Варистор принцип работы

Всплески напряжения возникают в различных электрических схемах независимо от того, работают они от сети переменного или постоянного тока. Они часто возникают в самой схеме или поступают в нее от внешних источников. Высоковольтные всплески напряжения могут быстро нарастать и доходить до нескольких тысяч вольт, и именно от этих импульсов напряжения необходимо защищать электронные компоненты схемы.

Варистор является пассивным двухвыводным, твердотельным полупроводниковым прибором, который используется для обеспечения защиты электрических и электронных схем. В отличие от плавкого предохранителя или автоматического выключателя, которые обеспечивают защиту по току, варистор обеспечивает защиту от перенапряжения с помощью стабилизации напряжения подобно стабилитрону.

Слово «Варистор» является аббревиатурой и сочетанием слов «Varistor — variable resistor», резистор, имеющий переменное сопротивление, что в свою очередь описывает режим его работы. Его буквальный перевод с английского (Переменный Резистор) может немного ввести в заблуждения — сравнивая его с потенциометром или реостатом.

Но, в отличие от потенциометра, сопротивление которого может быть изменено вручную, варистор меняет свое сопротивления автоматически с изменением напряжения на его контактах, что делает его сопротивление зависимым от напряжения, другими словами его можно охарактеризовать как нелинейный резистор.

В настоящее время резистивный элемент варистора изготавливают из полупроводникового материала. Это позволяет использовать его как в цепях переменного, так и постоянного тока.


Варистор во многом похож по размеру и внешнему виду на конденсатор и его часто путают с ним. Тем не менее, конденсатор не может подавлять скачки напряжения таким же образом, как варистор.

Не секрет, что когда в цепи электропитания схемы какого-либо устройства возникает импульс высокого напряжения, то исход зачастую бывает плачевным. Поэтому применение варистора играет важную роль в системе защиты чувствительных электронных схем от скачков напряжения и высоковольтных переходных процессов.

Всплески напряжения возникают в различных электрических схемах независимо от того, работают они от сети переменного или постоянного тока. Они часто возникают в самой схеме или поступают в нее от внешних источников. Высоковольтные всплески напряжения могут быстро нарастать и доходить до нескольких тысяч вольт, и именно от этих импульсов напряжения необходимо защищать электронные компоненты схемы.

Один из самых распространенных источников подобных импульсов – индуктивный выброс, вызванный переключением катушек индуктивности, выпрямительных трансформаторов, двигателей постоянного тока, скачки напряжения от включения люминесцентных ламп и так далее.

Могут присутствовать и другие дополнительные символы, обычно указывают на производителя или особенность компонента.

Устройство

Варисторы устроены достаточно просто — внутри есть кристалл полупроводникового материала, чаще всего это Оксид Цинка (ZiO) или Карбид Кремния (SiC). Прессованный порошок этих материалов подвергают высокотемпературной обработке (запекают) и покрывают диэлектрической оболочкой. Встречаются либо в исполнении с аксиальными выводами, для монтажа в отверстия на печатной плате, а также в SMD-корпусе.

На рисунке ниже наглядно изображено внутреннее устройство варистора:

Поэтому совершенствование технологии изготовления варисторов во всем мире направлено на повышение их быстродействия.

Характеристики варисторов

Основными параметрами, которые используют при описании характеристик варисторов, являются:

От величины W зависит, как долго может действовать перегрузка (с максимальной мощностью Рт) без опасности повредить варистор, т. е.:

Для применения рабочее напряжение у варисторов выбирается исходя из допустимой энергии рассеяния и максимально допустимой амплитуды напряжения. Напряжение ограничения примерно равно квалификационному напряжению (Un) варистора.

Для ориентировочных расчетов рекомендуется, чтобы на переменном напряжении оно не превышало Uвх PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.

  • Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
  • Скидки до 50% + подарки в честь празднования 6-го ювилея 2020!
  • · максимальное переменное напряжение. Так называется показатель переменного напряжения, по достижении которого включается защитный режим нелинейного резистора;

    Как работает варистор?

    На схеме варистор обозначается значком резистора, перечеркнутого по диагонали, что указывает на его нелинейность.

    Когда нелинейный резистор функционирует в обычном режиме, его сопротивление велико. Однако оно сильно снижается при возрастании напряжения выше номинальной величины, что приводит к значительному повышению тока. Таким образом, разность потенциалов удерживается на уровне, несколько превышающем номинал. Варистор, работающий в этом режиме, выполняет функцию стабилизации напряжения.

    Нелинейный резистор, будучи подключенным на входе электроцепи, добавляет к ее емкости собственную. Для устойчивой работы защищаемых приборов это необходимо учесть при проектировании линии.

    На рисунке представлена стандартная схема подключения варистора.

    Для правильного подбора защитного элемента важно знать мощность импульсов, имеющих место при переходных процессах, а также величину выходного сопротивления источника.

    От максимальной силы тока, которую нелинейный резистор способен пропустить через себя, зависит частота повторений выбросов напряжения, а также их длительность. Если она слишком мала для конкретной цепи, защитный элемент быстро придет в негодность из-за перегрева. Поэтому, чтобы варистор работал безотказно в течение длительного времени, он должен обеспечивать эффективное рассеивание импульсной энергии при переходном процессе. Затем деталь должна быстро возвращаться в исходное состояние.

    В этот момент сопротивление элемента скачкообразно изменяется на несколько порядков — уменьшается от изначальных десятков МОм до единиц Ом. И чем сильнее повышается приложенное напряжение — тем меньше и меньше становится сопротивление варистора. Данное свойство делает варистор главным элементом современных устройств защиты от импульсных перенапряжений.

    Варистором называется полупроводниковый компонент, способный нелинейно изменять свое активное сопротивление в зависимости от величины приложенного к нему напряжения. По сути это — резистор с такой вольт-амперной характеристикой, линейный участок которой ограничен узким диапазоном, к которому приходит сопротивление варистора при приложении к нему напряжения выше определенного порогового.

    В этот момент сопротивление элемента скачкообразно изменяется на несколько порядков — уменьшается от изначальных десятков МОм до единиц Ом. И чем сильнее повышается приложенное напряжение — тем меньше и меньше становится сопротивление варистора. Данное свойство делает варистор главным элементом современных устройств защиты от импульсных перенапряжений.

    Будучи подключен параллельно защищаемой нагрузке, варистор берет на себя ток помехи и рассеивает его в форме тепла. А по окончании данного события, когда приложенное напряжение снижается и возвращается за порог, варистор восстанавливает свое исходное сопротивление, и снова готов выполнять защитную функцию.

    Можно сказать, что варистор представляет собой полупроводниковый аналог газового разрядника, только у варистора, в отличие от газового разрядника, первоначальное высокое сопротивление восстанавливается быстрее, практически отсутствует инерционность, да и диапазон номинальных напряжений начинается от 6 и доходит до 1000 и более вольт.

    По этой причине варисторы находят широкое применение в защитных цепях полупроводниковых ключей, в схемах с индуктивными элементами (для искрогашения), а также в качестве самостоятельных элементов электростатической защиты входных цепей радиоэлектронных устройств.

    Процесс изготовления варистора заключается в спекании порошкообразного полупроводника со связующим компонентом при температуре в районе 1700 °C. Здесь в ход идут такие полупроводники как оксид цинка или карбид кремния. Связующим веществом может служить жидкое стекло, глина, лак или смола. На полученный путем спекания дискообразный элемент металлизацией наносят электроды, к которым и припаивают монтажные выводы компонента.

    Кроме традиционной дисковой формы, можно встретить варисторы в форме стержней, бусинок и пленок. Перестраиваемые варисторы изготавливают в форме стержней с подвижным контактом. Традиционные полупроводниковые материалы, применяемые в производстве варисторов на основе карбида кремния с разными связками: тирит, вилит, лэтин, силит.

    Внутренний принцип действия варистора заключается в том, что грани маленьких полупроводниковых кристаллов внутри связующей массы соприкасаются друг с другом, образуя проводящие цепочки. При прохождении через них тока определенной величины, наступает местный перегрев кристаллов, и сопротивление цепочек падает. Этим явлением и объясняется нелинейность ВАХ варистора.

    Один из главных параметров варистора, наряду со среднеквадратичным напряжением срабатывания, — коэффициент нелинейности, показывающий отношение статического сопротивления к динамическому. Для варисторов на основе оксида цинка данный параметр лежит в диапазоне от 20 до 100. Что касается температурного коэффициента сопротивления варистора (ТКС), то он обычно отрицателен.

    Варисторы компактны, надежны, хорошо справляются со своей задачей в широком диапазоне рабочих температур. На печатных платах и в УЗИП можно встретить маленькие дисковые варисторы диаметром от 5 до 20 мм. Для рассеивания более высоких мощностей применяются блочные варисторы с габаритными размерами 50, 120 и более миллиметров, способные рассеивать в импульсе килоджоули энергии и пропускать через себя токи в десятки тысяч ампер, при этом не терять работоспособности.

    Один из самых важных параметров любого варистора — время срабатывания. Хотя обычное для варистора время активации не превышает 25 нс, и в некоторых цепях этого достаточно, тем не менее кое-где, например для защиты от электростатики, необходима более быстрая реакция, не более 1 нс.

    В связи с данной потребностью, ведущие мировые производители варисторов направляют свои усилия именно в сторону повышения их быстродействия. Один из путей достижения данной цели — сокращение длины (соответственно индуктивности) выводов многослойных компонентов. Такие CN-варисторы уже заняли достойное место в деле защиты от статики выводов интегральных микросхем.

    Классификационное напряжение варистора DC (1mA) — является условным параметром, при данном напряжении ток через варистор не превышает 1 мА. Именно классификационное напряжение указывается в маркировке варистора.

    ACrms — среднеквадратичное переменное напряжение срабатывания варистора. DC – напряжение срабатывания на постоянном напряжении.

    Для получения большей рассеиваемой мощности допускается параллельное и последовательное включение варисторов. При параллельном включении важно подобрать варисторы максимально близкие по параметрам.

    Рис. 4. Результат увеличения напряжения в сети на продолжительное время

    Характеристики варистора

    Тело варистора представляет собой изотропную гранулярную структуру оксида цинка ZnO (рисунок 1). Гранулы отделены друг от друга, и их граница разделения имеет ВАХ, схожую с p-n-переходом в полупроводниках. Эти границы при низких напряжениях имеют очень низкую проводимость, которая нелинейно увеличивается с увеличением напряжения на варисторе.

    Рис. 1. Фотография гранулярной структуры варистора, сделанная с помощью электронного микроскопа

    Симметричная ВАХ показана на рисунке 2. Благодаря ей варистор отлично справляется с подавлением скачков напряжения. Когда они появляются в цепи, сопротивление варистора уменьшается во множество раз: от почти непроводящего состояния до высокопроводящего, уменьшая импульс напряжения до безопасного для цепи значения. Таким образом, потенциально опасная для элементов цепи энергия входного импульса напряжения абсорбируется варистором и защищает компоненты, чувствительные к скачкам напряжения.

    Рис. 2. Симметричная ВАХ варистора

    Рассмотрим подробнее принцип работы варистора.

    В его корпусе между металлическими контактами находятся гранулы со средним размером d (рисунок 3).

    Рис. 3. Схематическое изображение микроструктуры металл-оксидного варистора

    Токопроводящие гранулы оксида цинка со средним размером гранулы d разделены между собой межгранулярными границами.

    , (1)

    где d – средний размер гранулы.

    ,

    получаем данные, представленные в таблице 1.

    Таблица 1. Зависимость структурных параметров варистора от напряжения

    Напряжение варистора Vn – это напряжение на вольт-амперной характеристике, где происходит переход из слабопроводящего состояния на линейном участке графика в нелинейный режим высокопроводящего состояния. По общей договоренности для стандартизации измерений был выбран ток 1 мА.

    Рис. 4. Результат увеличения напряжения в сети на продолжительное время

    Проведем сравнительный анализ наиболее популярных варисторов производства компаний Littelfuse, Epcos и Fenghua с рабочим напряжением 250 и 275 В (АС rms) и диаметром диска 10, 14 и 20 мм.

    Таблица 2. Сравнительный анализ наиболее популярных варисторов производства компаний Littelfuse, Epcos и Fenghua

    Обзор варисторов производства компании Littelfuse c разбивкой на серии и области применения представлен в таблице 3.

    Таблица 3. Области применения варисторов Littelfuse

    Важный момент! Прежде, чем измерить сопротивление, убедитесь, что пальцы не касаются стальных наконечников щупов, в этом случае прибор покажет сопротивление кожного покрова.

    Пример реализации защиты

    На рисунке 4 показан фрагмент принципиальной схемы БП компьютера, на котором наглядно показано типовое подключение варистора (выделено красным).

    Рисунок 4. Варистор в блоке питания АТХ

    Судя по рисунку, в схеме используется элемент TVR 10471К, используем его в качестве примера расшифровки маркировки:

    • первые три буквы обозначают тип, в нашем случае это серия TVR;
    • последующие две цифры указывают диаметр корпуса в миллиметрах, соответственно, у нашей детали диаметр 10 мм;
    • далее идут три цифры, которые указывают действующее напряжение для данного элемента. Расшифровывается следующим образом: XXY = XX*10 y , в нашем случае это 47*10 1 , то есть 470 вольт;
    • последняя буква указывает класс точности, «К» соответствует 10%.

    Можно встретить и более простую маркировку, например, К275, в этом случае К – это класс точности (10%), последующие три цифры обозначают величину действующего напряжения, то есть, 275 вольт.

    И последняя схема предназначена для защиты переключателя (контактов) от искрения при включении электродвигателя.

    Принцип работы варистора

    В обычном рабочем состоянии варистор имеет высокое сопротивление. Всякий раз, когда переходное напряжение резко возрастает, сопротивление варистора тут же уменьшаться. Таким образом, он начитает проводить через себя ток, снижая тем самым напряжение до безопасного уровня.

    Существуют различные типы исполнения, однако варистор на основе окиси металла является наиболее часто используемым в электронных устройствах. Как было сказано выше, основное назначение варистора в электронных схемах — защита цепи от чрезмерного всплеска напряжения переходных процессов. Эти переходные процессы обычно происходят из-за разряда статического электричества и грозовых перенапряжений.

    Принцип работы варистора можно легко понять, взглянув на кривую зависимости сопротивления от приложенного напряжения.

    На графике выше видно, что во время нормального рабочего напряжения (скажем низкого напряжения) сопротивление его очень высоко и если напряжение превышает номинальное значение варистора, то его сопротивление начинает уменьшаться.

    Вольт-амперная характеристика (ВАХ) варистора показанная на рисунке выше. Из рисунка видно, небольшое изменение напряжения вызывает значительное изменение тока.

    Уровень напряжения (классификационное напряжение), при котором ток, протекающий через варистор составляет 1 мА, является уровнем, при котором варистор переходит из непроводящего состояния в проводящее. Это происходит потому, что, всякий раз, когда приложенное напряжение превышает или равно номинальному напряжению, происходит лавинный эффект, переводящий варистор в состояние электропроводности в результате снижения сопротивления.

    Таким образом, даже, несмотря на быстрый рост малого тока утечки, напряжение будет чуть выше номинального значения. Следовательно, варистор будет регулировать напряжение переходных процессов относительно приложенного напряжения.

    При замене неисправного варистора нужно учитывать следующее. Ставить варистор нужно того же диаметра, что и стоял, в некоторых случаях диаметр можно увеличить, например: вместо 14D471K можно поставить 20D471K. В этом случае он рассеит больше тепла и прослужит дольше.

    Проверка на исправность:

    Проверку варисторов следует начинать с внешнего осмотра. Любые сколы, трещины, почернения говорят о неисправности прибора. Следующий этап — проверка мультиметром. Щупы прикладывают к выводам и мерят сопротивление варистора. Сопротивление должно быть бесконечно высоким. Любые показания говорят о том, что прибор неисправен. Во время измерения не касайтесь руками выводов измеряемого прибора и мультиметра, иначе показания будут неверны.

    Можно измерить ёмкость варистора она приблизительно составляет 300 – 500pF. Можно также подать на варистор напряжение, на которое он рассчитан, и замерить протекающий через него ток.

    Если варистор подключить параллельно электроприбору, то при скачке напряжения вся нагрузка придется на него, а приборы останутся в безопасности.

    Справочник и маркировка варисторов

    Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.

    Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.

    Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.

    Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04. При его применении важно соблюдать полярность.

    Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.

    На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.

    Источники
    Источник — http://www.joyta.ru/7117-varistor-princip-raboty-i-primenenie/
    Источник — http://samelectrik.ru/chto-takoe-varistor.html
    Источник — http://radiostorage.net/1419-varistory-princip-raboty-tipy-i-primenenie.html
    Источник — http://dip8.ru/articles/varistory-kak-rabotayut-osnovnye-kharakteristiki-i-parametry-skhema-podklyucheniya/
    Источник — http://electricalschool.info/electronica/2077-varistory-princip-deystviya-tipy-i-primenenie.html
    Источник — http://www.compel.ru/lib/76838
    Источник — http://www.asutpp.ru/kak-proverit-varistor-multimetrom-poshagovaya-instrukciya.html
    Источник — http://fornk.ru/1998-varistor-chto-eto-takoe-princip-raboty/
    Источник — http://arduinet.ru/varistory.html
    Источник — http://elektro.guru/polezno-znat/varistor-printsip-deystviya-proverka-i-podklyuchenie.html

    Оцените статью
    ( Пока оценок нет )
    Как Это Работает?
    Добавить комментарий