Принцип работы дросселя в электроцепи

Условно такие широкие границы подразделяются на несколько участков:

Дроссель (в переводе с немецкого – «сокращать») – это одна из разновидностей катушек индуктивности. Главное предназначение этого элемента электрической схемы – «задерживать» (снижать на определенный период времени) влияние токов определенного диапазона частот. При этом резко изменить силу тока в катушке практически нереально – здесь вступает в силу закон самоиндукции, благодаря которому на выходе формируется дополнительное напряжение.

Дроссель необходим в электрической цепи в том случае, когда необходимо подавить переменную составляющую тока (например, помехи), существенно снизить пульсации в сети, а также ограничить или разделить в соответствии с поставленной задачей различные частотные сигналы (изоляция или развязка).

В электро – и радиотехнике применяется переменный ток в диапазоне от единиц до сотен миллиардов Гц. (1 герц – это одно колебание в секунду).

Условно такие широкие границы подразделяются на несколько участков:

  1. низкие ( звуковые) частоты (20 Гц – 20 кГц);
  2. ультразвуковые частоты (20 – 100 кГц);
  3. высокие и сверхвысокие частоты (от 100 кГц и выше).

Конструктивно низкочастотный дроссель очень напоминает обычный электрический трансформатор, только всего с одной обмоткой.

Последняя представляет собой витки изолированного провода, навитого на стальной сердечник, набранный из изолированных пластин (чтобы избежать возникновение токов Фуко), и обладает большой индуктивностью. Такая катушка характеризуется сильным противодействием любым изменениям тока в цепи: поддерживает его при убывании, и сдерживает при резком нарастании.

Также дроссели широко используются и при реализации различных высокочастотных электрических схем. В данном случае их исполнение может быть одно – или многослойным, при этом часто сердечники (как стальные, так и ферромагнитные) не используются. Иногда в качестве основы для навивки применяют обычные резисторы или пластмассовые каркасы. В диапазоне длинных и средних волн для обеспечения заданных параметров используется также специальная секционная намотка провода.

Главная техническая характеристика дросселя – индуктивность, которая измеряется в генри (Гн), сопротивление постоянному току, допустимое изменение напряжения, номинальный ток подмагничивания, а также добротность.

Последний показатель широко используется при расчетах колебательных контуров.

Применение магнитных сердечников позволяет существенно уменьшить габариты дросселей при тех же заявленных параметрах индуктивности. На высоких частотах используются ферритовые и магнитодиэлектрические составы, позволяющие, благодаря небольшой собственной емкости, использовать их в широком диапазоне.

По своему назначению такой вид катушек индуктивности можно подразделить на следующие виды:

  • переменного тока. Используются для токоограничения в сети; например, во время пуска электродвигателя или импульсных ИВЭП.
  • насыщения. Главное область применения – стабилизаторы напряжения.
  • сглаживающие. Предназначены для ослабления пульсаций уже выпрямленного тока.
  • магнитные усилители (МУ). Представляют собой катушки индуктивности, сердечник которой подмагничивается за счет постоянного тока. Меняя параметры последнего, можно изменять индуктивное сопротивление.

Существуют также трехфазные дроссели для использования в соответствующих цепях.

Сегодня разнообразные типы дросселей нашли широкое применение для решения разнообразных инженерных задач.

Интересное видео об электрических дросселях смотрите ниже:

Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.

Область применения

Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.

Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:

В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.

Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.

В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.

В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.

С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.

Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.

Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!

Будет интересно прочитать:

Таким образом, номинал этого элемента составляет 14 mH с допуском 10%.

Устройство катушки индуктивности

Дроссель – это катушка, имеющая некоторое количество витков из изолированного провода. Изоляция необходима, чтобы ток шёл по всему проводу последовательно, создавая при этом магнитное поле.

Обмотка может быть намотана на магнитопроводе или без него. Это зависит от назначения устройства. Его форма может быть квадратной, Ш-образной или тороидальной. Материал зависит от частоты напряжения. Работающее устройство иногда издаёт гул с частотой напряжения питания.

На электронных платах такие элементы имеют корпус SMD. Так же устроен элемент R68.

Низкочастотные устройства

Обмотки этих приборов наматываются на сердечник, собранный из пластин, изготовленных из трансформаторной стали. Пластины покрываются лаком для изоляции друг от друга. Переменное магнитное поле наводит ЭДС в магнитопроводе, из-за чего потери на нагрев становятся неоправданно большими. Для того чтобы их уменьшить, голые пластины, а также сердечник из цельного металла не используются.

Внешне такое устройство похоже на трансформатор. Обмотка может быть намотана совсем без сердечника. Такие приборы используются для ограничения тока короткого замыкания.

Высокочастотные элементы

Катушки, предназначенные для работы в сетях высокой частоты, мотаются на стальные ферритовые сердечники, а также совсем без них.

Намотка встречаются однослойная и многослойная, одно,- и многосекционная. Внешне могут быть похожи на трансформатор, резистор или конденсатор с соответствующей маркировкой. Например, так выглядит элемент R68.

Стартеры Osram (ST 111, ST 151, Россия) обладают невозгораемым диэлектрическим корпусом из макролона и оснащаются фольговым рулонным конденсатором.

Стартеры для люминесцентных ламп

Зажигание свечения люминесцентных ламп, подключаемых к сети переменного тока с частотой 50 (60) Гц, осуществляется стартерами, установленными в системе электромагнитной пускорегулирующей аппаратуры (ЭмПРА). Кроме стартера ЭмПРА содержит электромагнитный балласт (дроссель) и конденсатор.

Стартер для люминесцентных ламп представляет собой миниатюрную газоразрядную лампу с тлеющим разрядом. Он состоит из стеклянной колбы, заполненной инертным газом (гелий-водород или неон). Внутри колбы размещаются два электрода. В случае несимметричной конструкции стартера один электрод устанавливается неподвижным, а второй — подвижным. Подвижный электрод изготавливается из биметалла. Большее распространение получила симметричная конструкция стартера, с двумя подвижными биметаллическими электродами.

Принцип работы стартера

Время замкнутого состояния электродов стартера определяет длительность подогревания катодов лампы. В результате окончания тлеющего разряда стартера при замкнутых контактах, через определенное время происходит их остывание, разгибание и размыкание биметаллических электродов. Именно это разрывание электрической цепи приводит к возникновению импульса высокого напряжения дросселя, обладающего большой индуктивностью, и зажигает люминесцентную лампу.

Во время работы лампы, сила тока электрической цепи определяется номинальным рабочим током лампы, а падение напряжения питающей сети распределяется между дросселем и лампой на приблизительно равные части. Напряжение на стартере, подключенного параллельно лампе, становится недостаточным для образования тлеющего разряда, следовательно, электроды стартера остаются разомкнутыми в процессе свечения люминесцентной лампы.

Зажигание стартера

Надежная работа стартерной системы зажигания лампы зависит от величины напряжения в электрической сети. При уменьшении напряжения возрастает время, затрачиваемое на нагревание биметаллических электродов. С уменьшением напряжения до значений ниже 80% от номинального, электроды стартера перестают контактировать и лампа не зажигается.

Срок службы и замена стартера

Широкий разброс длительности контактирования электродов стартеров зачастую не обеспечивает условий начального прогрева катодов ламп. Зажигание лампе, происходящее после нескольких попыток, снижает срок ее службы. Для снижения вероятности этих негативных явлений рекомендуется своевременно производить замену стартеров и их подбор в светильнике.

Стартер при изготовлении монтируется на диэлектрической панели с двумя контактными соединителями и помещается в пластмассовый или металлический корпус. В этом же корпусе размещается конденсатор небольшой емкости, подключенный параллельно контактам стартера.

Производители стартеров для люминесцентных ламп

Производителями разных стран и компаний выпускаются стартеры 20C-127, 80C-220, S10, S2, FS-2, FS-U, ST111, ST151. Зажигание ламп, подключаемых к сети переменного тока по одиночной или параллельной схеме производится при помощи стартеров, предназначенных для подключения мощных (от 4 до 80 Вт) ламп с напряжением 220 — 240 В (80С-220, S10, FS-U, ST111). В последовательной схеме подключения используются стартеры 20С-127, S2, FS-2, ST151, запускающие лампы мощностью от 2 до 22 Вт, с номинальным напряжением 110 — 130 В.

Стартеры Philips ( S 2, S 10, Нидерланды) изготавливаются в огнестойком поликарбонатном корпусе. Они характеризуются высокой надежностью, отсутствием содержания свинца, радиоактивных изотопов и имеют практичный дизайн. Они обеспечивают точное время начального нагрева катодов и достижения максимального напряжения для запуска ламп.

Стартеры Osram (ST 111, ST 151, Россия) обладают невозгораемым диэлектрическим корпусом из макролона и оснащаются фольговым рулонным конденсатором.

В обозначении стартеров, на корпусе обычно указывается номинальная мощность и рабочее напряжение зажигаемых ламп.

Короткое замыкание — это соединения двух точек одной цепи с различными значениями потенциала. Короткое замыкание может возникнуть вследствие некачественной изоляции или повреждения ее целостности механическим путем. Для сохранения работоспособности приборов и электроаппаратуры, подключенные к сети, применяют токоограничивающий дроссель RT

Назначение:

Реакторы токоограничивающие RT предназначены для ограничения токов короткого замыкания в электрических сетях частотой 50 и 60 Гц и поддержания уровня напряжения электрических установок в момент короткого замыкания. Могут применяться в качестве индуктивного балластного сопротивления в схемах тиристорных преобразователей частоты.

Токоограничивающие дроссели RT по техничеким характеристикам соответствуют и превосходят аналогичную продукции других производителй.

Короткое замыкание — это соединения двух точек одной цепи с различными значениями потенциала. Короткое замыкание может возникнуть вследствие некачественной изоляции или повреждения ее целостности механическим путем. Для сохранения работоспособности приборов и электроаппаратуры, подключенные к сети, применяют токоограничивающий дроссель RT

Принцип работы:

Когда в сети происходит короткое замыкание, ток в сети значительно возрастает по сравнению с током нормальной работы электрической цепи. Ни один прибор не сможет выдержать перегрузки связанную с коротким замыканием в высоковольтной электрической цепи, собственно для этого и был разработан токоограничивающий дроссель RT, который воспринимает на себя нагрузку от замыкания.

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Электрическая схема подключения электронного балласта (ЭПРА) к люминесцентной лампе еще проще. В ней вообще отсутствуют дополнительные радиоэлементы.

Неисправности и ремонт электромагнитного ПРА

Чаще всего, источником неисправностей, связанных с применением ламп дневного света, является электрическая схема включения ПРА и стартера.

Мгновенно определить причину неисправности достаточно сложно, однако, существуют характерные визуальные эффекты, позволяющие выделить среди причин, вызвавших дефект, неисправный дроссель.

К таким визуальным эффектам относятся:

Ремонт

Самостоятельный ремонт ПРА рекомендуется проводить только специалистам, имеющим определенный опыт в осуществлении слесарных и электро-монтажных работ. Кроме того, необходимо наличие измерительных приборов и знание основных правил техники безопасности.

Приступая к замене или ремонту дросселя, необходимо отключить светильник от сети электропитания. Простое отключение его с помощью выключателя не избавит его от наличия напряжения на лампе.

Только после этого можно приступить к демонтажу ПРА и установке на его место нового. При этом, необходимо внимательно следить за тем, чтобы соединить провода в том же порядке, в каком они были подключены ранее.

ВАЖНО: схемы подключения конкретных моделей нанесены на их корпусах. Там же указывают рабочее напряжение и электрическое сопротивление обмотки индуктивности.

Внимание! Любой дроссель трансформатор по сроку эксплуатации «переживет» несколько ламп. Конечно, при оговорке, что эксплуатация светильника проводится правильно.

Электронные аналоги

Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.

По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.

Еще один вопрос, требующий решения: какой дроссель вы хотите купить – электронный или электромагнитный. Цены на них заметно отличаются.

Классификация приборов

В люминесцентных лампах могут использоваться электромагнитные или электронные дроссели. Каждому из видов присущи определенные достоинства и недостатки.

Электромагнитные

Электромагнитный дроссель представляет собой катушку с металлическим сердечником. Для обмотки используются медный и алюминиевый провода. От их диаметра зависит нормальная работа светильника. Потери мощности устройства составляют от 10 до 50%.

Чем мощнее люминесцентная лампа, тем меньше процент потерь мощности.

Люминесцентные лампы с электромагнитными дросселями стоят недорого, не требуют дополнительной настройки. Однако электромагнитный дроссель весьма чувствителен к нестабильности электрической сети. Малейшее колебание приводит к мерцанию лампы и повышению уровня шума: светильник начинает гудеть.

Перед зажиганием лампы из-за несинхронности работы дросселя с частотой сети происходят вспышки. Они приводят к ускоренному износу ПРА.

На разогревание электромагнитного дросселя тратится четверть мощности светильника.

Два класса электромагнитных дросселей – D и С – запрещены Европейской комиссией. На данный момент на рынке можно найти люминесцентные лампы с электромагнитными дросселями только классов В1 и В2. Они характеризуются пониженными потерями электроэнергии.

Электромагнитные дроссели имеют право на жизнь, они обеспечивают достаточную надежность светильников. Но сейчас их активно вытесняют электронные балласты.

Электронные ПРА

Электронный дроссель имеет более сложную конструкцию. В его состав входят:

  1. Фильтр электромагнитных помех. Гасит электромагнитные импульсы самого светильника и устраняет внешние помехи – от сети.
    выпрямитель: служит для преобразования тока.
  2. Схема коррекции коэффициента мощности. Отвечает за контроль сдвига по фазе переменного тока, который проходит через нагрузку.
  3. Фильтр сглаживающий. Снижает уровень пульсации переменного тока.
  4. Инвертор. Отвечает за преобразование постоянного тока в переменный.
  5. Балласт. Индукционная катушка, участвующая в накоплении энергии, подавлении помех и плавной регулировке яркости свечения.

Некоторые модели ЭПРА оснащаются защитой от перепадов напряжения (колебаний напряжения в электрической сети или ошибочного пуска устройства без лампы).

При включении лампы ток из выпрямителя поступает на буфер конденсатора. Там происходит сглаживание частоты пульсации. Высокое напряжение попадает на инвертор и заряжает микросхемы и конденсаторы.

При достижении напряжения 5,5 В микросхема сбрасывается. Зарядка конденсатора обратной связи (компенсационной) регулируется транзисторами. Как только напряжение достигнет 12 В, система входит в следующую фазу – предварительного нагрева.

Поджиг происходит при минимальном значении напряжения 600 В. Этот процесс происходит всего за 1,7 сек.

В отличие от электромагнитного, электронный дроссель не допускает чрезмерного нагревания осветительного прибора, поэтому возникновения пожара можно не бояться.

Сердечник и ферромагнитные пластины изолированы с целью предотвращения токов Фуко, создающих существенные помехи. Катушка имеет большую индуктивность, причем непосредственно выступает защитным ограждением при резких скачках напряжения в сети.

Назначение

Многих интересует, что такое дроссель и как он выглядит. Устройство выполнено в виде железного трансформатора, единственным отличием является наличие одной обмотки. Катушка накручена на сердечник из трансформаторной стали, при этом пластины разделены и не контактируют друг с другом с целью снижения вихревого тока.

Электронный дроссель характеризуется высоким уровнем индуктивности до 1Гн, катушка эффективно противодействует изменениям тока в электроцепи. При снижении силы тока катушка его поддерживает, а в случае резкого повышения катушка обеспечивает ограничение и предотвращение резкого скачка.

Рассматривая, для чего нужен дроссель, следует назвать такие цели:

  • снижение помех;
  • сглаживание пульсаций электрического тока;
  • накапливание энергии в магнитном поле;
  • отделение частей схемы по высокой частоте.

Зачем же нужен дроссель? Основным его назначением в электросхеме является задержка на себе тока конкретного частотного диапазона или накопление энергии в магнитном поле.

Важность дросселя объясняется тем фактом, что люминесцентные газоразрядные лампы (к примеру, бытовые светильники, фонари на улицах) не функционируют без дросселя. Он выступает в роли ограничителя напряжения, подающегося на электроды газоразрядной лампы.

Также дроссельные устройства формируют пусковое напряжение, требуемое для создания электрического разряда между электродами. Благодаря этому обеспечивается включение люминесцентной лампы. Пусковое напряжение рассчитано всего на доли секунды. Таким образом, дроссель – это устройство, отвечающее за включение лампы и ее стабильное функционирование.

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

Трансформаторы питания малой мощности обычно делятся:
1) по напряжению — на низковольтные и высоковольтные;
2) по частоте питания — на трансформаторы промышленной частоты (50Гц) и на трансформаторы повышенной частоты (400-50 000Гц);
3) по числу фаз
4) по коэффициенту трансформации — на повышающие и понижающие;
5) по числу обмоток — на двухобмоточные и на многообмотчные;
6) по конструкции магнитопровода — на стержневые, броневые и тороидальные;

Принцип действия трансформатора

Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной , подключают потребители.

Отношение Э.Д.С. Е 2 обмотки высшего напряжения к Э.Д.С. E 1 обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,

n = Е 1 / E 12 = W 1 / W 2

Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2—5 % номинальных значений напряжений U 1 и U 2 ), то можно считать, что отношение напряжения U 1 первичной обмотки к напряжению U 2 вторичной обмотки приблизительно равно отношению чисел их витков , т. е.

U 1 /U 2 = W 1 / W 2

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

Параметры трансформатора

Одним из наиболее важных параметров трансформатора является его мощность. Различают электромагнитную, полезную, расчётную и типовую мощности трансформатора.
Электромагнитной мощностью трансформатора называются мощность, передаваемая из первичной обмотки ко вторичную электромагнитным путём; она равна произведению действующей значению ЭДС этой обмотки на величину тока нагрузки, т. е.

Полезной или отдаваемой мощностью трансформатора называется произведение действующего напряжения на зажимах вторичной обмотки на величину её нагрузочного тока, т.е.

Расчётной мощностью трансформатора называется произведение действующего значения тока, протекающего по обмотке, на величину напряжения на её зажимах.

Виды трансформаторов

Трансформатор тока — называется трансформатор, в котором при нормальных условиях применения вторичный ток практически пропорционален первичному току и при правильном включении сдвинут относительно его на угол, близкий к нулю. Первичная обмотка трансформатора тока включена в цепь последовательно (в рассечку токопровода), а вторичная обмотка замыкается на некоторую нагрузку (измерительные приборы и реле), обеспечивая прохождение по ней тока, пропорционального току первичной обмотке.

Импульсный трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока, имеющего вид импульсов.

Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей электронных схем при минимальном искажении формы сигнала, обеспечивая создание гальванической развязки между участками схем.

Источники
Источник — http://pue8.ru/elektrotekhnik/514-elektricheskij-drossel-printsip-dejstviya-naznachenie-primenenie.html
Источник — http://samelectrik.ru/chto-takoe-drossel.html
Источник — http://elquanta.ru/teoriya/chto-takoe-drossel.html
Источник — http://www.pallor.ru/articles-21.html
Источник — http://zstp.ru/drosseli/drosseli-tokoogranichivayushhie-rt
Источник — http://sovet-ingenera.com/elektrika/svetylnik/drossel-dlya-lyuminescentnyx-lamp.html
Источник — http://househill.ru/kommunikacii/electrika/svet/drossel-dlya-lamp.html
Источник — http://onlineelektrik.ru/eoborudovanie/transformatori/drossel-eto-pribor-umenshayushhij-napryazhenie.html
Источник — http://finelighting.ru/texnologii-i-normy/sistemy/drosseli/vybiraem-podklyuchaem-lyuminescentnyx-lamp-pravilno.html
Источник — http://odinelectric.ru/osveshhenie/istochniki-sveta/chto-takoe-drossel
Источник — http://www.tmnsk.ru/work-principle/

Оцените статью
( Пока оценок нет )
Как Это Работает?
Добавить комментарий