой решение со считыванием данных с CAN-шины?

Достоинства:

• Возможность работы в режиме жёсткого реального времени.
• Простота реализации и минимальные затраты на использование.
• Высокая устойчивость к помехам.
• Надёжный контроль ошибок передачи и приёма.
• Широкий диапазон скоростей работы.
• Большое распространение технологии, наличие широкого ассортимента продуктов от различных поставщиков.

Недостатки:

• Максимальная длина сети обратно пропорциональна скорости передачи.
• Большой размер служебных данных в пакете (по отношению к полезным данным).
• Отсутствие единого общепринятого стандарта на протокол высокого уровня.

Пример реализации решения:

  • с первого данные получены так и не были;
  • со второго был получен только пробег;
  • с третьего были получены все интересующие данные (уровень топлива, температура охлаждающей жидкости, обороты двигателя, общий расход, общий пробег).

3. Выбирается стандарт FMS, скорость для большинства автомобилей 250 000.

4. Запускается сканирование.

Чаще всего основной целью клиентов является контроль уровня и расхода топлива.

Источники
Источник — http://autosteam.ru/helpful-info/984-can-shina
Источник — http://quantexlab.com/rus/info/vehiclesys/commsys/canbus/can-shina.html
Источник — http://principraboty.ru/can-shina-princip-raboty/
Источник — http://autodvig.com/electrika/can-shina-eto-65069/
Источник — http://alarmspec.ru/informaciya/can-shina.html
Источник — http://tuningkod.ru/chip-tuning/blok-upravleniya-dvigatelem/can-shina-avtomobilja-svoimi-rukami.html
Источник — http://avtocity365.ru/avtosignalizatsii-i-protivougonnye-sistemy/can-shina-v-avtomobile/
Источник — http://avtobez.com/obsluzhivanie/can-shina-chto-eto-423/
Источник — http://embeddedsystem.ru/index.php?page=can-bus-can-interface
Источник — http://avtozam.com/elektronika/safe/chto-takoe-can-shina/
Источник — http://skysim.ru/can-shina.html
Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий

Adblock
detector