Катушка тесла принцип работы

Содержание

Огромная катушка Тесла

Если очень коротко, то катушка Тесла (КТ) – это резонансный трансформатор, создающий высокочастотный ток. Есть информация, что в своих экспериментах военные довели катушку до мощности в 1 Тгц.

Огромная катушка Тесла

Тут стоит затронуть такой вопрос – зачем Тесла ее изобрел? Согласно записям ученый работал над технологией беспроводной передачи электроэнергии. Вопрос крайне актуальный для всего человечества. В теории с помощью эфира две мощные КТ, размещенные в паре километров друг от друга, смогут передавать электричество. Для этого они должны быть настроены на одинаковую частоту. Также есть мнение, что КТ может стать своего рода вечным двигателем.

Внедрение данной технологии сделает все имеющиеся сегодня АЭС, ТЭС, ГЭС и прочие просто ненужными. Человечеству не придется сжигать твердые ископаемые, подвергаться риску радиационного заражения, перекрывать русла рек. Но ответ на вопрос, почему никто не развивает данную технологию, остается за конспирологами.

Настольная катушка Тесла, продающаяся сегодня в качестве сувенира

Для работы двух Катушек Тесла используется два миди канала — первый и второй. Каждая Катушка Тесла воспроизводит по одной ноте последовательно из своей миди дорожки.

Любой звук это механическая волна в воздухе, которая характеризуется амплитудой и частотой. Определенной музыкальной ноте, которую играет музыкальный инструмент, соответствует своя частота, амплитуда при этом определяет громкость ноты. Например, ноте ДО малой октавы соответствует частота 130,81Гц, а ноте ЛЯ первой октавы соответствует частота 440Гц.

Любой повторяющийся процесс с частотой 440Гц, который вызовет колебания воздуха, будет восприниматься ухом похожим на ноту ЛЯ. Музыкальная Катушка Тесла работает именно по этому принципу.

Для проигрывания практически любой мелодии достаточно двух Катушек Тесла, каждая из которых независимо воспроизводит свою ноту, создавая стереозвучание.

ВАЖНО! В один момент времени одна Катушка Тесла может воспроизводить только одну ноту, это следует помнить при написании музыки (при этом возможно проигрывать на одной Катушке Тесла несколько нот одновременно, но это искажает звук и усложняет проект, поэтому этот режим не используется).

Как проигрывается музыка?

Для работы двух Катушек Тесла используется два миди канала — первый и второй. Каждая Катушка Тесла воспроизводит по одной ноте последовательно из своей миди дорожки.

Ноты поступают в пульт управления Катушками Тесла по миди кабелю. При этом пульт можно подключить к миди-синтезатору и проигрывать музыку в реальном времени, или подключить к компьютеру и проигрывать заранее записанные миди треки.

Катушки Тесла имеют ограниченный диапазон проигрывания нот. Рекомендуется использовать ноты от С1 (ДО контроктавы) до H4 (CИ первой октавы). Ноты в других октавах проигрываться пультом не будут. Это связано с плохим восприятием на слух очень низких нот и очень большой нагрузкой по мощности при более высоких нотах.

Рекомендуется оставлять оригинальный музыкальный трек, который будет воспроизводиться параллельно через мощные колонки. Это позволяет заполнить паузы, добавить басы и повысить узнаваемость мелодии.

Пример создания композиции в программе Cubase

Для примера ниже показаны обработанная композиция Баха Токката и фуга ре минор и видео с исполнением этой композиции.

В медицине при длительном воздействии токов высокой частоты и напряжения могут образоваться хронические заболевания и другие отрицательные явления. Также нахождение человека в поле высокого напряжения негативно сказывается на его здоровье. Можно отравиться газами, выделяемыми при функционировании трансформатора без вентиляции.

Одним из знаменитых изобретений Николы Тесла была катушка Тесла. Это изобретение представляет собой резонансный трансформатор, который образует высокочастотное повышенное напряжение. В 1896 году на изобретение выдан патент, который имел название аппарата для образования электрического тока высокого потенциала и частоты.

Разновидности

Со времен Николы Тесла появилось много различных видов трансформаторов Тесла. Рассмотрим распространенные основные виды таких трансформаторов, как катушка Тесла.

VTTC – катушка на основе электронной лампы, которая является коммутирующим элементом. Подобные трансформаторы способны функционировать в постоянном режиме и выдавать разряды большой толщины. Такой тип питания обычно применяют для создания катушек высокой частоты. Они создают эффект стримера в виде факела.

SSTC – катушка, в конструкции которой в качестве ключа используется полупроводниковый элемент в виде мощного транзистора. Такой вид трансформаторов также способен функционировать в постоянном режиме. Внешняя форма стримеров от такого устройства бывает самой различной. Управление с полупроводниковым ключом более простое, существуют такие катушки Тесла, которые умеют играть музыку.

DRSSTC – трансформатор, имеющий два контура резонанса. Роль ключей играют также полупроводниковые компоненты. Это наиболее сложный в настройке и управлении трансформатор, однако, он используется для создания впечатляющих эффектов. При этом большой резонанс получается в первом контуре. Во втором контуре образуется наиболее яркие толстые и длинные стримеры в виде молний.

Устройство и работа

Элементарный трансформатор Тесла включает в себя две катушки, тороид, конденсатор, разрядник, защитное кольцо и заземление.

Тороид выполняет несколько функций:
  • Снижение частоты резонанса, особенно для вида катушки Тесла с полупроводниковыми ключами.Полупроводниковые элементы плохо функционируют на повышенных частотах.
  • Накапливание энергии перед возникновением электрической дуги. Чем больше размер тороида, тем больше энергии накоплено. В момент пробоя воздуха тороид выдает эту накопленную энергию в электрическую дугу, при этом увеличивая ее.
  • Образование электростатического поля, отталкивающего дугу от вторичной обмотки. Часть этой функции исполняет вторичная обмотка. Однако тороид помогает ей в этом. Поэтому электрическая дуга не бьет во вторичную обмотку по кратчайшему пути.

Обычно наружный диаметр тороида в два раза больше диаметра вторичной обмотки. Тороиды производят из алюминиевой гофры и других материалов.

Вторичная обмотка трансформатора Тесла является основным элементом конструкции. Обычно длина обмотки относится к ее диаметру 5 : 1. Диаметр проводника для катушки выбирают из расчета, чтобы разместилось около 1000 витков, которые должны располагаться плотно между собой. Витки обмотки покрывают несколькими слоями лака или эпоксидной смолы. В качестве каркаса выбирают ПВХ-трубы, которые можно купить в строительном магазине.

Защитное кольцо служит для предохранения от выхода из строя электронных элементов в случае попадания электрической дуги в первичную обмотку. Защитное кольцо устанавливается, если размер стримера (электрической дуги) больше длины вторичной катушки. Это кольцо выполнено в виде медного незамкнутого проводника, заземленного отдельным проводом на общее заземление.

Форма первичной обмотки может быть различной: конической, плоской или цилиндрической.

Катушка Тесла должна иметь заземление . Если его не будет, то стримеры будут бить в саму катушку, для замыкания тока.

Колебательный контур образован конденсатором совместно с первичной обмоткой. В этот контур также подключен разрядник, который является нелинейным элементом. Во вторичной обмотке также образован контур колебаний, в котором конденсатором выступает емкость тороида и межвитковая емкость катушки. Чаще всего для предохранения от электрического пробоя вторичную обмотку покрывают лаком или эпоксидной смолой.

В результате катушка Тесла, или другими словами трансформатор, состоит из двух контуров колебаний, связанных между собой. Это и придает трансформатору Тесла необычные свойства, и является основным отличительным качеством от обычных трансформаторов.

При достижении напряжения пробоя между электродами разрядника, образуется электрический лавинообразный пробой газа. При этом происходит разряд конденсатора на катушку через разрядник. Вследствие этого цепь контура колебаний, который состоит из конденсатора и первичной обмотки, остается замкнутой на разрядник. В этой цепи возникают колебания высокой частоты. Во вторичной цепи образуются резонансные колебания, в результате чего возникает высокое напряжение.

Во всех видах катушки Тесла главным элементом являются контуры: первичный и вторичный. Однако генератор колебаний высокой частоты может отличаться по конструкции.

Катушка Тесла по сути дела состоит из двух катушек, не имеющих металлического сердечника. Коэффициент трансформации катушки Тесла в несколько десятков раз выше отношения числа витков обеих обмоток. Поэтому выходное напряжение трансформатора достигает нескольких миллионов вольт, что и обеспечивает мощные электрические разряды длиной в несколько метров. Важным условием является образование контура колебаний первичной обмоткой и конденсатором, вхождение в резонанс этого контура с вторичной обмоткой.

Виды эффектов от катушки Тесла

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Малоизвестные эффекты катушки Тесла

Некоторые люди считают трансформатор Тесла каким-то особенным устройством, обладающим исключительными свойствами. Также есть мнение, что такое устройство способно стать генератором энергии и вечным двигателем.

Иногда говорят, что при помощи такого трансформатора можно передавать электрическую энергию на значительные расстояния, не используя провода, а также создать антигравитацию. Такие свойства не подтверждены и не проверены наукой, но Тесла говорил о скорой доступности таких способностей для человека.

В медицине при длительном воздействии токов высокой частоты и напряжения могут образоваться хронические заболевания и другие отрицательные явления. Также нахождение человека в поле высокого напряжения негативно сказывается на его здоровье. Можно отравиться газами, выделяемыми при функционировании трансформатора без вентиляции.

Применение
  • Величина напряжения на выходе катушки Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.
  • Катушка Тесла нашла применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.
  • Катушка Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.
  • Иногда такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх. В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Катушка Тесла на будущее

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей.

Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

Сегодня трансформатором Тесла называют высокочастотный высоковольтный резонансный трансформатор, и в сети можно найти множество примеров ярких реализаций этого необычного устройства. Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей. Но все ли помнят, как и для чего создавался изначально этот удивительный прибор?

История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов.

Указать конкретный год, когда именно пришла к ученому эта идея, вряд ли можно точно, однако известно, что 20 мая 1891 года Никола Тесла выступил с подробной лекцией в Колумбийском университете, где представил сотрудникам Американского института электроинженеров свои идеи, и кое-что проиллюстрировал, показав наглядные эксперименты.

Целью первых демонстраций было — показать новый способ получения света посредством использования для этого токов высокой частоты и высокого напряжения, а также раскрыть особенности этих токов. Справедливости ради отметим, что современные энергосберегающие люминесцентные лампы работают именно на принципе, который как раз и предложил для получения света Тесла.

Окончательная теория относительно именно беспроводной передачи электрической энергии вырисовывалась постепенно, ученый потратил несколько лет жизни, доводя до ума свою технологию, много экспериментируя и совершенствуя кропотливо каждый элемент схемы, он разрабатывал прерыватели, изобретал стойкие высоковольтные конденсаторы, придумывал и модифицировал контроллеры цепей, но так и не смог воплотить свой замысел в жизнь в том масштабе, в каком хотел.

Однако теория до нас дошла. Доступны дневники, статьи, патенты и лекции Николы Тесла, в которых можно найти исходные подробности относительно данной технологии. Принцип действия резонансного трансформатора можно узнать, прочитав например патенты Николы Тесла №787412 или №649621, уже доступные сегодня в сети.

Если попробовать кратко разобраться в том, как же работает трансформатор Тесла, рассмотреть его устройство и принцип действия, то в этом нет ничего сложного.

Вторичная обмотка трансформатора изготавливается из провода в изоляции (например из эмальпровода), который укладывается виток к витку в один слой на полый цилиндрический каркас, отношение высоты каркаса к его диаметру обычно берут равным от 6 к 1 до 4 к 1.

После намотки вторичную обмотку покрывают эпоксидной смолой или лаком. Первичная обмотка изготавливается из провода относительно большого сечения, она содержит обычно от 2 до 10 витков, и укладывается в форму плоской спирали, либо наматывается подобно вторичной — на цилиндрический каркас диаметром несколько большим, чем у вторичной.

Высота первичной обмотки, как правило, не превышает 1/5 высоты вторичной. К верхнему выводу вторичной обмотки подключают тороид, а нижний ее вывод заземляют. Далее рассмотрим все более подробно.

Например: вторичная обмотка навита на каркас диаметром 110 мм, эмальпроводом ПЭТВ-2 диаметром 0,5 мм, и содержит 1200 витков, таким образом высота ее получается равной примерно 62 см, а длина провода составляет около 417 метров. Пусть первичная обмотка содержит 5 витков толстой медной трубки, навитых на диаметр 23 см, и имеет высоту 12 см.

Далее изготавливают тороид. Его емкость в идеале должна быть такой, чтобы резонансной частоте вторичного контура (заземленная вторичная катушка вместе с тороидом и окружающей средой) соответствовала бы длина провода вторичной обмотки так, что эта длина равнялась бы четверти длины волны (для нашего примера частота получается равной 180 кГц).

Для точного расчета полезной может стать специальная программа для рассчета катушек Тесла, например VcTesla или inca. К первичной обмотке подбирается высоковольтный конденсатор, емкость которого вместе с индуктивностью первичной обмотки образовывала бы колебательный контур, собственная частота которого была бы равна резонансной частоте вторичного контура. Обычно берут близкий по емкости конденсатор, а настройку осуществляют подбором витков первичной обмотки.

Суть работы трансформатора Тесла в каноническом виде заключается в следующем: конденсатор первичного контура заряжается от подходящего источника высокого напряжения, затем он соединяется коммутатором с первичной обмоткой, и так повторяется много раз в секунду.

В результате каждого цикла коммутации возникают затухающие колебания в первичном контуре. Но первичная катушка является для вторичного контура индуктором, поэтому электромагнитные колебания возбуждаются соответственно и во вторичном контуре.

Поскольку вторичный контур настроен в резонанс с первичными колебаниями, то на вторичной обмотке возникает резонанс напряжений, а значит коэффициент трансформации (соотношение витков первичной обмотки и охваченных ею витков вторичной обмотки) нужно умножить еще и на Q – добротность вторичного контура, тогда получится значение реального соотношения напряжения на вторичной обмотке к напряжению на первичной.

А так как длина провода вторичной обмотки равна четверти длины волны индуцируемых в ней колебаний, то именно на тороиде будет находиться пучность напряжения (а в точке заземления — пучность тока), и именно там может иметь место максимально эффектный пробой.

Для питания первичной цепи используют разные схемы, от статичного искрового промежутка (разрядника) с питанием от МОТов (МОТ — высоковольтный трансформатор от микроволновой печи) до резонансных транзисторных схем на программируемых контроллерах с питанием выпрямленным сетевым напряжением, однако суть от этого не меняется.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.

SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.

DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.

Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).

Сам Тесла как мог пытался добиться именно такого режима работы своего трансформатора, и зачатки этой идеи можно увидеть в патенте № 568176, где применяются зарядные дроссели, Тесла потом развивал схему именно по этому пути, то есть стремился максимально эффективно использовать первичную цепь, создавая в ней резонанс. Об этих экспериментах ученого можно прочитать в его дневнике (в печатном виде уже изданы записи ученого об экспериментах в Колорадо-Спрингс, которые он проводил с 1899 по 1900 год).

Говоря о практическом применении трансформатора Тесла не стоит ограничиваться лишь восхищением эстетическим характером получаемых разрядов, и относиться к устройству как к декоративному. Напряжение на вторичной обмотке трансформатора может достигать миллионов вольт, это в конце концов — эффективный источник сверхвысокого напряжения.

Сам Тесла разрабатывал свою систему для передачи электроэнергии на большие расстояния без проводов, используя проводимость верхних воздушных слоев атмосферы. Предполагалось наличие и приемного трансформатора аналогичной конструкции, который бы понижал принятое высокое напряжение до приемлемого для потребителя значения, об этом можно узнать, прочитав патент Тесла №649621.

Особого внимания заслуживает характер взаимодействия трансформатора Тесла с окружающей средой. Вторичный контур является открытым контуром, и система термодинамически отнюдь не является изолированной, она даже не закрытая, это — открытая система. Современные исследования в этом направлении ведутся многими исследователями, и точка на этом пути еще не поставлена.

Основной принцип, открытый великим изобретателем, ныне применяется для изготовления люминесцентных осветителей.

Применение

Помимо декоративного применения представленного устройства существует и практическая польза от его эксплуатации. Коронный разряд заряжает воздух озоном. Это освежает атмосферу в помещении. При этом не стоит допускать длительное воздействие прибора. Большое содержание озона приводит к плохому самочувствию.

Также применение представленного устройства позволяет реанимировать работу вышедшей из строя люминесцентной лампы. Если приблизить прибор к осветительному прибору, последний снова будет функционировать. Однако не стоит подносить близко к излучателю мобильные устройства. Это может вывести гаджет из строя.

Это уникальное, до конца не изведанное изобретение. Его применение должно выполняться с осторожностью. Простота конструкции позволяет собрать прибор самостоятельно.

Цель
Изготовить катушку Тесла, которую можно использовать как наглядное пособие на уроках физики для демонстрации электромагнитных явлений.

Работа победителя Городской открытой научно-практической конференции «Инженеры будущего» в секции «Прикладная физика, энергетика, биофизика, бионика» среди учащихся 7–9 классов

Цель
Изготовить катушку Тесла, которую можно использовать как наглядное пособие на уроках физики для демонстрации электромагнитных явлений.

Задачи:
1. Исследовать материал по данной теме.
2. Познакомиться с принципом работы катушки Тесла.
3. Создать действующую модель катушки Тесла
4. Провести опыты, демонстрирующие работу катушки Тесла.

Оснащение и оборудование, использованное при создании работы
1. Изолированный эмалированный медный
провод диаметра 1,2 мм
2. Изолированный медный эмалированный
провод диаметром 0,2 мм
3. Резистор 15 Ом
4. Переменный резистор B50K
5. Транзистор 13007A
6. Радиатор
7. 10 батареек типа «Крона»
8. Клеевой пистолет
9. Паяльник
10. Люминесцентная лампа
11. Газоразрядные трубки

Работа была представлена:
— Конкурс исследовательских работ и творческих проектов обучающихся колледжей и старших школьников «Искусство познания» – 1 место.
— Московский городской конкурс научно-исследовательских и проектных работ обучающихся – призер финала.
— Научно-практическая конференции «Инженеры будущего» – победитель.
— 21-я Региональная научно-практическая конференция школьников «Творчество юных» – 3 место.

Перспективы развития результатов работы
Собранную модель можно использовать как наглядное пособие на уроках физики для демонстрации электромагнитных явлений. С помощью данного устройства можно проводить эффектные эксперименты, которые вызовут интерес обучающихся, повысят их познавательную активность, позволят обучение сделать наглядным, понятным, интересным.

Особое мнение

«Участие в конференции «Инженеры будущего» стало очень значимым для меня, я получил опыт выступления, опыт стендовой защиты, опыт участия в мероприятии такого высокого уровня», – говорит автор работы.

Задачи:

Смотреть похожие работы

Исследовательская работа «Паровые двигатели и загрязнение окружающей среды»

Исследовательская работа «Математическое моделирование экологических проблем»

Исследовательская работа «Применение ветрогенераторов для зарядки тяговых аккумуляторных батарей»

Исследовательская работа «Создание калькулятора пропорций ингредиентов блюд в программе Microsoft Excel»

Сведения об издании

  • Наименование издания: «Наука и образование ON-LINE»
    Сетевое издание (сайт) зарегистрировано Роскомнадзором, свидетельство ЭЛ № ФС 77 — 70153 от 30.06.2017 (предыдущее Эл№ФC77-49690 от 26 апреля 2012). Возрастная категория сайта 6+
    Корман М.О. — Ответственный редактор
    Учредитель: ООО «МЦНИП»
    Гл.редактор: Скопин О.В.

Лицензия на образовательную деятельность

Лицензия на осуществление образовательной деятельности №1686 от 01.11.2019.

Вот такая схема работы катушки Тесла.

Если рассматривать катушку Тесло с исторической точки зрения, становится не ясно, почему ученый не развил идею до конца. Ведь это готовый способ передачи энергии на расстоянии без проводов, что существенно уменьшает потери на монтаж сетей, расходники, столбы и изоляцию.

При этом можно было бы забыть о перерывах с электроснабжением, энергию легко и просто получилось бы доставить в любую точку планеты. Как показывает историческая реальность, ученого интересовало совсем другое применение собственного изобретения. Ученый пытался доказать существование эфира, некой субстанции, которая пронизывает все мироздание.

Согласно теории Тесло эта среда упруга, что делает возможным распространение электромагнитных волн. Одной из утопичных идей ученого была выработка энергии из эфира напрямую. Тесла предлагал установить две катушки на полюсах, что в теории должно было создать огромное магнитное поле по всей Земле.

Так электричество могло бы попасть в любую точку планеты. Катушку ученый придумать успел, а вот создавать приемники для них не стал, занимаясь разработкой получения энергии из эфира.

Разрядник является коммутирующим элементом в первичном колебательном контуре. При электрическом пробое разрядника под действием высокого напряжения, в нем образуется дуга, которая замыкает цепь первичного контура, и в нем возникают высокочастотные затухающие колебания, в течение которых напряжение на конденсаторе С1 постепенно уменьшается. После того как дуга гаснет, контурный конденсатор С1 вновь начинает заряжаться от источника питания, при следующем пробое разрядника начинается новый цикл колебаний.


Катушка Тесла представляет собой высокочастотный резонансный трансформатор без ферромагнитного сердечника, с помощью которого можно получить высокое напряжение на вторичной обмотке. Под действием высокого напряжения в воздухе происходит электрический пробой, подобно разряду молнии. Устройство изобретено Николой Теслой, и носит его имя.

На верхний конец трубы вторичной обмотки устанавливают полый проводящий тор, обычно выполненный из алюминиевой гофрированной трубы для отвода горячих газов. В основном диаметр трубы подбирают равным диаметру вторичной обмотки. Диаметр тора обычно составляет 0,5-0,9 от длины вторичной обмотки. Тор имеет электрическую емкость, которая определяется его геометрическими размерами, и выступает в роли конденсатора.

Разрядник является коммутирующим элементом в первичном колебательном контуре. При электрическом пробое разрядника под действием высокого напряжения, в нем образуется дуга, которая замыкает цепь первичного контура, и в нем возникают высокочастотные затухающие колебания, в течение которых напряжение на конденсаторе С1 постепенно уменьшается. После того как дуга гаснет, контурный конденсатор С1 вновь начинает заряжаться от источника питания, при следующем пробое разрядника начинается новый цикл колебаний.

В качестве источника питания для зарядки конденсаторов используется высоковольтный трансформатор Т1, или несколько последовательно или параллельно соединенных трансформаторов. В основном начинающие тесластроители используют трансформатор из микроволновой печи (MOT – Microwave Oven Transformer), выходное переменное напряжение которого составляет

Ниже на картинке представлены формулы для расчета параметров катушки Тесла:

Предлагаю ознакомиться с моим опытом постройки катушки Тесла своими руками.

Для изготовления плоской катушки предварительно готовят основание, на которое последовательно укладывают два медных провода сечением 1,5 мм параллельно плоскости основания. Сверху укладку лакируют, продлевая срок службы. Внешне этот прибор представляет собой ёмкость из двух вложенных друг в друга спиральных обкладок, подключаемых к источнику питания.

Изготовление катушки Тесла своими руками в домашних условиях

Проектирование и создание устройства не представляет сложности для людей, знакомых с принципами электротехники и электричества. Однако даже новичку под силу будет справиться с этой задачей, если провести грамотные расчёты и скрупулёзно следовать пошаговой инструкции. В любом случае до начала работ следует обязательно ознакомиться с правилами техники безопасности для работ с высоким напряжением.

Схема

Катушка тесла представляет собой две катушки без сердечника, посылающих большой импульс тока. Первичная обмотка состоит из 10 витков, вторичная — из 1000. Включение в схему конденсатора позволяет снизить до минимума потери искрового заряда. Выходная разность потенциалов превышает миллионы вольт, что позволяет получать эффектные и зрелищные электрические разряды.

Инструменты и материалы

Для сбора и последующего функционирования катушки Тесла понадобится подготовить следующие материалы и оборудование:

  • трансформатор с выходным напряжением от 4 кВ 35 мА;
  • болты и металлический шарик для разрядника;
  • конденсатор с рассчитанными параметрами ёмкости не ниже 0,33 µF 275 В;
  • ПВХ труба диаметром 75 мм;
  • эмалированная медная проволока сечением 0,3–0,6 мм — пластиковая изоляция предотвращает пробой;
  • полый металлический шар;
  • толстый кабель или трубка из меди сечением 6 мм.

Пошаговая инструкция по изготовлению катушки

Алгоритм изготовления катушки состоит из следующих этапов:

Тщательно следуйте руководству, и проблем не возникнет:

Принцип работы

Катушки, которые вы создали, имеют колебательный контур. Если к первой катушке подвести напряжение, то она создаст собственное магнитное поле. С его помощью передается энергия от одной катушки к другой.

Вторичная катушка создает вместе с емкостью такой же контур, который способен накапливать энергию, которую передала первичная. Все работает по простой схеме – чем больше энергии способна передать первая катушка, а вторая – накопить, то тем больше будет напряжение. И результат будет более зрелищный.

Как говорилось выше, чтобы прибор начал работать, его необходимо подключить к питающему трансформатору. Для того, чтобы направить разряды, которые выдает генератор Тесла, нужно рядом разместить металлический предмет. Но делать это так, чтобы они не соприкасались. Если рядом положить лампочку, то она будет светиться. Но только в том случае, если напряжения будет достаточно.

Чтобы сделать самостоятельно изобретение Тесла, нужно делать математические расчеты, поэтому нужно иметь опыт. Или же найти инженера, который поможет правильно вывести формулы.

Источники
Источник — http://rusenergetics.ru/ustroistvo/katushka-tesla
Источник — http://tesla-sochi.ru/fizicheskiy-printsip-rabotyi-muzyikalnyih-katushek-tesla/
Источник — http://electrosam.ru/glavnaja/jelektrotehnika/katushka-tesla/
Источник — http://electrik.info/main/fakty/1092-chto-takoe-transformator-tesla.html
Источник — http://protransformatory.ru/vidy/tesla
Источник — http://profil.mos.ru/inj/proekty/katushka-tesla.html
Источник — http://eee-science.ru/item-work/2019-1602/
Источник — http://principraboty.ru/princip-raboty-katushki-tesla-kak-rabotaet-katushka-induktivnosti/
Источник — http://radiolaba.ru/vyisokoe-napryazhenie/katushka-tesla-kratkaya-teoriya.html
Источник — http://elektro.guru/osnovy-elektrotehniki/katushka-tesla-svoimi-rukami.html
Источник — http://slarkenergy.ru/oborudovanie/transformator/tesla-svoimi-rukami.html
Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий

Adblock
detector