Импульсный блок питания принцип работы для чайников

Назначение диодного выпрямителя – преобразование переменного напряжения на входе блока в постоянное на выходе. Возникающие паразитные пульсации сглаживает установленный долее по схеме фильтр.

Любой блок питания – это устройство, обеспечивающее формирование вторичной мощности посредством применения дополнительных электрических компонентов. Проще говоря, БП служит для преобразования напряжения из одного вида в другой, по номиналу или другим характеристикам. Существует два больших класса таких преобразователей:

  • использующие для преобразования напряжения аналоговые трансформаторы;
  • блоки питания (инверторы) импульсного типа.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Здесь мы поговорим об импульсных блоках питания (ИБП), которые на сегодняшний день получили самое широкое распространение и с успехом используются во всех современных радиоэлектронных устройствах.

Здесь мы поговорим об импульсных блоках питания (ИБП), которые на сегодняшний день получили самое широкое распространение и с успехом используются во всех современных радиоэлектронных устройствах.

Прежде всего, эта статья посвящена для начинающих специалистов по ремонту электронной техники, поэтому материал будет изложен в упрощенной форме и поможет понять основные принципы работы ИБП.

Основной принцип, положенный в основу работы ИБП заключается в преобразовании сетевого переменного напряжения (50 Гц) в переменное высокочастотное напряжение прямоугольной формы, которое трансформируется до требуемых значений, выпрямляется и фильтруется.

Преобразование осуществляется с помощью мощного транзистора, работающего в режиме ключа и импульсного трансформатора, вместе образующих схему ВЧ преобразователя. Что касается схемного решения, то здесь возможны два варианта преобразователей: первый –выполняется по схеме импульсного автогенератора (например, такой использовался в ИБП телевизоров 3 – 4 УСЦТ) и второй – с внешним управлением (используется в большинстве современных радиоэлектронных устройств).

Поскольку частота преобразователя обычно выбирается от 18 до 50 кГц, то размеры импульсного трансформатора, а, следовательно, и всего блока питания достаточно компактны, что является немаловажным параметром для современной аппаратуры.

В ИБП используются два принципа реализации цепей слежения – «непосредственный» и «косвенный». Выше описанный метод называется «непосредственный», так как напряжение обратной связи снимается непосредственно с вторичного выпрямителя. При «косвенном» слежении напряжение обратной связи снимается с дополнительной обмотки импульсного трансформатора (рисунок 2).

Уменьшение или увеличение напряжения на обмотке W2, приведет к изменению напряжения и на обмотке W3, которое через резистор R2 также приложено к выводу 1 ШИМ контроллера.

У трансформаторов низкой частоты теряется много энергии, рассеивается тепло во время преобразований. В ИБП максимальные потери возникают при переходных процессах коммутации. В другое время транзисторы устойчивы, они закрыты или открыты. Созданы условия для сохранения энергии, КПД достигает 98%.

Принцип действия

Работа ИБП простой конструкции следующая. Если входной ток является переменным, как в большинстве бытовых приборах, то сначала происходит преобразование напряжения в постоянное. Некоторые конструкции блоков имеют переключатели, удваивающие напряжение. Это делается для того, чтобы подключаться к сети с разным номиналом напряжения, например, 115 и 230 вольт.

Выпрямитель выравнивает переменное напряжение и на выходе отдает постоянный ток, который поступает в фильтр конденсаторов. Ток от выпрямителя выходит в виде малых импульсов высокой частоты. Сигналы обладают высокой энергией, за счет которой снижается коэффициент мощности трансформатора импульсов. Благодаря этому габариты импульсного блока небольшие.

Чтобы скорректировать уменьшение мощности в новых блоках питания применяют схему, в которой ток на входе получается в виде синуса. По такой схеме смонтированы блоки в компьютерах, видеокамерах и других устройствах. Импульсный блок работает от постоянного напряжения, проходящего через блок, не изменяясь. Такой блок называют обратноходовым. Если он служит для 115 В, для работы на постоянном напряжении необходимо уже 163 вольта, это рассчитывается как (115 × √2).

Для выпрямителя такая схема вредна, так как половина диодов не используется в работе, это вызывает перегрев рабочей части выпрямителя. Долговечность в этом случае снижается.

Схема работы ИБП

В сетевых блоках вход и выход изолируют между собой, в импульсных блоках ток применяется для первичной обмотки высокой частоты. На вторичной обмотке трансформатор создает нужное напряжение.

Для напряжения выхода более 10 В применяют кремниевые диоды. На низких напряжениях ставят диоды Шоттки, которые имеют достоинства:
  • Быстрое восстановление, что дает возможность иметь малые потери.
  • Малое падение напряжения. Для снижения напряжения выхода применяют транзистор, в нем выпрямляется основная часть напряжения.

Далее напряжение сглаживается фильтром, в него входят конденсатор, дроссель. Для частот коммутации выше требуются составляющие с малой индуктивностью и емкостью.

Схема импульсного блока минимального размера

В простой схеме ИБП вместо трансформатора применен дроссель. Это преобразователи для понижения или повышения напряжения, относятся к самому простому классу, применяется один переключатель и дроссель.

Некоторые виды ИБП
  • Простой ИБП на IR2153, распространен в России.
  • Импульсные блоки питания на TL494.
  • Импульсные блоки питания на UC3842.
  • Гибридного типа, из энергосберегающей лампы.
  • Для усилителя с повышенными данными.
  • Из электронного балласта.
  • Регулируемый ИБП, механическое устройство.
  • Для УМЗЧ, узкоспециализированный блок питания.
  • Мощный ИБП, имеет высокие характеристики.
  • На 200 В – на напряжение не более 220 вольт.
  • Сетевой ИБП на 150 ватт, только для сети.
  • Для 12 В – нормально работает при 12 вольтах.
  • Для 24 В – работает только на 24 вольта.
  • Мостовой – применена мостовая схема.
  • Для усилителя на лампах – характеристики для ламп.
  • Для светодиодов – высокая чувствительность.
  • Двухполярный ИБП, отличается качеством.
  • Обратноходовый, имеет повышенные напряжение и мощность.
Особенности

Простой ИБП может состоять из трансформаторов малых размеров, так как при повышении частоты эффективность трансформатора выше, требования к размерам сердечника меньше. Такой сердечник изготовлен из ферромагнитных сплавов, а для низкой частоты используется сталь.

Напряжение в блоке питания стабилизируется путем обратной связи отрицательной величины. Осуществляется поддержка напряжения выхода на одном уровне, не зависит от нагрузки и входных колебаний. Обратная связь создается разными методами. Если в блоке есть гальваническая развязка от сети, то применяется связь одной обмотки трансформатора на выходе или с помощью оптрона. Если развязка не нужна, то используют простой резистивный делитель. За счет этого напряжение выхода стабилизируется.

Особенности лабораторных блоков

Принцип действия осуществлен на активном преобразовании напряжения. Для удаления помех ставят фильтры в конце и начале цепи. Насыщение транзисторов положительно отражается на диодах, имеется регулировка напряжения. Встроенная защита блокирует короткие замыкания. Кабели питания применены немодульной серии, мощность достигает 500 ватт.

В корпусе установлен вентилятор охлаждения, скорость вентилятора регулируется. Наибольшая нагрузка блока составляет 23 ампера, сопротивление 3 Ом, наибольшая частота 5 герц.

Применение импульсных блоков

Сфера их использования постоянно растет как в быту, так и в промышленном производстве.

Импульсные блоки питания применяются в источниках бесперебойного питания, усилителях, приемниках, телевизорах, зарядных устройствах, для низковольтных линий освещения, компьютерной, медицинской технике и других различных приборах, и устройствах широкого назначения.

Достоинства и недостатки
ИБП имеет следующие преимущества и достоинства:
  • Небольшой вес.
  • Увеличенный КПД.
  • Небольшая стоимость.
  • Интервал напряжения питания шире.
  • Встроенные защитные блокировки.

Уменьшенная масса и размеры связано с применением элементов с радиаторами охлаждения линейного режима, импульсного регулирования вместо тяжелых трансформаторов. Емкость конденсаторов уменьшена за счет увеличения частоты. Схема выпрямления стала проще, самая простая схема – однополупериодная.

У трансформаторов низкой частоты теряется много энергии, рассеивается тепло во время преобразований. В ИБП максимальные потери возникают при переходных процессах коммутации. В другое время транзисторы устойчивы, они закрыты или открыты. Созданы условия для сохранения энергии, КПД достигает 98%.

Стоимость ИБП снижена из-за унификации элементов широкого ассортимента на роботизированных предприятиях. Силовые элементы из управляемых ключей состоят из полупроводников меньшей мощности.

Технологии импульсов дают возможность применять сеть питания с разной частотой, что расширяет применение блоков питания в различных сетях энергии. Модули на полупроводниках с небольшими габаритами с цифровой технологией имеют защиты от короткого замыкания и других аварий.

Недостатки

Импульсные блоки питания функционируют с помощью преобразования импульсов высокой частоты, создают помехи, уходящие в окружающую среду. Возникает необходимость подавления и борьбы с помехами разными методами. Иногда подавление помех не дает эффекта, и применение импульсных блоков становится невозможным для некоторых типов устройств.

Замену производить нужно только с разрешающим допуском по определённым параметрам, который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

Основные этапы ремонта импульсных блоков питания

  1. Несмотря на то что практически все импульсные блоки питания работают почти по одному принципу, схематические схемы для разных моделей электроприборов могут существенно различаться. Поэтому прежде чем приступить к ремонту постарайтесь найти электрическую принципиальную схему именно на тот объект, который собираетесь ремонтировать. Это поможет и для замеров конкретных рабочих напряжений в определённых точках, чтобы быстрее понять и найти неисправный элемент в цепи.
  2. Как бы теоретически вы ни были подкованы в этой области, без практических навыков вам не обойтись. Элементарные знания и практическое использование мультиметра или осциллографа, а также практические навыки по замене радиоэлементов с помощью паяльника и припоя вам просто необходимы в процессе ремонта.
  3. Если первые два этапа выполнены и вы готовы начать – разберите и почистите устройство с помощью пылесоса и произведите визуальную проверку блока (обратите внимание на вздутые конденсаторы, гарь и прочие механические дефекты).
  4. Проверьте электроприборами соответствие рабочих напряжений согласно схеме или просто подозрительные радиоэлементы. Осциллографом определите соответствие необходимых пульсаций в контрольных точках. После этого делайте выводы и производите необходимые замены.

Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

Ключ с частотой от нескольких десятков до нескольких сотен килогерц подключает и отключает первичную обмотку трансформатора или дросселя к конденсатору фильтра, перемагничивая таким образом сердечник трансформатора или дросселя.

Сегодня уже трудно в каком-нибудь бытовом приборе или блоке питания обнаружить трансформатор на железе. В 90-е годы они начали быстро уходить в прошлое, уступая место импульсным преобразователям или импульсным источникам питания (сокращенно ИИП).

Импульсные источники питания превосходят трансформаторные по габаритам, качеству получаемого постоянного напряжения, они имеют широкие возможности регулировки выходного напряжения и тока, а также традиционно оснащены защитой от перегрузки по выходному току. И хотя считается, что импульсные блоки питания являются основными поставщиками помех в бытовую сеть, тем не менее широкое их распространение вспять уже точно не повернуть.

Трансформаторный источник питания:

Импульсный источник питания:

Своей повсеместной распространенностью импульсные блоки питания обязаны полупроводниковым ключам — полевым транзисторам и диодам Шоттки. Именно полевой транзистор, работающий совместно с дросселем или трансформатором, является сердцем любого современного импульсного источника питания: в инверторах, сварочных аппаратах, источниках бесперебойного питания, во встроенных блоках питания телевизоров, мониторов и т. д. — нынче практически везде используются только импульсные схемы преобразования напряжения.

Схема импульсного источника питания включает в себя несколько главных составных частей: сетевой выпрямитель, ключ (или ключи), трансформатор (или дроссель), выходной выпрямитель, блок управления, а также блок стабилизации и защиты. Выпрямитель, ключ и трансформатор (дроссель) — основа силовой части схемы ИИП, в то время как электронные блоки (включая ШИМ-контроллер) относятся к так называемому драйверу.

Итак, сетевое напряжение подается через выпрямитель на конденсатор сетевого фильтра, где таким образом получается постоянное напряжение, максимум которого составляет от 305 до 340 вольт, в зависимости от текущего среднего значения напряжения в сети (от 215 до 240 вольт).

Выпрямленное напряжение подается на первичную обмотку трансформатора (дросселя) в форме импульсов, частота следования которых определяется обычно схемой управления ключом, а длительность — средним током питаемой нагрузки.

Ключ с частотой от нескольких десятков до нескольких сотен килогерц подключает и отключает первичную обмотку трансформатора или дросселя к конденсатору фильтра, перемагничивая таким образом сердечник трансформатора или дросселя.

Различие между трансформатором и дросселем: в дросселе фазы накопления энергии от источника сердечником и отдачи энергии из сердечника через обмотку — в нагрузку, разделены во времени, а в трансформаторе это происходит одновременно.

Дроссель применяется в преобразователях без гальванической развязки топологий: повышающий — boost, понижающий — buck, а также в преобразователях с гальванической развязкой топологии обратноходовый — flyback. Трансформатор применяется в преобразователях с гальванической развязкой следующих топологий: мост — full-bridge, полумост — half-bridge, двухтактный — push-pull, прямоходовой — forward.

Ключ может быть одиночным (обратноходовый преобразователь, прямоходовый преобразователь, повышающий или понижающий преобразователь без гальванической развязки) или же силовая часть может включать в себя несколько ключей (полумост, мост, двухтактный).

Схема управления ключом (ключами) получает с выхода источника сигнал обратной связи по напряжению или по напряжению и току нагрузки, в соответствии с величиной этого сигнала автоматически осуществляется регулировка ширины (скважности) импульса, управляющего длительностью проводящего состояния ключа.

Выход источника устроен следующим образом. Со вторичной обмотки трансформатора или дросселя, либо с единственной обмотки дросселя (если речь идет о преобразователе без гальванической развязки), импульсное напряжение подается через диоды Шоттки двухполупериодного выпрямителя — на конденсатор фильтра.

Здесь же находится делитель напряжения с которого берется сигнал обратной связи по напряжению, а также может присутствовать датчик тока. К конденсатору фильтра, через дополнительный выходной НЧ-фильтр или напрямую, присоединяется нагрузка.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

Узел управления. Является «мозгом» блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

Выходные выпрямители. С помощью выпрямителя происходит выпрямление — преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Как говорится: «No comment «.

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 («230/115»). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110. 127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220. 230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180. 220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов «моста» (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

  • Схема прямоходового импульсного блока питания – имеет простое исполнение, не требует особых навыков при сборке.

Технический прогресс не стоит на месте и уже сегодня на смену трансформаторному блоку питания пришел импульсный блок питания. Причин тому огромное множество, но самые главные – это:

  • Во-первых — простота и дешевизна при производстве;
  • Во-вторых — легкость при эксплуатации;
  • В-третьих — небольшие размеры.

Ознакомиться с руководством как выбрать детектор скрытой проводки и как им пользоваться можно здесь.

На снимке представлен импульсный блок питания

Что это такое?

С технической точки зрения импульсный блок питания – это устройство, которое выпрямляет сетевое напряжение и формирует из него импульс с частотной характеристикой в 10 кГц. Также стоит отметить, что КПД данного технического устройства достигает отметки в 80%.

Принцип работы

Фактически весь принцип работы импульсного блока питания сводится к тому, что устройство данного типа направлено на то, чтобы выпрямить напряжение, которое поступает на него при подключении к сети и затем создать рабочий импульс, за счет которого и может работать данный электрический прибор.

Также следует понимать, что в импульсных блоках питания, для работы телевизора, используют специальные конденсаторы. Именно за счет них процесс становится в несколько раз проще и удобнее. Инструкция по установке электрощитка здесь: http://howelektrik.ru/provodka/elektroshhitok/instrukciya-po-montazhu-elektroshhitka.htmll.

Многие задаются вопросом, в чем главные отличия импульсного устройства от обычного? Ответ очень простой, оно имеет более высокие технические характеристики и меньшие размеры. Кроме того импульсный блок дает больше энергии, чем стандартный его вариант.

На данный момент на территории Российской Федерации можно найти импульсные блоки питания следующих разновидностей и категорий:

    • Простой на IR2153 – эта версия является самой известной среди отечественного потребителя;

    • На TL494
    • На UC3842

Мощный На снимке

    • На 200 вольт – данный тип устройства рассчитан на максимальное напряжение в 220В;
    • Сетевой 150 Вт – работает только от сети, максимальная мощность – 150 Вт;
    • 12 В – устройство технического характера, которое способно нормально функционировать при напряжении в 12 В;
    • 24 В – нормальная работа аппарата возможна только при 24 В

На фотографии изображен 24 В

    • Мостовой – в ходе сборки применялась мостовая схема соединения;
    • Для лампового усилителя – все технические характеристики предназначены для работы с ламповым усилителем;
    • Для светодиодов –обладает высокой чувствительностью, используют для работы со светодиодами;

  • Двухполярный имеет двоякую полярность, устройство отвечает высоким стандартам качества;
  • Обратноходовый – зациклен на работе обратного хода, имеет высокие показатели мощности и напряжения.

Схема

Все блоки питания импульсного типа в зависимости от сферы применения и технических особенностей имеют различные схемы:

    • 12 В – является стандартным вариантом для сборки системы данного типа;

На рисунке схема импульсного блока питания 12 В

    • 2000 Вт – данная схема подходит только для высоко мощностных технических устройств;
    • Для шуруповерта 18 В – схема специфичная, при сборке требует от мастера особых знаний;

Схема блока питания для шуруповерта на рисунке

    • Для лампового усилителя – в данном случае речь идет о простом схематическом исполнении, которое также учитывает выход на ламповый усилитель;
    • Для ноутбуков – предполагает наличие особой системы защиты от перепадов напряжения;

На рисунке изображена схема блока питания для ноутбуков

    • На Top 200 – технические характеристики устройства будут равняться 40 В и 3 А. Читайте об устройстве генератора переменного тока.
    • На TL494 схема – учитывают ток ограничения и регулировку входного напряжения;

Схема ИБП на TL494 на рисунке

    • На UC3845 – собрать блок импульсного питания по данной схеме не составит и труда;
    • импульсный блок питания на ir2153 схема – применима для усилителей низкой частотности;

Схема ИБП на IR2153

    • На микросхеме LNK364PN – реализован на основе микро схематического исполнения UC 3842;
    • На полевом транзисторе уже из названия понятно, что данная схема применима для полевого транзистора;

  • Схема прямоходового импульсного блока питания – имеет простое исполнение, не требует особых навыков при сборке.

Ремонт

Само собой, что любая техника рано или поздно ломается. Причем импульсный блок питания тоже не исключение. По мнению специалистов устройство может перегреться, получить механические повреждения, возникают поломки, которые требуют замены отдельных деталей.

Любая техника ломается, блоки питания тому не исключение

Чтобы выполнить ремонт импульсного блока питания необходимо пользоваться специальным методическим материалом. Только придерживаясь определенной схемы можно выполнить ремонт оборудования данного типа.

На рисунке схема для ремонта импульсного блока питания

Для того чтобы выполнить ремонт импульсного блока питания собственными силами советуем воспользоваться следующей видеоинструкцией:

Как проверить?

Специалисты утверждают, что для проверки трансформатора импульсного блока питания необходимо запастись специальными устройствами, которые позволяют это выполнить в самые короткие сроки.

На фото прибор для проверки ИБП

Стоимость

Купить импульсный блок питания можно по цене от 2 000 до 15 000 рублей. Стоимость будет зависеть от технических характеристик устройства. Читайте инструкцию как отмотать электросчетчик на этой странице.

Где купить импульсные блоки питания?

  1. ТК Хелиор г. Москва, Бумажный проезд, д. 14 Контактный телефон: +7 (499) 557-09-55;
  2. Торговая компания ЗИП г. Москва Улица Верейская д.29 стр.154 Контактный телефон: +7(495) 269-03-90;
  3. ООО «АльтВидео» г.Москва, Нахимовский проспект, 1, корпус 2, офис №9 Контактный телефон: +7 495 664-22-18.
  1. Хcom.spb г. Санкт-Петербург, ул. Фурштатская, д.33 Контактный телефон: 8 (812) 740 1110;
  2. ООО «Фарадей Электроникс» п. Шушары, ул. Пушкинская, дом 22, Санкт-Петербург, Контактный телефон: +7 (812) 953-13-59;
  3. AVT-Техника, г. Санкт-Петербург, Красноармейская 1-я, 26 / Измайловский проспект, 4 — 246 офис; БЦ Измайловский Контактный телефон: +7-812-3347048.

Видео

Смотрите на видео как сделать импульсный блок питания своими руками:

Перед тем как купить импульсный блок питания следует ознакомиться с информацией, которая представлена в сети интернет. также следует посоветоваться с опытным специалистом.

  • большой вес и крупные габариты;
  • высокую стоимость, зачастую многократно превосходящую цену остальных компонентов сети.

Устройство работает по принципу инвертора. Сначала переменное напряжение в блоке преобразуется в постоянное, а затем снова в переменное, но уже с необходимой частотой.

Схематически устройство можно представить как совокупность трех цепей:

  • ШИМ-контроллера, который регулирует преобразование широтно-импульсной модуляции;
  • каскада силовых ключей, подключенных по мостовой, полумостовой схеме или по схеме со средней точкой;
  • импульсного трансформатора.

Взаимодействие элементов импульсного БП происходит по следующей схеме:

  • напряжение 220В поступает на выпрямитель. Амплитуда сглаживается за счет работы конденсаторов емкостного фильтра;
  • проходящие синусоиды выпрямляются диодным мостом;
  • транзисторная схема преобразует ток в импульсы прямоугольной формы и высокой частоты.

Преобразование синусоид в импульсы может выполняться с гальваническим отделением питающей сети от выходных сетей или без нее.

Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

Цены на ремонт импульсных БП

Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем импульсных блоков питания. Особенно много отличий в схемах с PFC (Power Factor Correction, коэффициент коррекции мощности). ЗАС повышает КПД.

Но самое важное – есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

Цена ремонта колеблется от 1000 рублей для простых блоков питания. Но достигает 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания. А также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

Например, в одном сложном блоке питания сгорело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Кстати, сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

Устройство китайских зарядных устройств для ноутбуков описано здесь.

Источники
Источник — http://nastroyvse.ru/devices/raznoe/kak-rabotaet-impulsnyj-blok-pitaniya.html
Источник — http://www.asutpp.ru/impulsnyj-blok-pitaniya.html
Источник — http://radioginn.ucoz.ru/publ/1-1-0-1
Источник — http://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/impulsnye-bloki-pitaniia/
Источник — http://instrument.guru/elektronika/remont-impulsnyh-blokov-pitaniya-svoimi-rukami.html
Источник — http://electricalschool.info/electronica/2127-impulsnye-istochniki-pitaniya.html
Источник — http://go-radio.ru/cxemotexnika-komputernix-blokov-pitania.html
Источник — http://howelektrik.ru/elektrooborudovanie/bloki-pitaniya/chto-takoe-impulsnyj-blok-pitaniya.html
Источник — http://promair.by/interesno-znat/impulsnye-bloki-pitaniya/
Источник — http://www.complace.ru/remont-blokov-pitaniya/impulsnye-bp/

Оцените статью
( 3 оценки, среднее 2 из 5 )
Как Это Работает?
Добавить комментарий